Skip to main content

Devices for Bone Fixation

  • Chapter
  • First Online:
Biomaterials for Surgical Operation

Abstract

Bone fixation devices made of bioabsorbable polymers have advantages over traditional metallic implants as the latter require a secondary operation to remove the device. However, bone fixation devices are expected to have much higher mechanical strengths than polymers used in soft tissue applications. Poly(l-lactide) (PLLA) is a semicrystalline bioabsorbable polymer that can be drawn to increase its mechanical strength. The present chapter describes the chemistry of PLLA and its applications in bone fixation devices. Degradation of PLLA takes a few years which may be adequate for bone regeneration. An important issue of bioabsorbable fixation devices is the balance between the bioabsorption rate and the mechanical strength maintenance. It is known that PLLA exhibits a piezoelectric effect that can accelerate new bone formation. Currently, PLLA bone fixation devices, including screws, pins, rods, and plates, are clinically available. They are used preferentially in non-load-bearing applications such as in maxillofacial surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cutright DE, Hunsuck EE, Beasley JD (1971) Fracture reduction using a biodegradable material, polylactic acid. J Oral Surg 29:393–397

    PubMed  CAS  Google Scholar 

  2. Kulkarni RK, Pani KC, Neuman C, Leonard F (1966) Polylactic acid for surgical implants. Arch Surg 93:839–843

    Article  PubMed  CAS  Google Scholar 

  3. Yoshino N, Takai S, Watanabe Y, Kamata K, Hirasawa Y (1998) Delayed aseptic swelling after fixation of talar neck fracture with a biodegradable poly-l-lactide rod: case reports. Foot Ankle Int 19:634–637

    PubMed  CAS  Google Scholar 

  4. Suganuma J, Alexander H (1993) Biological response of intramedullary bone to poly-l-lactic acid. J Appl Biomater 4:13–27

    Article  CAS  Google Scholar 

  5. Eufinger H, Rasche C, Lehmbrock J, Wehmöller M, Weihe S, Schmitz I, Schiller C, Epple M (2007) Performance of functionally graded implants of polylactides and calcium phosphate/calcium carbonate in an ovine model for computer assisted craniectomy and cranioplasty. Biomaterials 28:475–485

    Article  PubMed  CAS  Google Scholar 

  6. Pietrzak WS (2000) Principles of development and use of bioabsorbable internal fixation. Tissue Eng 6:425–433

    Article  PubMed  CAS  Google Scholar 

  7. Matsusue Y, Yamamuro T, Yoshii S, Oka M, Ikada Y, Hyon S, Shikinami Y (1991) Biodegradable screw fixation of rabbit tibia proximal osteotomies. J Appl Biomater 2:1–12

    Article  PubMed  CAS  Google Scholar 

  8. Hanafusa S, Matsusue Y, Yasunaga T, Yamamuro T, Oka M, Shikinami Y, Ikada Y (1995) Biodegradable plate fixation of rabbit femoral shaft osteotomies. A comparative study. Clin Orthop Relat Res 315:262–271

    PubMed  Google Scholar 

  9. Yasuda I, Noguchi K, Iida H (1955) Application to electrically-induced callus. J Jpn Orthop Assoc 29:351–353 (in Japanese)

    Google Scholar 

  10. Ikada Y, Shikinami Y, Hara Y, Tagawa M, Fukada E (1996) Enhancement of bone formation by drawn poly(l-lactide). J Biomed Mater Res 3:553–558

    Article  Google Scholar 

  11. Tajitsu Y (2008) Piezoelectricity of chiral polymeric fiber and its application in biomedical engineering. IEEE Trans Ultrason Ferroelectr Freq Control 55:1000–1008

    Article  PubMed  CAS  Google Scholar 

  12. Matsusue Y, Yamamuro T, Oka M, Shikinami Y, Hyon SH, Ikada Y (1992) In vitro and in vivo studies on bioabsorbable ultra-high-strength poly(l-lactide) rods. J Biomed Mater Res 26:1553–1567

    Article  PubMed  CAS  Google Scholar 

  13. Laine P, Kontio R, Lindqvist C, Suuronen R (2004) Are there any complications with bioabsorbable fixation devices? A 10 year review in orthognathic surgery. Int J Oral Maxillofac Surg 33:240–244

    Article  PubMed  CAS  Google Scholar 

  14. Maurer P, Holweg S, Knoll WD, Schubert J (2002) Study by finite element method of the mechanical stress of selected biodegradable osteosynthesis screws in sagittal ramus osteotomy. Br J Oral Maxillofac Surg 40:76–83

    Article  PubMed  CAS  Google Scholar 

  15. Oba Y, Yasue A, Kaneko K, Uchida R, Shioyasono A, Moriyama K (2008) Comparison of stability of mandibular segments following the sagittal split ramus osteotomy with poly-l-lactic acid (PLLA) screws and titanium screws fixation. Orthodontic Waves 67:1–8

    Article  Google Scholar 

  16. Pietrzak WS, Kumar M (2009) An enhanced strength retention poly(glycolic acid)-­poly­(l-lactic acid) copolymer for internal fixation: in vitro characterization of hydrolysis. J Craniofac Surg 20:1533–1537

    Article  PubMed  Google Scholar 

  17. Konan S, Haddad FS (2009) A clinical review of bioabsorbable interference screws and their adverse effects in anterior cruciate ligament reconstruction surgery. Knee 16:6–13

    Article  PubMed  CAS  Google Scholar 

  18. Sugimoto K, Takakura Y, Tanaka Y, Kawate K (2003) Technique tip: fixation of Mitchell’s osteotomy using a PLLA screw. Foot Ankle Int 24:372–373

    PubMed  Google Scholar 

  19. Suzuki T, Kawamura H, Kasahara T, Nagasaka H (2004) Resorbable poly-l-lactide plates and screws for the treatment of mandibular condylar process fractures: a clinical and radiologic follow-up study. J Oral Maxillofac Surg 62:919–924

    Article  PubMed  Google Scholar 

  20. Ricalde P, Caccamese J, Norby C, Posnick JC, Hartman MJ, von Fraunhofer JA (2008) Strength analysis of 6 resorbable implant systems: does heating affect the stress–strain curve? J Oral Maxillofac Surg 66:2493–2497

    Article  PubMed  Google Scholar 

  21. Vaccaro AR, Singh K, Haid R, Kitchel S, Wuisman P, Taylor W, Branch C, Garfin S (2003) The use of bioabsorbable implants in the spine. Spine J 3:227–237

    Article  PubMed  Google Scholar 

  22. van Dijk M, Smit TH, Sugihara S, Burger EH, Wuisman PI (2002) The effect of cage stiffness on the rate of lumbar interbody fusion: an in vivo model using poly(l-lactic Acid) and titanium cages. Spine 27:682–688

    Article  PubMed  Google Scholar 

  23. van Dijk M, Tunc DC, Smit TH, Higham P, Burger EH, Wuisman PI (2002) In vitro and in vivo degradation of bioabsorbable PLLA spinal fusion cages. J Biomed Mater Res 63:752–759

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuko Suzuki .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Suzuki, S., Ikada, Y. (2012). Devices for Bone Fixation. In: Biomaterials for Surgical Operation. Humana Press. https://doi.org/10.1007/978-1-61779-570-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-570-1_6

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-569-5

  • Online ISBN: 978-1-61779-570-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics