Skip to main content

Undertaking Regenerative Medicine Studies with Blood Stem Cells

  • Chapter
  • First Online:
Regenerative Therapy Using Blood-Derived Stem Cells

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 908 Accesses

Abstract

In this chapter, we provide a perspective on the advances achieved to date in regenerative medicine, identify some of the challenges confronting the field, and make specific recommendations aimed at hastening the translation of research to effective clinical practice. Regenerative medicine is well positioned to address many of the urgent unmet medical needs of the global community. The stakes are high, but success will come only from the collaboration and mindfulness of specialists from diverse fields and from the focused attention of funding agencies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bach FH, Albertini RJ, Joo P, Anderson JL, Bortin MM (1968) Bone-marrow transplantation in a patient with the Wiskott-Aldrich syndrome. Lancet 2:1364–1366

    Article  PubMed  CAS  Google Scholar 

  • Bakondi B, Shimada IS, Perry A et al (2009) CD133 identifies a human bone marrow stem/progenitor cell sub-population with a repertoire of secreted factors that protect against stroke. Mol Ther 17:1938–1947

    Article  PubMed  CAS  Google Scholar 

  • Ball LM, Bernardo ME, Roelofs H et al (2007) Cotransplantation of ex vivo expanded mesenchymal stem cells accelerates lymphocyte recovery and may reduce the risk of graft failure in haploidentical hematopoietic stem-cell transplantation. Blood 110:2764–2767

    Article  PubMed  CAS  Google Scholar 

  • Barnes DW, Corp MJ, Loutit JF, Neal FE (1956) Treatment of murine leukaemia with X rays and homologous bone marrow; preliminary communication. Br Med J 2:626–627

    Article  PubMed  CAS  Google Scholar 

  • Bortin MM (1970) A compendium of reported human bone marrow transplants. Transplantation 9:571–587

    Article  PubMed  CAS  Google Scholar 

  • Brand JM, Meller B, Von Hof K et al (2004) Kinetics and organ distribution of allogeneic natural killer lymphocytes transfused into patients suffering from renal cell carcinoma. Stem Cells Dev 13:307–314

    Article  PubMed  CAS  Google Scholar 

  • Chen SL, Fang WW, Ye F et al (2004) Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am J Cardiol 94:92–95

    Article  PubMed  Google Scholar 

  • Daar AS, Greenwood HL (2007) A proposed definition of regenerative medicine. J Tissue Eng Regen Med 1:179–184

    Article  PubMed  CAS  Google Scholar 

  • Dausset J (1958) Iso-leuko-antibodies. Acta Haematol 20:156–166

    Article  PubMed  CAS  Google Scholar 

  • de Vries IJ, Lesterhuis WJ, Barentsz JO et al (2005) Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nat Biotechnol 23:1407–1413

    Article  PubMed  Google Scholar 

  • Domansky K, Inman W, Serdy J, Dash A, Lim MH, Griffith LG (2010) Perfused multiwell plate for 3D liver tissue engineering. Lab Chip 10:51–58

    Article  PubMed  CAS  Google Scholar 

  • Donndorf P, Kundt G, Kaminski A et al (2011) Intramyocardial bone marrow stem cell transplantation during coronary artery bypass surgery: a meta-analysis. J Thorac Cardiovasc Surg

    Google Scholar 

  • Frank JA, Miller BR, Arbab AS et al (2003) Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents. Radiology 228:480–487

    Article  PubMed  Google Scholar 

  • Gatti RA, Meuwissen HJ, Allen HD, Hong R, Good RA (1968) Immunological reconstitution of sex-linked lymphopenic immunological deficiency. Lancet 2:1366–1369

    Article  PubMed  CAS  Google Scholar 

  • Gnecchi M, Zhang Z, Ni A, Dzau VJ (2008) Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res 103:1204–1219

    Article  PubMed  CAS  Google Scholar 

  • Hanna J, Wernig M, Markoulaki S et al (2007) Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 318:1920–1923

    Article  PubMed  CAS  Google Scholar 

  • Haseltine WA (2001) The emergence of regenerative medicine: a new field and a new society. J Regen Med 2(4):17

    Google Scholar 

  • Henning TD, Wendland MF, Golovko D et al (2009) Relaxation effects of ferucarbotran-labeled mesenchymal stem cells at 1.5 T and 3 T: discrimination of viable from lysed cells. Magn Reson Med 62:325–332

    Article  PubMed  CAS  Google Scholar 

  • Kang S, Yang YJ, Li CJ, Gao RL (2008) Effects of intracoronary autologous bone marrow cells on left ventricular function in acute myocardial infarction: a systematic review and meta-analysis for randomized controlled trials. Coron Artery Dis 19:327–335

    Article  PubMed  Google Scholar 

  • Kebriaei P, Isola L, Bahceci E et al (2009) Adult human mesenchymal stem cells added to corticosteroid therapy for the treatment of acute graft-versus-host disease. Biol Blood Marrow Transplant 15:804–811

    Article  PubMed  CAS  Google Scholar 

  • Koc ON, Gerson SL, Cooper BW et al (2000) Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J Clin Oncol 18:307–316

    PubMed  CAS  Google Scholar 

  • Kruskall MS (1997) The perils of platelet transfusions. N Engl J Med 337:1914–1915

    Article  PubMed  CAS  Google Scholar 

  • Lazarus HM, Koc ON, Devine SM et al (2005) Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biol Blood Marrow Transplant 11:389–398

    Article  PubMed  Google Scholar 

  • Le Blanc K, Samuelsson H, Gustafsson B et al (2007) Transplantation of mesenchymal stem cells to enhance engraftment of hematopoietic stem cells. Leukemia 21:1733–1738

    Article  PubMed  Google Scholar 

  • Le Blanc K, Frassoni F, Ball L et al (2008) Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 371:1579–1586

    Article  PubMed  Google Scholar 

  • Ma Y, Xu Y, Xiao Z et al (2006) Reconstruction of chemically burned rat corneal surface by bone marrow-derived human mesenchymal stem cells. Stem Cells 24:315–321

    Article  PubMed  Google Scholar 

  • Martin-Rendon E, Brunskill SJ, Hyde CJ, Stanworth SJ, Mathur A, Watt SM (2008) Autologous bone marrow stem cells to treat acute myocardial infarction: a systematic review. Eur Heart J 29:1807–1818

    Article  PubMed  CAS  Google Scholar 

  • Meier R, Piert M, Piontek G et al (2008) Tracking of [18 F]FDG-labeled natural killer cells to HER2/neu-positive tumors. Nucl Med Biol 35:579–588

    Article  PubMed  CAS  Google Scholar 

  • Meller B, Frohn C, Brand JM et al (2004) Monitoring of a new approach of immunotherapy with allogenic (111)In-labelled NK cells in patients with renal cell carcinoma. Eur J Nucl Med Mol Imaging 31:403–407

    Article  PubMed  Google Scholar 

  • Milner CM, Day AJ (2003) TSG-6: a multifunctional protein associated with inflammation. J Cell Sci 116:1863–1873

    Article  PubMed  CAS  Google Scholar 

  • Milner CM, Higman VA, Day AJ (2006) TSG-6: a pluripotent inflammatory mediator? Biochem Soc Trans 34:446–450

    Article  PubMed  CAS  Google Scholar 

  • NIH Stem Cell Research Funding, FY 2002–2010 (2011) http://stemcells.nih.gov/research/funding/funding.htm

    Google Scholar 

  • Oh JY, Kim MK, Shin MS, Lee HJ, Lee JH, Wee WR (2008) The anti-inflammatory and anti-angiogenic role of mesenchymal stem cells in corneal wound healing following chemical injury. Stem Cells 26:1047–1055

    Article  PubMed  CAS  Google Scholar 

  • Oh JY, Roddy GW, Choi H et al (2010) Anti-inflammatory protein TSG-6 reduces inflammatory damage to the cornea following chemical and mechanical injury. Proc Natl Acad Sci USA 107:16875–16880

    Article  PubMed  CAS  Google Scholar 

  • Oude Munnink TH, Nagengast WB, Brouwers AH et al (2009) Molecular imaging of breast cancer. Breast 18(Suppl 3):S66–S73

    Article  PubMed  Google Scholar 

  • Scacciatella P, Amato G, Ebrille E et al (2010) Current perspectives in cell therapy in cardiology: an overview of ongoing trials. G Ital Cardiol (Rome) 11:769–774

    Google Scholar 

  • Schachinger V, Erbs S, Elsasser A et al (2006) Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med 355:1210–1221

    Article  PubMed  CAS  Google Scholar 

  • Singer NG, Caplan AI (2011) Mesenchymal stem cells: mechanisms of inflammation. Annu Rev Pathol 6:457–478

    Article  PubMed  CAS  Google Scholar 

  • Storb R, Epstein RB, Bryant J, Ragde H, Thomas ED (1968) Marrow grafts by combined marrow and leukocyte infusions in unrelated dogs selected by histocompatibility typing. Transplantation 6:587–593

    Article  PubMed  CAS  Google Scholar 

  • Storb R, Epstein RB, Graham TC, Thomas ED (1970) Methotrexate regimens for control of graft-versus-host disease in dogs with allogeneic marrow grafts. Transplantation 9:240–246

    Article  PubMed  CAS  Google Scholar 

  • Storb R, Rudolph RH, Thomas ED (1971) Marrow grafts between canine siblings matched by serotyping and mixed leukocyte culture. J Clin Invest 50:1272–1275

    Article  PubMed  CAS  Google Scholar 

  • Sutton EJ, Henning TD, Pichler BJ, Bremer C, Daldrup-Link HE (2008) Cell tracking with optical imaging. Eur Radiol 18:2021–2032

    Article  PubMed  Google Scholar 

  • Takayama N, Nishimura S, Nakamura S et al (2010) Transient activation of c-MYC expression is critical for efficient platelet generation from human induced pluripotent stem cells. J Exp Med 207:2817–2830

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Armand Keating holds the Gloria and Seymour Epstein Chair in Cell Therapy and Transplantation at University Health Network and the University of Toronto.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sowmya Viswanathan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Viswanathan, S., Keating, A. (2012). Undertaking Regenerative Medicine Studies with Blood Stem Cells. In: Allan, D., Strunk, D. (eds) Regenerative Therapy Using Blood-Derived Stem Cells. Stem Cell Biology and Regenerative Medicine. Humana Press. https://doi.org/10.1007/978-1-61779-471-1_1

Download citation

Publish with us

Policies and ethics