Skip to main content

Radiation Protection by MnSOD-Plasmid Liposome Gene Therapy

  • Chapter
  • First Online:
Oxidative Stress in Cancer Biology and Therapy

Abstract

Understanding the molecular mechanism of ionizing irradiation killing of normal tissues compared to tumor cells has uncovered potential therapeutic strategies for radiotherapeutic dose escalation in the treatment of solid tumors. One strategy exploits the difference in redox balance between normal tissues and solid tumors with organ-specific and systemic (intravenous) administration of plasmid liposomes containing the human manganese superoxide dismutase (MnSOD) transgene. When delivered, this transgene product produced significant protection against single fraction and fractionated radiation in organ-specific radioprotective gene therapy by each of several routes of administration (inhalation, swallowed, intravesicle, intra-intestinal), and this strategy was shown to avoid tumor tissue. Furthermore, systemic administration of MnSOD-PL also provides radioprotection with selective normal tissue reduction of apoptosis compared to tumor. The complex mechanism of selective normal tissue protection involves specific differences in redox balance, constitutive MnSOD expression, and compensatory metabolic changes, many of which can enhance the therapeutic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hall E, Giaccia A (2006) Radiobiology for the radiologist, 6th edn. Lippincott William & Wilkins, Philadelphia, PA

    Google Scholar 

  2. Hauer-Jensen M, Wang J, Denham JW (2003) Current and evolving management strategies. Semin Radiat Oncol 13:357–371

    PubMed  Google Scholar 

  3. Gopal R et al (2003) The relationship between local dose and loss of function for irradiation lung. Int J Radiat Oncol Biol Phys 56(1):106–113

    Article  PubMed  Google Scholar 

  4. Marks LB (2002) Dosimetric predictors of radiation-induced lung injury. Int J Radiat Oncol Biol Phys 54(2):313–316

    Article  PubMed  Google Scholar 

  5. Blodgett TM, Meltzer CC, Townsend DW (2007) PET/CT: form and function. Radiology 242(2):50–70

    Article  Google Scholar 

  6. Daly ME, Chen AM, Bucci MK, El-Sayed IE, Xia P, Kaplan MJ, Eisele DW (2007) Intensity-modulated radiation therapy for malignancies of the nasal cavity and paranasal sinuses. Int J Radiat Oncol Biol Phys 67(1):151–157

    Article  PubMed  Google Scholar 

  7. Selvaraj RN, Bhatnagar A, Beriwal S, Huq MS, Heron DE, Sonnik D, Brandner E, Surgent R, Mogus R, Deutsch M, Gerszten K, Wu A, Kalnicki S, Yue NJ, Saw CB (2007) Breast skin doses from brachytherapy using MammoSite HDR, intensity modulated radiation therapy, and tangential fields techniques. Technol Cancer Res Treat 6(1):17–22

    PubMed  Google Scholar 

  8. Varlotto JM, Flickinger JC, Niranjan A, Bhatnagar A, Kondziolka D, Lunsford LD (2005) The impact of whole-brain radiation therapy on the long-term control and morbidity of patients surviving more than one year after gamma knife radiosurgery for brain metastases. Int J Radiat Oncol Biol Phys 62(4):1125–1132

    Article  PubMed  Google Scholar 

  9. Tsao MN, Mehta MP, Whelan TJ, Morris DE, Hayman JA, Flickinger JC, Mills M, Rogers CL, Souhami L (2005) The American society for therapeutic radiology and oncology (ASTRO) evidence-based review of the role of radiosurgery for malignant glioma. Int J Radiat Oncol Biol Phys 63(1):47–55

    Article  PubMed  Google Scholar 

  10. Heron DE, Smith RP, Andrade RS (2006) Advances in image-guided radiation therapy – the role of PET-CT. Med Dosim 31(1):3–11

    Article  PubMed  Google Scholar 

  11. Voynov G, Heron DE, Burton S, Grandis J, Quinn A, Ferris R, Ozhasoglu C, Vogel W, Johnson J (2006) Frameless stereotactic radiosurgery for recurrent head and neck carcinoma. Technol Cancer Res Treat 5(5):529–536

    PubMed  Google Scholar 

  12. Beriwal S, Bhatnagar A, Heron DE, Selvaraj R, Mogus R, Kim H, Gerszten K, Kelley J, Edwards RP (2006) High-dose-rate interstitial brachytherapy for gynecologic malignancies. Brachytherapy 5(4):218–222

    Article  PubMed  Google Scholar 

  13. Rubin P, Casarett GW (1968) Clinical radiation pathology. W. B, Saunders, Philadelphia, PA

    Google Scholar 

  14. Brown JM, Wilson WR (2004) Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer 4:437–447

    Article  PubMed  CAS  Google Scholar 

  15. Le Q-T (2007) Identifying and targeting hypoxia in head and neck cancer: a brief overview of current approaches. Int J Radiat Oncol Biol Phys 69(2 Suppl):S56–S58

    Article  PubMed  Google Scholar 

  16. Greenberger JS, Epperly MW, Gretton J, Jefferson M, Nie S, Bernarding M, Kagan V, Guo H-L (2003) Radioprotective gene therapy. Curr Gene Ther 3:183–195

    Article  PubMed  CAS  Google Scholar 

  17. Greenberger JS, Epperly MW (2004) Radioprotective antioxidant gene therapy: potential mechanisms of action. Gene Ther Mol Biol 8:31–44

    Google Scholar 

  18. Greenberger JS, Epperly MW (2005) Pleiotraophic stem cell and tissue effects of ionizing irradiation protection by MnSOD-plasmid liposome gene therapy. In: Redberry GW (ed) Gene Therapy in Cancer, Chapter VI. Nova Science Publishers, Inc., Hauppage, NY, pp. 191–215

    Google Scholar 

  19. Greenberger JS, Epperly MW (2005) Radioprotective gene therapy: current status and future goals. In Vile RG (ed) Viral Therapy of Cancer. Wiley Publications, Hoboken, NJ

    Google Scholar 

  20. Epperly MW, Sikora C, Deilippi S, Gretton J, Zhan Q, Kufe DW, Greenberger JS (2002) MnSOD inhibits irradiation-induced apoptosis by stabilization of the mitochondrial membrane against the effects of SAP kinases p38 and Jnk1 translocation. Radiat Res 157:568–577

    Article  PubMed  CAS  Google Scholar 

  21. Epperly MW, Gretton JE, Bernarding M, Nie S, Rasul B, Greenberger JS (2003) Mitochondrial localization of copper/zinc superoxide dismutase (Cu/ZnSOD) confers radioprotective functions in vitro and in vivo. Radiat Res 160:568–578

    Article  PubMed  CAS  Google Scholar 

  22. Belikova NA, Jiang J, Tyurina YY, Zhao Q, Epperly MW, Greenberger J, Kagan VE (2007) Cardiolipin specific peroxidase reactions of cytochrome c in mitochondria during irradiation induced apoptosis. Int J Radiat Oncol Biol Phys 69(1):176–185

    Article  PubMed  CAS  Google Scholar 

  23. Jiang J, Kurnikov I, Belikova NA, Xiao J, Zhao Q, Vlasova IL, Amoscato AA, Braslau R, Studer A, Fink MP, Greenberger JS, Wipf P, Kagan VE (2007) Structural requirements for optimized delivery, inhibition of oxidative stress and anti-apoptotic activity of targeted nitroxides. J Pharmacol Exp Therapeut 320(5):1050–1060

    CAS  Google Scholar 

  24. Greenberger JS (2008) Gene therapy approaches for stem cell protection. Gene Ther 15:100–108

    Article  PubMed  CAS  Google Scholar 

  25. Spitz DR et al (1990) Oxygen toxicity in control and H2O2-resistant Chinese hamster fibroblasts. Arch Biochem Biophys 279:249–260

    Article  PubMed  CAS  Google Scholar 

  26. Oberley LW, Buettner GR (1979) Role of superoxide dismutase in cancer: a review. Cancer Res 39:1141–1149

    PubMed  CAS  Google Scholar 

  27. Oberley LW (1982) Superoxide dismutase and cancer. In: Oberley LW (ed) Superoxide dismutase. CRC Press, Boca Raton, FL, Vol. II, Chapter 6

    Google Scholar 

  28. Zhong W, Oberley LW, Oberley TD, St. Clair DK (1997) Suppression of the malignant phenotype of human glioma cells by overexpression of manganese superoxide dismutase. Oncogene 14:481–490

    Article  PubMed  CAS  Google Scholar 

  29. Zhong W et al (1996) Inhibition of cell growth and sensitization to oxidative damage by overexpression of manganese superoxide dismutase in rat glioma cells. Cell Growth Differ 7:1175–1186

    PubMed  CAS  Google Scholar 

  30. Yan T, Oberley LW, Zhong W, St. Clair DK (1996) Manganese-containing superoxide dismutase overexpression causes phenotypic reversion in SV40-transformed human lung fibroblasts. Cancer Res 56:2864–2871

    PubMed  CAS  Google Scholar 

  31. Bennett CB et al (2001) Genes required for ionizing radiation resistance in yeast. Nat Genet 29:426–434

    Article  PubMed  CAS  Google Scholar 

  32. Lin Z, Nei M, Ma H (2007) The origins and early evolution of DNA mismatch repair genes-multiple horizontal gene transfers and co-evolution. Nucleic Acids Res 35:7591–7603

    Article  PubMed  CAS  Google Scholar 

  33. Cox MC, Battista JR (2005) Deinococcus radiodurans the consummate survivor. Nat Rev Microbiol 3:882–892

    Article  PubMed  CAS  Google Scholar 

  34. Daly MJ et al (2004) Accumulation of Mn(II) in deinococcus radiodurans facilitates gamma-radiation resistance. Science 306:1025–1030

    Article  PubMed  CAS  Google Scholar 

  35. White O et al (1999) Genome sequence of the radioresistant bacterium deinococcus radiodurans R1. Science 286:1571–1576

    Article  PubMed  CAS  Google Scholar 

  36. Morgan JL, Holcomb TM, Morrissey RW (1968) Radiation reaction in ataxia telangiectasia. Am J Dis Child 116:557–558

    PubMed  CAS  Google Scholar 

  37. Ho AY et al (2006) Genetic predictors of adverse radiotherapy effects: the gene-PARE project. Int J Radiat Oncol Biol Phys 65:646–655

    Article  PubMed  Google Scholar 

  38. Shiloh Y (2003) ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer 3:155–168

    Article  PubMed  CAS  Google Scholar 

  39. Abraham RT (2001) Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev 15:2177–2196

    Article  PubMed  CAS  Google Scholar 

  40. Casado JA, Nunez MI, Segovia JC, Ruiz de Almodovar JM, Bueren JA (2005) Non-homologous end-joining defect in fanconi anemia hematopoietic cells exposed to ionizing radiation. Radiat Res 164:635–641

    Article  PubMed  CAS  Google Scholar 

  41. Taniguchi T et al (2002) Convergence of the fanconi anemia and ataxia telangiectasia signaling pathways. Cell 109:459–472

    Article  PubMed  CAS  Google Scholar 

  42. Marcou Y, D’Andrea A, Jeggo PA, Plowman PN (2001) Normal cellular radiosensitivity in an adult fanconi anemia patient with marked clinical radiosensitivity. Radiother Oncol 60:75–79

    Article  PubMed  CAS  Google Scholar 

  43. Imamura O et al (2002) Werner and Bloom helicases are involved in DNA repair in a complimentary fashion. Oncogene 21:954–963

    Article  PubMed  CAS  Google Scholar 

  44. Imamura O, Campbell JL (2003) The human Bloom syndrome gene suppresses the DNA replication and repair defects of yeast dna2 mutants. PNAS 100:8193–8198

    Article  PubMed  CAS  Google Scholar 

  45. Stone HB et al (2004) Models for evaluating agents intended for the prophylaxis, mitigation, and treatment of radiation injuries. Report of an NCI Workshop, Dec. 3–4, 2003. Radiat Res 162:711–718

    Article  PubMed  CAS  Google Scholar 

  46. Rix-Montel MA (1988) Biophysical aspects of radioprotectors by aminothiols. Eng Med Biol Soc 2:1032–1033

    Google Scholar 

  47. Herceg Z, Milosvic Z, Kljajic R, Radnic Z (1990) The effects of use of radioprotective compound WR-2721 on haematological parameters in lethally irradiated swines. YRPA, Proceedings of the 3rd Italian-Yugoslav Symposium on Radiation Protection, Plitvice, Yugoslavia pp. 30–35

    Google Scholar 

  48. Epperly MW et al (2004) Ascorbate as a “redox-sensor” and protector against irradiation-induced oxidative stress in 32D cl 3 hematopoietic cells and subclones overexpressing human manganese Superoxide Dismutase. Int J Radiat Oncol Biol Phys 58(3):851–861

    Article  PubMed  CAS  Google Scholar 

  49. Bayir H et al (2006) Apoptotic interactions of cytochrome c: redox flirting with anionic phospholipids within and outside of mitochondria. Biochim Biophys Acta 1757(5–6):648–659

    PubMed  CAS  Google Scholar 

  50. Kagan VE et al (2006) The “pro-apoptotic genies” get out of mitochondria: oxidative lipidomics and redox activity of cytochrome c/cardiolipin complexes. Chem Biol Interact 163:15–28

    Article  PubMed  CAS  Google Scholar 

  51. Turella P et al (2005) Proapoptotic activity of new glutathione S-transferase inhibitors. Cancer Res 65:3751–3761

    Article  PubMed  CAS  Google Scholar 

  52. Vujaskovic Z (2003) Overexpression of extracellular superoxide dismutase protects mice from radiation-induced lung injury. Int J Radiat Oncol Biol Phys 57(4):1056–1066

    Article  PubMed  Google Scholar 

  53. Kang SK et al (2003) Overexpression of extracellular superoxide dismutase protects mice from radiation-induced lung injury. Int J Radiat Oncol Biol Phys 57:1056–1066

    Article  PubMed  CAS  Google Scholar 

  54. Anscher MS et al (1998) Plasma TFG,1 as a predictor of radiation pneumonitis. Int J Radiat Oncol Biol Phys 41:1029–1035

    Article  PubMed  CAS  Google Scholar 

  55. Rubin P, Johnston CJ, Williams JP, McDonald S, Finkelstein JN (1995) A perpetual cascade of cytokines postirradiation leads to pulmonary fibrosis. Int J Radiat Oncol Bio Phys 33:99–109

    Article  CAS  Google Scholar 

  56. Mothersill C, Seymour C (2001) Review: radiation-induced bystander effects: past history and future directions. Radiat Res 155:759–767

    Article  PubMed  CAS  Google Scholar 

  57. Gorbunov NV et al (2000) Activation of the nitric oxide synthase 2 pathway in the response of bone marrow stromal cells to high doses of ionizing radiation. Radiat Res 154:73–86

    Article  PubMed  CAS  Google Scholar 

  58. Greenberger JS, Epperly MW (2007) Antioxidant gene therapeutic approaches to normal tissue radioprotection and tumor radiosensitization. In Vivo 21:141–146

    PubMed  CAS  Google Scholar 

  59. Mitchell JB, Russo A, Kuppusamy P, Krishna MC (2000) Radiation, radicals, and images. Ann NY Acad Sci 899:28–43

    Article  PubMed  CAS  Google Scholar 

  60. Krishna MC, Grahame DA, Samuni A, Mitchell JB, Russo A (1992) Oxoammonium cation intermediate in the nitroxide-catalyzed dismutation of superoxide. Proc Natl Acad Sci USA 89:5537–5541

    Article  PubMed  CAS  Google Scholar 

  61. Fink M et al (2007) Hemigramicidin-TEMPO conjugates: novel mitochondria-targeted antioxidants. Crit Care Med 35:5461–5470

    Google Scholar 

  62. Jiang J et al (2008) A mitochondria-targeted nitroxide/hemi-gramicidin S conjugate protects Mouse embryonic cells against γ-irradiation. Int J Radiat Oncol Biol Phys 70:816–825

    Article  PubMed  CAS  Google Scholar 

  63. Epperly MW, Kagan VE, Sikora CA, Gretton JE, Defilippi SJ, Bar-Sagi D, Greenberger JS (2001) Manganese superoxide dismutase-plasmid/liposome (MnSOD-PL) administration protects mice from esophagitis associated with fractionated irradiation. Int J Cancer 96(4):221–233

    Article  PubMed  CAS  Google Scholar 

  64. Epperly MW, Zhang X, Nie S, Cao S, Kagan V, Tyurin V, Greenberger JS (2005) MnSOD-plasmid liposome gene therapy effects on ionizing irradiation induced lipid peroxidation of the esophagus. In Vivo 19:997–1004

    PubMed  CAS  Google Scholar 

  65. Han F, Drabek T, Stezoski J, Janesko-Feldman K, Stezoski SW, Clark RSB, Bayir H, Tisherman SA, Kochanek PM (2008) Protein nitration and poly-ADP-ribosylation in brain after rapid exsanguination cardiac arrest in a rat model of emergency preservation and resuscitation. Resuscitation 79(2):301–310

    Article  PubMed  CAS  Google Scholar 

  66. Tyurina YY, Tyurin VA, Epperly MW, Greenberger JS, Kagan VE (2008) Oxidative lipidomics of γ-irradiation induced intestinal injury. Free Radic Biol Med 44(3):299–314

    Article  PubMed  CAS  Google Scholar 

  67. Tyurin VA, Tyurina YY, Ritov VB, Lystsya A, Amoscato AA, Kochanek PM, Hamilton R, DeKosky ST, Greenberger JS, Bayir H, Kagan VE (2010) Oxidative lipidomics of apoptosis: Quantitative assessment of phospholipid hydroperoxides in cells and tissues. Methods Mol Biol 610:353–374

    Article  PubMed  CAS  Google Scholar 

  68. Tyurin VA, Tyurina YY, Kochanek PM, Hamilton R, DeKosky ST, Greenberger JS, Bayir H, Kagan VE (2008) Oxidative lipidomics of programmed cell death. Methods Enzymol 442:375–393

    Article  PubMed  CAS  Google Scholar 

  69. Stickle RL, Epperly MW, Klein E, Bray JA, Greenberger JS (1999) Prevention of irradiation-induced esophagitis by plasmid/liposome delivery of the human manganese superoxide dismutase (MnSOD) transgene. Radiat Oncol Investig 7(6):204–217

    Article  PubMed  CAS  Google Scholar 

  70. Epperly MW, Bray JA, Kraeger S, Zwacka R, Engelhardt J, Travis E, Greenberger JS (1998) Prevention of late effects of irradiation lung damage by manganese superoxide dismutase gene therapy. Gene Ther 5:196–208

    Article  PubMed  CAS  Google Scholar 

  71. Kanai AJ, Zeidel ML, Lavelle JP, Greenberger JS, Birder LA, deGroat WC, Apodaca GL, Meyers SA, Ramage R, VanBibber MM, Epperly MW (2002) Manganese superoxide dismutase gene therapy protects against irradiation-induced cystitis. Am J Physiol Renal Physiol 44:1152–1160

    Google Scholar 

  72. Guo HL, Wolfe D, Epperly MW, Huang S, Liu K, Glorioso JC, Greenberger J, Blumberg D (2003) Gene transfer of human manganese superoxide dismutase protects small intestinal villi from radiation injury. J Gastrointest Surg 7:229–236

    Article  PubMed  Google Scholar 

  73. Guo HL, Seixas-Silva JA, Epperly MW, Gretton JE, Shin DM, Greenberger JS (2003) Prevention of irradiation-induced oral cavity mucositis by plasmid/liposome delivery of the human manganese superoxide dismutase (MnSOD) transgene. Radiat Res 159:361–370

    Article  PubMed  CAS  Google Scholar 

  74. Epperly MW, Smith T, Wang H, Schlesselman J, Franicola D, Greenberger JS (2008) Modulation of total body irradiation induced life shortening by systemic intravenous MnSOD-plasmid liposome gene therapy. Radiat Res 170(4):437–443

    Article  PubMed  CAS  Google Scholar 

  75. Epperly MW, Carpenter M, Agarwal A, Mitra P, Nie S, Greenberger JS (2004) Intra-oral manganese superoxide dismutase plasmid/liposome radioprotective gene therapy decreases ionizing irradiation-induced murine mucosal cell cycling and apoptosis. In Vivo 18:401–410

    PubMed  CAS  Google Scholar 

  76. Epperly MW, Travis EL, Sikora C, Greenberger JS (1999) Magnesium superoxide dismutase (MnSOD) plasmid/liposome pulmonary radioprotective gene therapy: Modulation of irradiation-induced mRNA for IL-1, TNF-α, and TGF-β correlates with delay of organizing alveolitis/fibrosis. Biol Blood Marrow Transplant 5:204–214

    Article  PubMed  CAS  Google Scholar 

  77. Epperly MW, Gretton JA, Defilippi SJ, Sikora CA, Liggitt D, Koe G, Greenberger JS (2001) Modulation of radiation-induced cytokine elevation associated with esophagitis and esophageal stricture by manganese superoxide dismutase-plasmid/liposome (SOD-PL) gene therapy. Radiat Res 155:2–14

    Article  PubMed  CAS  Google Scholar 

  78. Rajagopalan MS, Gupta K, Epperly MW, Franicola D, Zhang X, Kagan VE, Wipf P, Greenberger JS (2009) The mitochondrial targeted nitroxide JP4-039 augments potentially lethal irradiation damage repair. Vivo 23(5):717–726

    CAS  Google Scholar 

  79. Gorbunov NV, Pogue-Geile KL, Epperly MW, Bigbee WL, Draviam R, Day BW, Wald N, Watkins SC, Greenberger JS (2000) Activation of the nitric oxide synthase 2 pathway in the response of bone marrow stromal cells to high doses of ionizing radiation. Radiat Res 154:73–86

    Article  PubMed  CAS  Google Scholar 

  80. Niu Y, Epperly MW, Shen H, Smith T, Lewis D, Gollin S, Greenberger JS (2008) Intraesophageal MnSOD-plasmid liposome administration enhances engraftment and self-renewal capacity of bone marrow derived progenitors of esophageal squamous epithelium. Gene Ther 15:347–356

    Article  PubMed  CAS  Google Scholar 

  81. Epperly MW, Goff JP, Sikora CA, Shields DS, Greenberger JS (2004) Bone marrow origin of cells with capacity for homing and differentiation to esophageal squamous epithelium. Radiat Res 162:233–240

    Article  PubMed  CAS  Google Scholar 

  82. Epperly MW, Sikora CA, Defilippi S, Gretton JE, Greenberger JS (2003) Bone marrow origin of myofibroblasts in irradiation pulmonary fibrosis. Am J Respir Cell Mol Biol 29:213–224

    Article  PubMed  CAS  Google Scholar 

  83. Epperly MW, Bernarding M, Gretton J, Jefferson M, Nie S, Greenberger JS (2003) Overexpression of the transgene for manganese superoxide dismutase (MnSOD) in 32D cl 3 cells prevents apoptosis induction by TNF-α, IL-3 withdrawal and ionizing irradiation. Exp Hematol 31(6):465–474

    Article  PubMed  CAS  Google Scholar 

  84. Carpenter M, Epperly MW, Agarwal A, Nie S, Hricisak L, Niu Y, Greenberger JS (2005) Inhalation delivery of manganese superoxide dismutase-plasmid/liposomes (MnSOD-PL) protects the murine lung from irradiation damage. Gene Ther 12:685–690

    Article  PubMed  CAS  Google Scholar 

  85. Yaron P, Epperly MW, Fernando HC, Klein E, Finkelstein S, Greenberger JS, Luketich JD (2005) Photodynamic therapy induced esophageal-stricture-An animal model: from mouse to pig. J Surg Res 123:67–74

    Article  Google Scholar 

  86. Epperly MW, Guo HL, Bernarding M, Gretton J, Jefferson M, Greenberger JS (2003) Delayed intratracheal injection of manganese superoxide dismutase (MnSOD)-plasmid/liposomes provides suboptimal protection against irradiation-induced pulmonary injury compared to treatment before irradiation. Gene Ther Mol Biol 7:61–68

    Google Scholar 

  87. Giorgio M, Trinei M, Migliaccio E, Pelicci PG (2007) Hydrogen peroxide: a metabolic by product or a common mediator of ageing signals? Nat RevMol Cell Biol 8:722–730

    Article  CAS  Google Scholar 

  88. Epperly MW, Melendez JA, Zhang X, Nie S, Pearce L, Peterson J, Franicola D, Dixon T, Greenberger BA, Komanduri P, Greenberger JS (2009) Mitochondrial targeting of a catalase transgene product by plasmid liposomes increases radioresistance in vitro and in vivo. Radiat Res 171(5):588–595

    Article  PubMed  CAS  Google Scholar 

  89. Bai J, Rodriguez AM, Melendez JA, Cederbai AI (1999) Overexpression of catalase in cytosolic or mitochondrial compartment protects HepG2 cells against oxidative injury. J Biol Chem 274:26217–26224

    Article  PubMed  CAS  Google Scholar 

  90. Epperly MW, Melendez A, Zhang X, Franicola D, Smith T, Greenberger BA, Komanduri P, Greenberger JS (2009) Mitochondrial targeting of a catalase transgene product by plasmid liposomes increases radioresistance in vitro and in vivo. Radiat Res 171(5):588–595

    Article  PubMed  CAS  Google Scholar 

  91. Epperly MW, Guo HL, Jefferson M, Wong S, Gretton J, Bernarding M, Bar-Sagi D, Greenberger JS (2003) Cell phenotype specific duration of expression of epitope-tagged HA-MnSOD in cells of the murine lung following intratracheal plasmid liposome gene therapy. Gene Ther 10:163–171

    Article  PubMed  CAS  Google Scholar 

  92. Epperly MW, Defilippi S, Sikora C, Gretton J, Kalend K, Greenberger JS (2000) Intratracheal injection of manganese superoxide dismutase (MnSOD) plasmid/liposomes protects normal lung but not orthotopic tumors from irradiation. Gene Ther 7(12):1011–1018

    Article  PubMed  CAS  Google Scholar 

  93. Guo H, Epperly MW, Bernarding M, Nie S, Gretton J, Jefferson M, Greenberger JS (2003) Manganese superoxide dismutase-plasmid/liposome (MnSOD-PL) intratracheal gene therapy reduction of irradiation-induced inflammatory cytokines does not protect orthotopic lewis lung carcinomas. In Vivo 17:13–22

    PubMed  CAS  Google Scholar 

  94. Epperly MW, Wegner R, Kanai AJ, Kagan V, Greenberger EE, Nie S, Greenberger JS (2007) Irradiated murine oral cavity orthotopic tumor antioxidant pool destabilization by MnSOD-plasmid liposome gene therapy mediates tumor radiosensitization. Radiat Res 267:289–297

    Article  Google Scholar 

  95. Greenberger JS, Dixon T, Franicola D, Niu Y, Zhang X, Epperly MW (2008) Manganese superoxide dismutase (MnSOD)-plasmid liposomes, C225, and Tirapazamine combination enhances radiotherapy of human orthotopic oral cavity squamous tumors. ASTRO, 2008. Int J Rad Oncol Biol Physics 72(1 (suppl 28), #1119):56

    Google Scholar 

  96. St. Clair DK, Wan XS, Oberley TD, Muse KE, St. Clair WH (1992) Suppression of radiation-induced neoplastic transformation by overexpression of mitochondrial superoxide dismutase. Mol Carcinog 6:238–242

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Supported by NIAID/NIH Research Grant U19A1068021

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel S. Greenberger MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Greenberger, J.S., Cagan, V.E., Peterson, J., Epperly, M.W. (2012). Radiation Protection by MnSOD-Plasmid Liposome Gene Therapy. In: Spitz, D., Dornfeld, K., Krishnan, K., Gius, D. (eds) Oxidative Stress in Cancer Biology and Therapy. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-397-4_19

Download citation

Publish with us

Policies and ethics