Skip to main content

Mitochondria-Mediated Oxidative Stress and Cancer Therapy

  • Chapter
  • First Online:
Oxidative Stress in Cancer Biology and Therapy

Abstract

Most cancer cells demonstrate increased rates of glucose metabolism when compared to normal cells. Glucose metabolism leads to the formation of pyruvate and NADPH both of which function in the cellular detoxification of hydroperoxides. Therefore, tumor cells may increase their metabolism of glucose as a compensatory mechanism to protect against hydroperoxides generated as byproducts of mitochondrial metabolism. Recent studies have shown that glucose deprivation preferentially induces cytotoxicity and oxidative stress in human cancer cells, relative to normal cells. Mitochondria have been hypothesized to be the site of prooxidant production during glucose deprivation. The preferential cytotoxicity and oxidative stress seen during glucose deprivation in cancer cells, relative to normal cells, has been hypothesized to have implications in designing more effective combined modality cancer therapies involving inhibitors of glycolytic metabolism and agents that enhance ROS production. Many drugs currently used to treat cancer cells (i.e., ionizing radiation, Cisplatin, Doxorubison, and azidothymidine, etc.) have been proposed to increase superoxide and hydrogen peroxide production and could also be combined with inhibitors of glucose metabolism and peroxide detoxification. The application of these findings to developing new combined modality cancer therapy protocols will be discussed as well as the clinical implications of using glucose metabolism and FDG-PET imaging to predict tumor responses to therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee YJ, Galoforo SS, Berns CM, Chen JC, Davis BH, Sim JE, Corry PM, Spitz DR (1998) Glucose deprivation-induced cytotoxicity and alterations in mitogen-activated protein kinase activation are mediated by oxidative stress in multidrug-resistant human breast carcinoma cells. J Biol Chem 273:5294–5299

    Article  PubMed  CAS  Google Scholar 

  2. Blackburn RV, Spitz DR, Liu X, Galoforo SS, Sim JE, Ridnour LA, Chen JC, Daris BH, Corry PM, Lee YJ (1999) Metabolic oxidative stress activates signal transduction and gene expression during glucose deprivation in human tumor cells. Free Radic Biol Med 26:419–430

    Article  PubMed  CAS  Google Scholar 

  3. Spitz DR, Sim JE, Ridnour LA, Galoforo SS, Lee YJ (2000) Glucose deprivation-induced oxidative stress in human tumor cells: a fundamental defect in metabolism? Ann N Y Acad Sci 899:349–362

    Article  PubMed  CAS  Google Scholar 

  4. Lin X, Zhang F, Bradbury CW, Kaushal A, Li L, Spitz DR, Aft R, Gius D (2003) 2-Deoxy-d-glucose-induced cytotoxicity and radiosensitization in tumor cells is mediated via disruptions in thiol metabolism. Cancer Res 63:3413–3417

    PubMed  CAS  Google Scholar 

  5. Nath KA, Ngo EO, Hebbel RP, Croatt AJ, Zhau B, Nutter LM (1995) α-ketoacids scavenge H2O2 in vitro and in vivo and reduce menadione-induced DNA injury and cytotoxicity. Am J Physiol 268:C227–C236

    PubMed  CAS  Google Scholar 

  6. Boveris A, Cadenas E (1982) Production of superoxide radicals and hydrogen peroxide in mitochondria. In: Oberley LW (ed) Superoxide dismutase, 2nd edn. CRC, Boca Raton, FL, pp 15–30

    Google Scholar 

  7. Turrens JF, Alexandre A, Lehninger AL (1985) Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch Biochem Biophys 237:408–414

    Article  PubMed  CAS  Google Scholar 

  8. Nohl H, Jordan W (1986) The mitochondrial site of superoxide formation. Biochem Biophys Res Commun 138:533–539

    Article  PubMed  CAS  Google Scholar 

  9. Robinson BH (1998) Human complex I deficiency: clinical spectrum and involvement of oxygen free radicals in the pathogenecity of the defect. Biochim Biophys Acta 1364:271–286

    Article  PubMed  CAS  Google Scholar 

  10. Ishii N, Fujii M, Hartman PS, Tsuda M, Yasuda K, Senoo-Matsuda N, Yanase S, Ayusawa D, Suzuki K (1998) A mutation in succinate dehydrogenase cytochrome b causes oxidative stress and ageing in nematods. Nature 394:694–697

    Article  PubMed  CAS  Google Scholar 

  11. Matsuno-Yagi A, Hatefi Y (1996) Ubiquinol-cytochrome c oxidoreductase. The redox reactions of the bis-heme cytochrome b in ubiquinone-sufficient and ubiquinone-deficient systems. J Biol Chem 271:6164–6171

    Article  PubMed  CAS  Google Scholar 

  12. Voet D, Voet JG, Pratt CW (1999) Fundamentals of biochemistry. Wiley, New York

    Google Scholar 

  13. Bartoli GM, Galeotti T, Azzi A (1977) Production of superoxide anions and hydrogen peroxide in Ehrlich ascites tumour cell nuclei. Biochim Biophys Acta 497:622–626

    Article  PubMed  CAS  Google Scholar 

  14. Peskin AV, Zbarsky IB, Konstantinov AA (1980) A novel type of superoxide generating system in nuclear membranes from hepatoma 22a ascites cells. FEBS Lett 117:44–48

    Article  PubMed  CAS  Google Scholar 

  15. Docampo R, Cruz FS, Boveris A, Muniz RP, Esquivel DM (1979) Beta-Lapachone enhancement of lipid peroxidation and superoxide anion and hydrogen peroxide formation by sarcoma 180 ascites tumor cells. Biochem Pharmacol 28:723–728

    Article  PubMed  CAS  Google Scholar 

  16. Dinescu-Romalo G, Mihai C (1979) Superoxide anion production and superoxide dismutase activity in several tissues from normal and guerin T8 ascites tumor-bearing rats. Cell Mol Biol 25:101–106

    CAS  Google Scholar 

  17. Springer EL (1980) Comparative study of the cytoplasmic organelles of epithelial cell lines derived from human carcinomas and nonmalignant tissues. Cancer Res 40:803–817

    PubMed  CAS  Google Scholar 

  18. Copeland WC, Wachsman JT, Johnson FM, Penta JS (2002) Mitochondrial DNA alterations in cancer. Cancer Invest 20:557–569

    Article  PubMed  CAS  Google Scholar 

  19. Carew JS, Huang P (2002) Mitochondrial defects in cancer. Mol Cancer 1:1–9

    Article  Google Scholar 

  20. Astuti D, Latif F, Dallol A, Dahia PL, Douglas F, George E, Skoldberg F, Husebye ES, Eng C, Maher ER (2001) Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma. Am J Hum Genet 69:49

    Article  PubMed  CAS  Google Scholar 

  21. Vanharanta S, Buchta M, McWhinney SR, Virta SK, Peczkowska M, Morrison CD, Lehtonen R, Januszewicz A, Jarvinen H, Juhola M, Mecklin JP, Pukkala E, Herva R, Kiuru M, Nupponen NN, Aaltonen LA, Neumann HP, Eng C (2004) Early-onset renal cell carcinoma as a novel extraparaganglial component of SDHB-associated heritable paraganglioma. Am J Hum Genet 74:153

    Article  PubMed  CAS  Google Scholar 

  22. Baysal BE, Ferrell RE, Willett-Brozick JE, Lawrence EC, Myssiorek D, Bosch A, van der Mey A, Taschner PE, Rubinstein WS, Myers EN, Richard CW, Cornelisse CJ, Devilee P, Devlin B (2000) Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science 287:848

    Article  PubMed  CAS  Google Scholar 

  23. Niemann S, Muller U (2000) Mutations in SDHC cause autosomal dominant paraganglioma, type 3. Nat Genet 26:268

    Article  PubMed  CAS  Google Scholar 

  24. Penta JS, Johnson FM, Wachsman JT, Copeland WC (2001) Mitochondrial DNA in human malignancy. Mutat Res 488(2):119–133

    Article  PubMed  CAS  Google Scholar 

  25. Fliss MS, Usadel H, Caballero OL, Wu L, Buta MR, Eleff SM, Jen J, Sidransky D (2000) Facile detection of mitochondrial DNA mutations in tumors and bodily fluids. Science 287:2017–2019

    Article  PubMed  CAS  Google Scholar 

  26. Spitz DR, Azzam EI, Li JJ, Gius D (2004) Metabolic oxidation/reduction reactions and cellular responses to ionizing radiation: a unifying concept in stress response biology. Cancer Metastasis Rev 23:311–322

    Article  PubMed  CAS  Google Scholar 

  27. Bianchi NO, Bianchi MS, Richard SM (2001) Mitochondrial genome instability in human cancers. Mutat Res 488(1):9–23

    Article  PubMed  CAS  Google Scholar 

  28. Hunt CR, Sim JE, Sullivan SJ, Featherstone T, Golden W, Von Kapp-Herr C, Hock RA, Gomez RA, Parsian AJ, Spitz DR (1998) Genomic instability and catalase gene amplification induced by chronic exposure to oxidative stress. Cancer Res 58(17):3986–3992

    PubMed  CAS  Google Scholar 

  29. Warburg O (1956) On the origin of cancer cells. Science 132:309–314

    Article  Google Scholar 

  30. Weber G (1977) Enzymology of cancer cells (first of two parts). New Engl J Med 296:486–492

    Article  PubMed  CAS  Google Scholar 

  31. Weber G (1977) Enzymology of cancer cells (second of two parts). New Eng J Med 296:541–551

    Article  PubMed  CAS  Google Scholar 

  32. Lehninger AL (1976) Biochemistry. Worth Publisher, New York, pp 245–441, 467–471, 849–850

    Google Scholar 

  33. Averill-Bates DA, Przybytkowski E (1994) The role of glucose in cellular defences against cytotoxicity of hydrogen peroxide in Chinese hamster ovary cells. Arch Biochem Biophys 312:52–58

    Article  PubMed  CAS  Google Scholar 

  34. Tuttle SW, Varnes ME, Mitchell JB, Biaglow JE (1992) Sensitivity to chemical oxidants and radiation in CHO cell lines deficient in oxidative pentose cycle activity. Int J Radiat Oncol Biol Phys 22:671–675

    Article  PubMed  CAS  Google Scholar 

  35. Boveris A, Chance B (1973) The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J 134:707–716

    PubMed  CAS  Google Scholar 

  36. Antunes F, Cadenas E (2000) Estimation of H2O2 gradients across biomembranes. FEBS Lett 475:121–126

    Article  PubMed  CAS  Google Scholar 

  37. Girotti AW (1998) Lipid hydroperoxide generation, turnover, and effector action in biological systems. J Lipid Res 39:1529–1542

    PubMed  CAS  Google Scholar 

  38. Mylonas C, Kouretas D (1999) Lipid peroxidation and tissue damage. In Vivo 13:295–309

    PubMed  CAS  Google Scholar 

  39. Kehrer JP (2000) The Haber-Weiss reaction and mechanisms of toxicity. Toxicology 149:43–50

    Article  PubMed  CAS  Google Scholar 

  40. Gupta AK, Lee YJ, Galoforo SS, Berns CM, Martinez AA, Corry PM, Wu X, Guan KL (1997) Differential effect of glucose deprivation on MAPK activation in drug sensitive human breast carcinoma MCF-7 and multidrug resistant MCF-7/ADR cells. Mol Cell Biochem 170:23–30

    Article  PubMed  CAS  Google Scholar 

  41. Liu X, Gupta AK, Corry PM, Lee YJ (1997) Hypoglycemia-induced c-Jun phosphorylation is mediated by c-Jun N-terminal kinase 1 and Lyn kinase in drug-resistant human breast carcinoma MCF-7/ADR cells. J Biol Chem 272(18):11690–11693

    Article  PubMed  CAS  Google Scholar 

  42. Sun Y, Oberley LW (1996) Redox regulation of transcriptional activators. Free Radic Biol Med 21:335–348

    Article  PubMed  CAS  Google Scholar 

  43. Ahmad IM, Aykin-Burns N, Sim JE, Walsh SA, Higashikubo R, Buettner GR, Venkataraman S, Mackey MA, Flanagan SW, Oberley LW, Spitz DR (2005) Mitochondrial O2 and H2O2 mediate glucose deprivation-induced stress in human cancer cells. J Biol Chem 280(6):4254–4263

    Article  PubMed  CAS  Google Scholar 

  44. Boveris A (1977) Mitochondrial production of superoxide radical and hydrogen peroxide. Adv Exp Med Biol 78:67–82

    Article  PubMed  CAS  Google Scholar 

  45. Szatrowski TP, Nathan CF (1991) Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res 51:794–798

    PubMed  CAS  Google Scholar 

  46. King MP, Attardi G (1996) Isolation of human cell lines lacking mitochondrial DNA. Meth Enzymol 264:304–313

    Article  PubMed  CAS  Google Scholar 

  47. King MP (1996) Use of ethidium bromide to manipulate ratio of mutated and wild-type mitochondrial DNA in cultured cells. Methods Enzymol 264:339–344

    Article  PubMed  CAS  Google Scholar 

  48. Guido DM, McCord JM, Wright RM, Repine JE (1993) Absence of electron transport (rho0 state) restores growth of a manganese-superoxide dismutase-deficient Saccharomyces cerevisiae in hyperoxia. J Biol Chem 268:26699–26703

    Google Scholar 

  49. Cai J, Wallace DC, Zhivotovsky B, Jones DP (2000) Separation of cytochrome C-dependent caspase activation from thiol-disulfide redox change in cells lacking mitochondrial DNA. Free Radic Biol Med 29:334–342

    Article  PubMed  CAS  Google Scholar 

  50. Luetjens CM, Bui NT, Sengpiel B, Munstermann G, Poppe M, Krohn AJ, Bauerbach E, Krieglstein J, Prehn JHM (2000) Delayed mitochondrial dysfunction in excitotoxic neuron death: cytochrome C release and a secondary increase in superoxide production. J Neurosci 20(15):5715–5723

    PubMed  CAS  Google Scholar 

  51. Laszlo J, Humphreys SR, Goldin A (1960) Effects of glucose analogues (2-deoxy-d-glucose, 2-deoxy-d-galactose) on experimental tumors. J Natl Cancer Inst 24:267–280

    PubMed  CAS  Google Scholar 

  52. Shenoy MA, Singh BB (1985) Non-nitro radiation sensitizers. Int J Radiat Biol 48:315–326

    Article  CAS  Google Scholar 

  53. Dwarkanath BS, Zolzer F, Chandana S, Bauch T, Adhikari JS, Muller WU, Streffer C, Jain V (2001) Heterogeneity in 2-deoxy-d-glucose-induced modifications in energetics and radiation responses of human tumor cell lines. Int J Radiat Oncol Biol Phys 50:1051–1061

    Article  PubMed  CAS  Google Scholar 

  54. Nomura K, Imani H, Koumura T, Arai M, Nakagawa Y (1999) Mitochondrial phospholipid hydroperoxide glutathione peroxidase suppresses apoptosis mediated by a mitochondrial death pathway. J Biol Chem 274:294–302

    Article  Google Scholar 

  55. Aykin-burns N, Ahmad IM, Zhu Y, Oberley LW, Spitz DR (2009) Increased levels of superoxide and H2O2 mediate the differential susceptibility of cancer cells versus normal cells to glucose deprivation. Biochem J 418:29–37

    Article  PubMed  CAS  Google Scholar 

  56. Berggren MI, Husbeck B, Samulitis B, Baker AF, Gallegos A, Powis G (2001) Thioredoxin peroxidase-1 (peroxiredoxin-1) is increased in thioredoxin-1 transfected cells and results in enhanced protection against apoptosis caused by hydrogen peroxide but not by other agents including dexamethasone, etoposide, and doxorubicin. Arch Biochem Biophys 392:103–104

    Article  PubMed  CAS  Google Scholar 

  57. Oberley LW (1982) Superoxide dismutase: volume II: superoxide dismutase and cancer (Chapter 6). In: Oberley LW (ed) CRC Press, Boca Raton, FL, pp 127–165

    Google Scholar 

  58. Suzuki M, O’Dea JD, Suzuki T, Agar NS (1983) 2-Deoxyglucose as a substrate for glutathione regeneration in human and ruminant red blood cells. Comp Biochem Physiol B 75(2):195–197

    PubMed  CAS  Google Scholar 

  59. Landau BR, Lubs HA (1958) Animal responses to 2-Deoxy-d-Glucose administration. Proc Soc Exp Biol Med 99:124–127

    PubMed  CAS  Google Scholar 

  60. Mitchell JB, Russo A (1987) The role of glutathione in radiation and drug induced cytotoxicity. Br J Cancer 55:S96–S104

    Google Scholar 

  61. Biaglow JE, Mitchell JB, Held K (1992) The importance of peroxide and superoxide in the x-ray response. Int J Radiat Oncol Biol Phys 22:665–669

    Article  PubMed  CAS  Google Scholar 

  62. Spitz DR, Phillips JW, Adams DT, Sherman CM, Deen DF, Li GC (1993) Cellular resistance to oxidative stress is accompanied by resistance to cisplatin: the significance of increased catalase activity and total glutathione in H2O2-resistant fibroblasts. J Cell Physiol 156:72–79

    Article  PubMed  CAS  Google Scholar 

  63. Basnakian AG, Kaushal GP, Shah SV (2002) Apoptotic pathways of oxidative damage to renal tubular epithelial cells. Antioxid Redox Signal 4:915–924

    Article  PubMed  CAS  Google Scholar 

  64. Doroshow JH (1983) Effect of anthracycline antibiotics on oxygen radical formation in rat heart. Cancer Res 43:460–472

    PubMed  CAS  Google Scholar 

  65. Mattson DM, Ahmad IM, Dayal D, Parsons AD, Aykin-Burns N, Li L, Orcutt KP, Spitz DR, Dornfeld KJ, Simons AL (2008) Cisplatin combined with zidovudine enhances cytotoxicity and oxidative stress in human head and neck cancer cells via a thiol-dependent mechanism. Free Radic Biol Med 46(2):232–237

    Article  PubMed  Google Scholar 

  66. Mohanti BK, Rath GK, Anantha N, Kannan V, Das BS, Chandramouli BA, Banerjee AK, Das S, Jena A, Ravichandran R, Sahi UP, Kumar R, Kapoor N, Kalia VK, Dwarakanath BS, Jain V (1996) Improving cancer radiotherapy with 2-deoxy-d-glucose: phase I/II clinical trials on human cerebral gliomas. Int J Radiat Oncol Biol Phys 35:103–111

    Article  PubMed  CAS  Google Scholar 

  67. Forastiere AA (1994) Overview of platinum chemotherapy in head and neck cancer. Semin Oncol 21:20–27

    PubMed  CAS  Google Scholar 

  68. Simons AL, Ahmad IM, Mattson DM et al (2007) 2-Deoxy-d-glucose (2DG) combined with cisplatin enhances cytotoxicity via metabolic oxidative stress in human head and neck cancer cells. Cancer Res 67(7):3364–3370

    Article  PubMed  CAS  Google Scholar 

  69. Bailey HH (1998) L-S, R-buthionine sulfoximine: historical development and clinical issues. Chem Biol Interact 111:239–254

    Article  PubMed  Google Scholar 

  70. Polyak K, Xia Y, Zweier JL, Kinzler KW, Vogelstein B (1997) A model for p53-induced apoptosis. Nature 389:300–305

    Article  PubMed  CAS  Google Scholar 

  71. Macip S, Igarashi M, Berggren P, Yu J, Lee SW, Aaronson SA (2003) Influence of induced reactive oxygen species in p53-mediated cell fate decisions. Mol Cell Biol 23:8576–8585

    Article  PubMed  CAS  Google Scholar 

  72. Ahmad IM, Abdalla MY, Aykin-Burns N, Simons AL, Oberley LW, Domann FE, Spitz DR (2008) 2-Deoxyglucose combined with wild-type p53 overexpression enhances cytotoxicity in human prostate cancer cells via oxidative stress. Free Radic Biol Med 44(5):826–834

    Article  PubMed  CAS  Google Scholar 

  73. Matoba S, Kang JG, Patino WD, Wragg A, Boehm M, Gavrilova O, Hurley PJ, Bunz F, Hwang PM (2007) P53 regulates mitochondrial respiration. Science 312:1650–1653

    Article  Google Scholar 

  74. Bensaad K, Vousden KH (2007) P53: new roles in metabolism. Trends Cell Biol 17:286–291

    Article  PubMed  CAS  Google Scholar 

  75. Liu Y, Borchert GL, Surazynski A, Hu CA, Phang JM (2006) Proline oxidase activates both intrinsic and extrinsic pathways for apoptosis: the role of ROS/superoxides, NFAT and MEK/ERK signaling. Oncogene 25(41):5640–5647

    Article  PubMed  CAS  Google Scholar 

  76. Donald SP, Sun XY, Hu CA, Yu J, Mei JM, Valle D, Phang JM (2001) Proline oxidase, encoded by p53-induced gene-6, catalyzes the generation of proline-dependent reactive oxygen species. Cancer Res 61:1810–1815

    PubMed  CAS  Google Scholar 

  77. Wahl RL, Cody RL, Hutchins GD et al (1991) Primary and metastatic breast carcinoma: Initial clinical evaluation with PET with the radiolabeled glucose analogue 2-[F-18]-fluoro-2-deoxy-d-glucose. Radiology 179:765–770

    PubMed  CAS  Google Scholar 

  78. Hannah A, Scott AM, Tochon-Danguy H, Chan JG, Akhurst T, Berlangieri S, Price D, Smith GS, Schelleman T, McKay WJ, Sizeland A (2002) Evaluation of 18 F-fluorodeoxyglucose positron emission tomography and computed tomography with histopathologic correlation in the initial staging of head and neck cancer. Ann Surg 236:208–217

    Article  PubMed  Google Scholar 

  79. Hricak H, Schoder H, Pucar D, Lis E, Eberhardt SC, Onyebuchi CN, Scher HI (2003) Advances in imaging the postoperative patient with a rising prostate-specific antigen level. Semin Oncol 30:616–634

    Article  PubMed  Google Scholar 

  80. Moadel RM, Nguyen AV, Lin EY, Lu P, Mani J, Blaufox MD, Pollard JW, Dadachova E (2003) Positron emission tomography agent 2-deoxy-2-[18 F]fluoro-d-glucose has a thrapeutic potential in breast cancer. Breast Cancer Res 5:R199–R205

    Article  PubMed  CAS  Google Scholar 

  81. Maschek G, Savaraj N, Priebe W, Braunschweiger P, Hamilton K, Tidmarsh GF, De Young LR, Lampidis TJ (2004) 2-Deoxy-d-glucose increases the efficacy of adriamycin and paclitaxel in human osteosarcoma and non-small cell lung cancers in vivo. Cancer Res 64:31–34

    Article  PubMed  CAS  Google Scholar 

  82. Stokkel MPM, ten Broek FW, van Rijk PP (1998) The role of FDG PET in the clinical management of head and neck cancer. Oral Oncol 34:466–471

    Article  PubMed  CAS  Google Scholar 

  83. Dobert N, Kovacs AF, Menzel C et al (2005) The prognostic value of FDG PET in head and neck cancer. Correlation with histopathology. Q J Nucl Med Mol Imaging 49:253–257

    PubMed  CAS  Google Scholar 

  84. Kitagawa Y, Nishizawa S, Sano K et al (2003) FDG-PET for the prediction of tumor aggressiveness and response to intra-arterial chemotherapy and radiotherapy in head and neck cancer. Eur J Nucl Med 30:63–71

    Article  CAS  Google Scholar 

  85. Simons AL, Fath MA, Mattson DM, Smith BJ, Walsh SA, Graham MM, Hichwa RD, Buatti JM, Dornfeld K, Spitz DR (2007) Enhanced response of human head and neck cancer xenograft tumors to cisplatin combined with 2-deoxy-d-glucose correlates with increased 18 F-FDG uptake as determined by PET imaging. Int J Radiat Oncol Biol Phys 69(4):1222–1230

    Article  PubMed  Google Scholar 

  86. Chen LB (1988) Mitochondrial membrane potential in living cells. Ann Rev Cell Biol 4:151–181

    Article  Google Scholar 

  87. Kawata K, Kanai M, Sasada T, Iwata S, Yamamoto N, Takabayashi A (2004) Usefulness of 99mTc- Sestamibi scintigraphy in suggesting the therapeutic effect of chemotherapy against gastric cancer. Clin Cancer Res 10(11):3788–3793

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iman M. Ahmad PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ahmad, I.M., Abdalla, M.Y. (2012). Mitochondria-Mediated Oxidative Stress and Cancer Therapy. In: Spitz, D., Dornfeld, K., Krishnan, K., Gius, D. (eds) Oxidative Stress in Cancer Biology and Therapy. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-397-4_1

Download citation

Publish with us

Policies and ethics