Skip to main content

The Effect of Combined C-Peptide and Zinc on Cellular Function

  • Chapter
  • First Online:
  • 916 Accesses

Part of the book series: Contemporary Diabetes ((CDI))

Abstract

The average adult human has approximately 5 L of blood, of which, nearly 40–45% is comprised of the red blood cell (RBC). The physiological significance of the RBC, its ability to carry and deliver oxygen to organs and tissues that may be hypoxic, is without question. Indeed, the idea of the RBC playing a role in such an important and complex mechanism may seem difficult to understand given that this cell has no nucleus or mitochondria. In fact, to some, this 7 or 8 μm-sized cell, whose life span in a healthy human is about 110–120 days, is nothing more than a simple cell with minimal machinery whose function is solely that of oxygen delivery. However, since the early 1990s, there has been a significant increase in the number of reports providing strong evidence that the RBC, in addition to its role as a deliverer of oxygen, is also a participant in overall blood flow itself [1, 2].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ellsworth ML. The red blood cell as an oxygen sensor: what is the evidence. Acta Physiol Scand. 2000;168:551–9.

    Article  PubMed  CAS  Google Scholar 

  2. Ellsworth ML, Forrester T, Ellis CG, et al. The erythrocyte as a regulator of vascular tone. Am J Physiol. 1995;269:H2155–61.

    PubMed  CAS  Google Scholar 

  3. Allen BW, Stamler JS, Piantadosi CA. Hemoglobin, nitric oxide and molecular mechanisms of hypoxic vasodilation. Trends Mol Med. 2009;15(10):452–60.

    Article  PubMed  CAS  Google Scholar 

  4. van Faassen EE, Bahrami S, Feelisch M, et al. Nitrite as regulator of hypoxic signaling in mammalian physiology. Med Res Rev. 2009;29(5):683–741.

    Article  PubMed  Google Scholar 

  5. Sprague RS, Stephenson AH, Ellsworth ML. Red not dead: signaling in and from erythrocytes. Trends Endocrinol Metab. 2007;18(9):350–5.

    Article  PubMed  CAS  Google Scholar 

  6. Tolan NV, Meyer JA, Ku C-J, et al. Use of the red blood cell as a simple drug target and diagnostic by manipulating and monitoring its ability to release adenosine triphosphate (ATP). Pure Appl Chem. 2010;82(8):1623–34.

    Article  CAS  Google Scholar 

  7. Wallerath T, Kunt T, Forst T, et al. Stimulation of endothelial nitric oxide synthase by proinsulin C-peptide. Nitric Oxide. 2003;9(2):95–102.

    Article  PubMed  CAS  Google Scholar 

  8. Meyer JA, Froelich JM, Reid GE, et al. Metal-activated C-peptide facilitates glucose clearance and the release of a nitric oxide stimulus via the GLUT1 transporter. Diabetologia. 2008;51(1):175–82.

    Article  PubMed  CAS  Google Scholar 

  9. Meyer JA, Subasinghe W, Sima AAF, et al. Zinc-activated C-peptide resistance to the type 2 diabetic erythrocyte is associated with hyperglycemia-induced phosphatidylserine externalization and reversed by metformin. Mol Biosyst. 2009;5(10):1157–62.

    Article  PubMed  CAS  Google Scholar 

  10. Kitamura T, Kimura K, Jung BD, et al. Proinsulin C-peptide rapidly stimulates mitogen-activated protein kinases in Swiss 3T3 fibroblasts: requirement of protein kinase C, phosphoinositide 3-kinase and pertussis toxin-sensitive G-protein. Biochem J. 2001;355:123–9.

    Article  PubMed  CAS  Google Scholar 

  11. Kitamura T, Kimura K, Jung BD, et al. Proinsulin C-peptide activates cAMP response element-binding proteins through the p38 mitogen-activated protein kinase pathway in mouse lung capillary endothelial cells. Biochem J. 2002;366:737–44.

    PubMed  CAS  Google Scholar 

  12. Kitamura T, Kimura K, Makondo K, et al. Proinsulin C-peptide increases nitric oxide production by enhancing mitogen-activated protein-kinase-dependent transcription of endothelial nitric oxide synthase in aortic endothelial cells of Wistar rats. Diabetologia. 2003;46:1698–705.

    Article  PubMed  CAS  Google Scholar 

  13. Zhong Z, Davidescu A, Ehren I, et al. C-peptide stimulates ERK1/2 and JNK MAP kinases via activation of protein kinase C in human renal tubular cells. Diabetologia. 2005;48(1):187–97.

    Article  PubMed  CAS  Google Scholar 

  14. Zhong Z, Kotova O, Davidescu A, et al. C-peptide stimulates Na+, K+-ATPase via activation of ERK1/2 MAP kinases in human renal tubular cells. Cell Mol Life Sci. 2004;61(21):2782–90.

    Article  PubMed  CAS  Google Scholar 

  15. Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980;288:373–6.

    Article  PubMed  CAS  Google Scholar 

  16. Ignarro LJ, Buga G, Dhaudhuri G. EDRF generation and release from perfused bovine pulmonary artery and vein. Eur J Pharmacol. 1988;149:79–88.

    Article  PubMed  CAS  Google Scholar 

  17. Palmer R, Ferrige MJ, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxation factor. Nature. 1987;327:524–6.

    Article  PubMed  CAS  Google Scholar 

  18. Buga GM, Gold ME, Fukuto JM, et al. Shear stress-induced release of nitric oxide from endothelial cells grown on beads. Hypertension. 1991;17:187–93.

    PubMed  CAS  Google Scholar 

  19. Rubanyi GM, Romero JC, Vanhoutte PM. Flow-induced release of endothelium-derived relaxing factor. Am J Physiol. 1986;250:H1145–9.

    PubMed  CAS  Google Scholar 

  20. Sprague RS, Stephenson AH, Dimmitt RA, et al. Effect of L-NAME on pressure-flow relationships in isolated rabbit lungs: role of red blood cells. Am J Physiol Heart C. 1995;269(38):H1941–8.

    CAS  Google Scholar 

  21. Sprague RS, Ellsworth ML, Stephenson AH, et al. ATP: the red blood cell link to NO and local control of the pulmonary circulation. Am J Physiol Heart C. 1996;271(40):H2717–22.

    CAS  Google Scholar 

  22. Gladwin MT, Shelhamer JH, Schechter AN, et al. Role of circulating nitrite and S-nitrosohemoglobin in the regulation of regional blood flow in humans. Proc Natl Acad Sci U S A. 2000;97(21):11482–7.

    Article  PubMed  CAS  Google Scholar 

  23. Tsoukias NM. Nitric oxide bioavailability in the microcirculation: insights from mathematical models. Microcirculation. 2008;15(8):813–34.

    Article  PubMed  CAS  Google Scholar 

  24. Stamler JS, Jia L, Eu JP, et al. Blood flow regulation by S-nitrosohemoglobin: a dynamic activity of blood involved in vascular control. Science. 1997;276:2034–7.

    Article  PubMed  CAS  Google Scholar 

  25. Genes LI, Tolan NV, Hulvey MK, et al. Addressing a vascular endothelium array with blood components using underlying microfluidic channels. Lab Chip. 2007;7(10):1256–9.

    Article  PubMed  CAS  Google Scholar 

  26. Bogle RG, Coade SB, Moncada S, et al. Bradykinin and ATP stimulate L-arginine uptake and nitric oxide release in vascular endothelial cells. Biochem Biophys Res Commun. 1991;80:926–32.

    Article  Google Scholar 

  27. Dull RO, Tarbell JM, Daves PF. Mechanism of flow-mediated signal transduction in endothelial cells: kinetics of ATP surface concentrations. J Vasc Res. 1992;29:410–9.

    Article  PubMed  CAS  Google Scholar 

  28. Bergfeld GR, Forrester T. Release of ATP from human erythrocytes in response to a brief period of hypoxia and hypercapnia. Cardiovasc Res. 1992;26(1):40–7.

    Article  PubMed  CAS  Google Scholar 

  29. Miseta A, Bogner P, Berenyi M, et al. Relationship between cellular ATP, potassium, sodium and magnesium concentrations in mammalian and avian erythrocytes. Biochim Biophys Acta. 1993;1175:133–9.

    Article  PubMed  CAS  Google Scholar 

  30. Allsup DJ, Boarder MR. Comparison of P2 purinergic receptors of aortic endothelial cell with those of adrenal medulla: evidence for heterogeneity of receptor subtype and of inositol phosphate response. Mol Pharm. 1990;38:84–91.

    CAS  Google Scholar 

  31. Communi D, Raspe E, Pirotton S, et al. Coexpression of P2y and P2u receptors on aortic endothelial cells: comparison of cell localization and signaling pathways. Circ Res. 1991;76:191–8.

    Google Scholar 

  32. Houston DA, Burnstock G, Vanhoutte PM. Different P2-purinergic receptor subtypes of endothelium and smooth muscle in canine blood vessels. J Pharmacol Exp Ther. 1987;241:501–6.

    PubMed  CAS  Google Scholar 

  33. Liu SF, McCormack DG, Evans TW, et al. Characterization and distribution of P2-purinoreceptor subtypes in rat pulmonary vessels. J Pharmacol Exp Ther. 1989;251:1204–10.

    PubMed  CAS  Google Scholar 

  34. Motte S, Perotton S, Boeynaems JM. Heterogeneity of ATP receptors in aortic endothelial cells: involvement of P2y and P2u receptors in inositol phosphate response. Circ Res. 1993;72:504–10.

    PubMed  CAS  Google Scholar 

  35. Dazel HH, Westfall DP. Receptors for adenine nucleotides and nucleosides: subclassification, distribution and molecular characterization. Pharmacol Rev. 1994;46:449–66.

    Google Scholar 

  36. Kennedy C, Delbro D, Burnstock G. P2-purinoreceptors mediate both vasodilation (via the endothelium) and vasoconstriction of the isolated ret femoral artery. Eur J Pharmacol. 1985;107:161–8.

    Article  PubMed  CAS  Google Scholar 

  37. Forsberg E, Feuerstein G, Shohami E, Pollard H. Adenosine triphosphate stimulates inositol phospholipid metabolism and prostacyclin formation in ­adrenal medullary endothelial cells by means of P2-purinergic receptors. Proc Natl Acad Sci USA. 1987;84:5630–4.

    Article  PubMed  CAS  Google Scholar 

  38. Hassessian H, Burnstock G. Interacting roles of nitric oxide and ATP in the pulmonary circulation of the rat. Br J Pharmacol. 1995;114:846–50.

    PubMed  CAS  Google Scholar 

  39. McCullough WT, Collins DM, Ellsworth ML. Arteriolar responses to extracellular ATP in striated muscle. Am J Physiol. 1997;272:H1886–91.

    PubMed  CAS  Google Scholar 

  40. Dietrich HH, Ellsworth ML, Sprague RS, Dacey Jr RG. Red blood cell regulation of microvascular tone through adenosine triphosphate. Am J Physiol Heart C. 2000;278:H1294–8.

    CAS  Google Scholar 

  41. Sprague RS, Ellsworth ML, Stephenson AH, et al. Deformation-induced ATP release from red blood cells requires cystic fibrosis transmembrane conductance regulator activity. Am J Physiol. 1998;275:H1726–32.

    PubMed  CAS  Google Scholar 

  42. Fischer DJ, Torrence NJ, Sprung RJ, et al. Determination of erythrocyte deformability and its correlation to cellular ATP release using microbore tubing with diameters that approximate resistance vessels in vivo. Analyst. 2003;128:1163–8.

    Article  PubMed  CAS  Google Scholar 

  43. Sprague RS, Ellsworth ML, Stephenson AH, et al. ATP: the red blood cell link to NO and local control of the pulmonary circulation. Am J Physiol. 1996;271:H2717–22.

    PubMed  CAS  Google Scholar 

  44. Sprague RS, Ellsworth ML, Stephenson AH, et al. Increases in flow rate stimulate adenosine triphosphate release from red blood cells in isolated rabbit lungs. Exp Clin Cardiol. 1998;3:73–7.

    Google Scholar 

  45. Leeman M, de Zegers BV, Delcroix M, Naeije R. Effects of endogenous nitric oxide on pulmonary vascular tone in intact dogs. Am J Physiol. 1994;266:H2343–7.

    PubMed  CAS  Google Scholar 

  46. Nishiwaki K, Nyhan PD, Rock P, et al. N-nitro-L-arginine and pulmonary vascular pressure-flow relationship in conscious dogs. Am J Physiol. 1992;262:H1331–7.

    PubMed  CAS  Google Scholar 

  47. Carroll JS, Subasinghe W, Raththagala M, et al. An altered erythrocyte pentose phosphate pathway affects the ability of red cells to release ATP, a nitric oxide stimulus. Mol Biosyst. 2006;2:305–11.

    Article  PubMed  CAS  Google Scholar 

  48. Sprung RJ, Sprague RS, Spence DM. Determination of ATP release from erythrocytes using microbore tubing as a model of resistance vessels in vivo. Anal Chem. 2002;74:2274–8.

    Article  PubMed  CAS  Google Scholar 

  49. Price AK, Fischer DJ, Martin RS, et al. Deformation-induced release of ATP from erythrocytes in a poly(dimethylsiloxane)-based microchip with channels that mimic resistance vessels. Anal Chem. 2004;76(16):4849–55.

    Article  PubMed  CAS  Google Scholar 

  50. Forst T, Kunt T, Pohlmann T, et al. Biological activity of C-peptide on the skin microcirculation in patients with insulin-dependent diabetes mellitus. J Clin Invest. 1998;101(10):2036–41.

    Article  PubMed  CAS  Google Scholar 

  51. Forst T, De La Tour DD, Kunt T, et al. Effects of proinsulin C-peptide on nitric oxide, microvascular blood flow and erythrocyte Na+, K+-ATPase activity in diabetes mellitus type I. Clin Sci. 2000;98(3):283–90.

    Article  PubMed  CAS  Google Scholar 

  52. Kunt T, Schneider S, Pfutzner A, et al. The effect of human proinsulin C-peptide on erythrocyte deformability in patients with type I diabetes mellitus. Diabetologia. 1999;42(4):465–71.

    Article  PubMed  CAS  Google Scholar 

  53. Sprague RS, Stephenson AH, Bowles EA, Stumpf MS, Lonigro AJ. Reduced expression of Gi in erythrocytes of humans with type 2 diabetes is associated with impairment of both cAMP generation and ATP release. Diabetes. 2006;55(12):3588–93.

    Article  PubMed  CAS  Google Scholar 

  54. Forst T, Kunt T. Effects of C-peptide on microvascular blood flow and blood hemorheology. Exp Diabesity Res. 2004;5(1):51–64.

    Article  PubMed  CAS  Google Scholar 

  55. Chen G, Liu P, Pattar GR, et al. Chromium activates glucose transporter 4 trafficking and enhances insulin-stimulated glucose transport in 3T3-LI adipocytes via a cholesterol-dependent mechanism. Mol Endocrinol. 2006;20(4):857–70.

    Article  PubMed  CAS  Google Scholar 

  56. Hatfield MJ, Gillespie S, Chen Y, Li Z, et al. Low-molecular-weight chromium-binding substance from chicken liver and American alligator liver. Comp Biochem Phys B. 2006;144:423–31.

    Article  Google Scholar 

  57. Mertz W, Roginski EE, Schwarz K. Effect of trivalent chromium complexes on glucose uptake by epididymal fat tissue of rats. J Biol Chem. 1961;236:318–22.

    PubMed  CAS  Google Scholar 

  58. Schwarz K, Mertz W. Chromium(III) and the glucose tolerance factor. Arch Biochem Biophys. 1959;85:292–5.

    Article  PubMed  CAS  Google Scholar 

  59. Orci L, Halban P, Perrelet A, et al. pH-independent and -dependent cleavage of proinsulin in the same secretory vesicle. J Cell Biol. 1994;126:1149–56.

    Article  PubMed  CAS  Google Scholar 

  60. Kennedy RT, Huang L, Aspinwall CA. Extracellular pH is required for rapid release of insulin from Zn-insulin precipitates in beta-cell secretory vesicles during exocytosis. J Am Chem Soc. 1996;118(7):1795–6.

    Article  CAS  Google Scholar 

  61. Shafqat J, Melles E, Sigmundsson K, et al. C-peptide elicits disaggregation of insulin resulting in enhanced physiological insulin effects. Cell Mol Life Sci. 2006;63:1805–11.

    Article  PubMed  CAS  Google Scholar 

  62. Medawala W, McCahill P, Giebink A, et al. A molecular level understanding of zinc activation of C-peptide and its effects on cellular communication in the bloodstream. Rev Diabet Stud. 2009;6(3):148–58.

    Article  PubMed  Google Scholar 

  63. Nordquist L, Wahren J. C-Peptide: the missing link in diabetic nephropathy? Rev Diabet Stud. 2009;6(3):203–10.

    Article  PubMed  Google Scholar 

  64. Kamiya H, Zhang W, Sima AAF. The beneficial effects of C-peptide on diabetic polyneuropathy. Rev Diabet Stud. 2009;6(3):187–202.

    Article  PubMed  Google Scholar 

  65. Forst T, Hach T, Kunt T, et al. Molecular effects of C-peptide in microvascular blood flow regulation. Rev Diabet Stud. 2009;6(3):159–67.

    Article  PubMed  Google Scholar 

  66. Haidet J, Cifarelli V, Trucco M, Luppi P. Anti-inflammatory properties of C-peptide. Rev Diabet Stud. 2009;6(3):168–79.

    Article  PubMed  Google Scholar 

  67. Cao ZL, Bell JB, Mohanty JG, et al. Nitrite enhances RBC hypoxic ATP synthesis and the release of ATP into the vasculature: a new mechanism for nitrite-induced vasodilation. Am J Physiol Heart C. 2009;297(4):H1494–503.

    Article  CAS  Google Scholar 

  68. Olearczyk JJ, Stephenson AH, Lonigro AJ, et al. Receptor-mediated activation of the heterotrimeric G-protein Gs results in ATP release from erythrocytes. Med Sci Monit. 2001;7(4):669–74.

    PubMed  CAS  Google Scholar 

  69. Olearczyk JJ, Stephenson AH, Lonigro AJ, et al. Heterotrimeric G protein Gi is involved in a signal transduction pathway for ATP release from erythrocytes. Am J Physiol. 2004;286(3 Pt 2):H940–5.

    CAS  Google Scholar 

  70. Manzella D, Ragno E, Abbatecola Angela M, et al. Residual C-peptide secretion and endothelial function in patients with type II diabetes. Clin Sci. 2003;105(1):113–8.

    Article  PubMed  CAS  Google Scholar 

  71. Scalia R, Coyle KM, Levine BJ, et al. C-peptide inhibits leukocyte-endothelium interaction in the microcirculation during acute endothelial dysfunction. FASEB J. 2000;14(14):2357–64.

    Article  PubMed  CAS  Google Scholar 

  72. Freedman JE, Loscalzo J, Barnard MR, et al. Nitric oxide released from activated platelets inhibits platelet recruitment. J Clin Invest. 1997;100(2):350–6.

    Article  PubMed  CAS  Google Scholar 

  73. Sobol AB, Watala C. The role of platelets in diabetes-related vascular complications. Diabetes Res Clin Pract. 2000;50(1):1–16.

    Article  PubMed  CAS  Google Scholar 

  74. Vinik AI, Erbas T, Park TS, et al. Platelet dysfunction in type 2 diabetes. Diabetes Care. 2001;24(8):1476–85.

    Article  PubMed  CAS  Google Scholar 

  75. Hu H, Li N, Ekberg K, et al. Insulin, but not proinsulin C-peptide, enhances platelet fibrinogen binding in vitro in type 1 diabetes mellitus patients and healthy subjects. Thromb Res. 2002;106(2):91–5.

    Article  PubMed  CAS  Google Scholar 

  76. Carroll J, Raththagala M, Subasinghe W, et al. An altered oxidant defense system in red blood cells affects their ability to release nitric oxide-stimulating ATP. Mol Biosyst. 2006;2(6/7):305–11.

    Article  PubMed  CAS  Google Scholar 

  77. Lindenblatt N, Braun B, Menger MD, et al. C-peptide exerts antithrombotic effects that are repressed by insulin in normal and diabetic mice. Diabetologia. 2006;49(4):792–800.

    Article  PubMed  CAS  Google Scholar 

  78. Luzi L, Zerbini G, Caumo A. C-peptide: a redundant relative of insulin? Diabetologia. 2007;50:500–2.

    Article  PubMed  CAS  Google Scholar 

  79. Lindahl E, Nyman U, Melles E, et al. Cellular internalization of proinsulin C-peptide. Cell Mol Life Sci. 2007;64:479–86.

    Article  PubMed  CAS  Google Scholar 

  80. Pramanik A, Ekberg K, Zhong Z, et al. C-peptide binding to human cell membranes: importance of Glu27. Biochem Biophys Res Commun. 2001;284:94–8.

    Article  PubMed  CAS  Google Scholar 

  81. Rigler R, Pramanik A, Jonasson P, et al. Specific binding of proinsulin C-peptide to human cell membranes. Proc Natl Acad Sci U S A. 1999;96:13318–23.

    Article  PubMed  CAS  Google Scholar 

  82. Mughal RS, Scragg JL, Lister P, et al. Cellular mechanisms by which proinsulin C-peptide prevents insulin-induced neointima formation in human saphenous vein. Diabetologia. 2010;53(8):1761–71.

    Article  PubMed  CAS  Google Scholar 

  83. Hach T, Forst T, Kunt T, et al. C-peptide and its C-terminal fragments improve erythrocyte deformability in type 1 diabetes patients. Exp Diabetes Res. 2008;2008:730594.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dana M. Spence .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Spence, D.M. (2012). The Effect of Combined C-Peptide and Zinc on Cellular Function. In: Sima, A. (eds) Diabetes & C-Peptide. Contemporary Diabetes. Humana Press. https://doi.org/10.1007/978-1-61779-391-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-391-2_3

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-390-5

  • Online ISBN: 978-1-61779-391-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics