Skip to main content

Abstract

The fibroblastic cell migration machinery involves such factors as cytoskeleton-regulated formation of pseudopodia, cell morphological polarization, dynamic regulation of focal adhesions during cell migration, integrin- and growth factor receptor-mediated signaling. The inhibition of directional movement of one cell across the surface of another cell caused by intercellular collisions (the phenomenon called “contact inhibition of cell migration”) and also biochemical, physical, and topographic characteristics of the extracellular matrix are also pivotal factors, which determine and control cell migration activity and the direction of migration. Oncogenic transformation causes various abnormalities of cell migration machinery. These alterations apply to adhesion and signaling functions of focal contacts in transformed cells, and also to the sensitivity of the cells to soluble growth factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Petrie RJ, Doyle AD, Yamada KM (2009) Random versus directionally persistent cell migration. Nat Rev Mol Cell Biol 10(8):538–549. doi:10.1038/nrm2729 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  2. Friedl P, Wolf K (2010) Plasticity of cell migration: a multiscale tuning model. J Cell Biol 188(1):11–19. doi:10.1084/JEM2071OIA4 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  3. Friedl P, Gilmour D (2009) Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol 10(7):445–457. doi:10.1038/nrm2720 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  4. Weijer CJ (2009) Collective cell migration in development. J Cell Sci 122(Pt 18):3215–3223. doi:10.1242/jcs.036517 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  5. Aman A, Piotrowski T (2010) Cell migration during morphogenesis. Dev Biol 341(1):20–33. doi:10.1016/j.ydbio.2009.11.014 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  6. Shemesh T, Verkhovsky AB, Svitkina TM, Bershadsky AD, Kozlov MM (2009) Role of focal adhesions and mechanical stresses in the formation and progression of the lamellipodium-lamellum interface. Biophys J 97(5):1254–1264. doi:10.1016/j.bpj.2009.05.065 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  7. Vasiliev JM (2004) Cytoskeletal mechanisms responsible for invasive migration of neoplastic cells. Int J Dev Biol 48(5–6):425–439. doi:10.1387/ijdb.041806jv DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  8. Pollard TD, Cooper JA (2009) Actin, a central player in cell shape and movement. Science 326(5957):1208–1212. doi:10.1126/science.1175862 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  9. Kodama A, Lechler T, Fuchs E (2004) Coordinating cytoskeletal tracks to polarize cellular movements. J Cell Biol 167(2):203–207. doi:10.1083/jcb.200408047 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  10. Svitkina TM, Borisy GG (1999) Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. J Cell Biol 145(5):1009–1026. doi:10.1083/jcb.145.5.1009 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  11. Mattila PK, Lappalainen P (2008) Filopodia: molecular architecture and cellular functions. Nat Rev Mol Cell Biol 9(6):446–454. doi:10.1038/nrm2406 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  12. Le Clainche C, Carlier MF (2008) Regulation of actin assembly associated with protrusion and adhesion in cell migration. Physiol Rev 88(2):489–513. doi:10.1152/physrev.00021.2007 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  13. Borisy GG, Svitkina TM (2000) Actin machinery: pushing the envelope. Curr Opin Cell Biol 12(1):104–112. doi:10.1016/S0955-0674(99)00063-0 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  14. Carlier MF, Pantaloni D (2007) Control of actin assembly dynamics in cell motility. J Biol Chem 282(32):23005–23009. doi:10.1074/jbc.R700020200 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  15. Insall RH, Machesky LM (2009) Actin dynamics at the leading edge: from simple machinery to complex networks. Dev Cell 17(3):310–322. doi:10.1016/j.devcel.2009.08.012 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  16. Chhabra ES, Higgs HN (2007) The many faces of actin: matching assembly factors with cellular structures. Nat Cell Biol. 9(10):1110–1121. doi:10.1038/ncb1007-1110 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  17. Mellor H (2010) The role of formins in filopodia formation. Biochim Biophys Acta 1803(2):191–200. doi:10.1016/j.bbamcr.2008.12.018 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  18. Paul AS, Pollard TD (2009) Review of the mechanism of processive actin filament elongation by formins. Cell Motil Cytoskeleton 66(8):606–617. doi:10.1002/cm.20379 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  19. Ren G, Crampton MS, Yap AS (2009) Cortactin: Coordinating adhesion and the actin cytoskeleton at cellular protrusions. Cell Motil Cytoskeleton 66(10):865–873. doi:10.1002/cm.20380 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  20. Small JV, Auinger S, Nemethova M, Koestler S, Goldie KN, Hoenger A, Resch GP (2008) Unravelling the structure of the lamellipodium. J Microsc 231(3):479–485. doi:10.1111/j.1365-2818.2008.02060.x DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  21. Svitkina TM, Verkhovsky AB, Borisy GG (1995) Improved procedures for electron microscopic visualization of the cytoskeleton of cultured cells. J Struct Biol 115(3):290–303. doi:10.1006/jsbi.1995.1054 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  22. Svitkina T (2009) Imaging cytoskeleton components by electron microscopy. Methods Mol Biol 586:187–206. doi:10.1007/978-1-60761-376-3_10 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  23. Samarin SN (2005) WASP family proteins act between cytoskeleton and cellular signaling pathways. Biochemistry (Mosc) 70(12):1305–1309. doi:10.1007/s10541-005-0262-5 DOI:dx.doi.org

    Article  CAS  Google Scholar 

  24. Biyasheva A, Svitkina T, Kunda P, Baum B, Borisy G (2004) Cascade pathway of filopodia formation downstream of SCAR. J Cell Sci 117(Pt 6):837–848. doi:10.1242/jcs.00921 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  25. Takenawa T, Miki H (2001) WASP and WAVE family proteins: key molecules for rapid rearrangement of cortical actin filaments and cell movement. J Cell Sci 114 (Pt 10):1801–1809

    PubMed  CAS  Google Scholar 

  26. Faix J, Breitsprecher D, Stradal TE, Rottner K (2009) Filopodia: Complex models for simple rods. Int J Biochem Cell Biol 41(8–9):1656-1664. doi:10.1016/j.biocel.2009.02.012 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  27. Svitkina T (2007) N-WASP generates a buzz at membranes on the move. Cell 128(5):828–830. doi:10.1016/j.cell.2007.02.028 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  28. Korobova F, Svitkina T (2008) Arp2/3 complex is important for filopodia formation, growth cone motility, and neuritogenesis in neuronal cells. Mol Biol Cell 19(4):1561–1574. doi:10.1091/mbc.E07-09-0964 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  29. Yang C, Czech L, Gerboth S, Kojima S, Scita G, Svitkina T (2007) Novel roles of formin mDia2 in lamellipodia and filopodia formation in motile cells. PLoS Biol 5(11):e317. doi:10.1371/journal.pbio.0050317 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  30. Trichet L, Sykes C, Plastino J (2008) Relaxing the actin cytoskeleton for adhesion and movement with Ena/VASP. J Cell Biol 181(1):19–25. doi:10.1083/jcb.200710168 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  31. Bear JE, Gertler FB (2009) Ena/VASP: towards resolving a pointed controversy at the barbed end. J Cell Sci 122(Pt 12):1947–1953. doi:10.1242/jcs.038125 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  32. Mejillano MR, Kojima S, Applewhite DA, Gertler FB, Svitkina TM, Borisy GG (2004) Lamellipodial versus filopodial mode of the actin nanomachinery: pivotal role of the filament barbed end. Cell 118(3): 363–373. doi:10.1016/j.cell.2004.07.019 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  33. Applewhite DA, Barzik M, Kojima S, Svitkina TM, Gertler FB, Borisy GG (2007) Ena/VASP proteins have an anti-capping independent function in filopodia formation. Mol Biol Cell 18(7):2579–2591. doi:10.1091/mbc.E06-11-0990 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  34. Svitkina TM, Bulanova EA, Chaga OY, Vignjevic DM,Kojima S, Vasiliev JM, Borisy GG (2003) Mechanism of filopodia initiation by reorganization of a dendritic network. J Cell Biol 160(3):409–421. doi:10.1083/jcb.200210174 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  35. Vignjevic D, Kojima S, Aratyn Y, Danciu O, Svitkina T, Borisy GG (2006) Role of fascin in filopodial protrusion. J Cell Biol 174(6):863–875. doi:10.1083/jcb.200603013 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  36. Bear JE, Svitkina TM, Krause M, Schafer DA, Loureiro JJ, Strasser GA, Maly IV, Chaga OY, Cooper JA, Borisy GG, Gertler FB (2002) Antagonism between Ena/VASP proteins and actin filament capping regulates fibroblast motility. Cell 109(4):509–521. doi:10.1016/S0092-8674(02)00731-6 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  37. Ammer AG, Weed SA (2008) Cortactin branches out: roles in regulating protrusive actin dynamics. Cell Motil Cytoskeleton 65(9):687–707. doi:10.1002/cm.20296 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  38. Carlier MF, Le Clainche C, Wiesner S, Pantaloni D (2003) Actin-based motility: from molecules to movement. Bioessays 25(4):336–345. doi:10.1002/bies.10257 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  39. Pollard TD, Borisy GG (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112(4):453–465. doi:10.1016/S0092-8674(03)00120-X DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  40. Pollard TD (2003) The cytoskeleton, cellular motility and the reductionist agenda. Nature 422(6933):741–745. doi:10.1038/nature01598 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  41. Yang C, Hoelzle M, Disanza A, Scita G, Svitkina T (2009) Coordination of membrane and actin cytoskeleton dynamics during filopodia protrusion. PLoS One 4(5):e5678

    Article  PubMed  CAS  Google Scholar 

  42. Verkhovsky AB, Svitkina TM, Borisy GG (1999) Network contraction model for cell translocation and retrograde flow. Biochem Soc Symp 65:207–222

    PubMed  CAS  Google Scholar 

  43. Small JV, Resch GP (2005) The comings and goings of actin: coupling protrusion and retraction in cell motility. Curr Opin Cell Biol 17(5):517–523. doi:10.1016/j.ceb.2005.08.004 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  44. Birkenfeld J, Nalbant P, Yoon SH, Bokoch GM (2008) Cellular functions of GEF-H1, a microtubule-regulated Rho-GEF: is altered GEF-H1 activity a crucial determinant of disease pathogenesis? Trends Cell Biol 18(5):210–219. doi:10.1016/j.tcb.2008.02.006 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  45. Aoki K, Taketo MM (2007) Adenomatous polyposis coli (APC): a multi-functional tumor suppressor gene. J Cell Sci 120(Pt 19):3327–3335. doi:10.1242/jcs.03485 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  46. McCartney BM, Näthke IS (2008) Cell regulation by the Apc protein Apc as master regulator of epithelia. Curr Opin Cell Biol 20(2):186–193. doi:10.1016/j.ceb.2008.02.001 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  47. Krendel M, Zenke FT, Bokoch GM (2002) Nucleotide exchange factor GEF-H1 mediates cross-talk between microtubules and the actin cytoskeleton. Nat Cell Biol 4(4):294–301. doi:10.1038/ncb773 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  48. Fackler OT, Grosse R (2008) Cell motility through plasma membrane blebbing. J Cell Biol 181(6):879–884. doi:10.1083/jcb.200802081 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  49. Charras G, Paluch E (2008) Blebs lead the way: how to migrate without lamellipodia. Nat Rev Mol Cell Biol 9(9):730–736. doi:10.1038/nrm2453 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  50. Charras GT (2008) A short history of blebbing. J Microsc 231(3):466–478. doi:10.1111/j.1365-2818.2008.02059.x DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  51. Mogilner A, Keren K (2009) The shape of motile cells. Curr Biol 19(17):R762–71. doi:10.1016/j.cub.2009.06.053 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  52. Shutova MS, Alexandrova AY, Vasiliev JM (2008) Regulation of polarity in cells devoid of actin bundle system after treatment with inhibitors of myosin II activity. Cell Motil Cytoskeleton 65(9):734–46. doi:10.1002/cm.20295 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  53. Siegrist SE, Doe CQ (2007) Microtubule-induced cortical cell polarity. Genes Dev 21(5):483–496. doi:10.1101/gad.1511207 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  54. Omelchenko T, Vasiliev JM, Gelfand IM, Feder HH, Bonder EM (2002) Mechanisms of polarization of the shape of fibroblasts and epitheliocytes: Separation of the roles of microtubules and Rho-dependent actin-myosin contractility. Proc Natl Acad Sci U S A. 99(16):10452–10457. doi:10.1073/pnas.152339899 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  55. Kaverina I, Krylyshkina O, Small JV (1999) Microtubule targeting of substrate contacts promotes their relaxation and dissociation. J Cell Biol 146(5):1033–1044. doi:10.1083/jcb.146.5.1033 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  56. Small JV, Geiger B, Kaverina I, Bershadsky A (2002) How do microtubules guide migrating cells? Nat Rev Mol Cell Biol 3(12):957–964. doi:10.1038/nrm971 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  57. Rodionov VI, Gyoeva FK, Tanaka E, Bershadsky AD, Vasiliev JM, Gelfand VI (1993) Microtubule-dependent control of cell shape and pseudopodial activity is inhibited by the antibody to kinesin motor domain. J Cell Biol 123(6 Pt 2):1811–1820. doi:10.1083/jcb.123.6.1811 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  58. Kaverina I, Krylyshkina O, Beningo K, Anderson K, Wang YL, Small JV (2002) Tensile stress stimulates microtubule outgrowth in living cells. J Cell Sci 115(Pt 11):2283–2291

    PubMed  CAS  Google Scholar 

  59. Abercrombie M (1970) Contact inhibition in tissue culture. In vitro 7:128–142. doi:10.1007/BF02616114 DOI:dx.doi.org

    Article  Google Scholar 

  60. Gloushankova NA, Alieva NA, Krendel MF, Bonder EM, Feder HH, Vasiliev JM, Gelfand IM (1997) Cell-cell contact changes the dynamics of lamellar activity in nontransformed epitheliocytes but not in their ras-transformed descendants. Proc Natl Acad Sci USA 94(3):879–883. doi:10.1073/pnas.94.3.879 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  61. Pokutta S, Drees F, Yamada S, Nelson WJ, Weis WI (2008) Biochemical and structural analysis of alpha-catenin in cell-cell contacts. Biochem Soc Trans 36(Pt 2):141–147. doi:10.1042/BST0360141 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  62. Ogita H, Ikeda W, Takai Y (2008) Roles of cell adhesion molecules nectin and nectin-like molecule-5 in the regulation of cell movement and proliferation. J Microsc 231(3):455–465. doi:10.1111/j.1365–2818.2008.02058.x DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  63. Takai Y, Miyoshi J, Ikeda W, Ogita H (2008) Nectins and nectin-like molecules: roles in contact inhibition of cell movement and proliferation. Nat Rev Mol Cell Biol 9(8):603–615. doi:10.1038/nrm2457 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  64. Moustakas A, Heldin CH (2007) Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression. Cancer Sci 98(10):1512–1520. doi:10.1111/j.1349-7006.2007.00550.x DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  65. Yang J, Weinberg RA (2008) Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell 14(6):818–829. doi:10.1016/j.devcel.2008.05.009 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  66. Acloque H, Adams MS, Fishwick K, Bronner-Fraser M, Nieto MA (2009) Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease. J Clin Invest 119(6):1438–1449. doi:10.1172/JCI38019 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  67. Kokkinos MI, Wafai R, Wong MK, Newgreen DF, Thompson EW, Waltham M (2007) Vimentin and epithelial-mesenchymal transition in human breast cancer--observations in vitro and in vivo. Cells Tissues Organs 185(1–3):191–203. doi:10.1159/000101320 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  68. Polette M, Mestdagt M, Bindels S, Nawrocki-Raby B, Hunziker W, Foidart JM, Birembaut P, Gilles C (2007) Beta-catenin and ZO-1: shuttle molecules involved in tumor invasion-associated epithelial-mesenchymal transition processes. Cells Tissues Organs 185(1–3):61–65. doi:10.1159/000101304 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  69. De Wever O, Pauwels P, De Craene B, Sabbah M, Emami S, Redeuilh G, Gespach C, Bracke M, Berx G (2008) Molecular and pathological signatures of epithelial-mesenchymal transitions at the cancer invasion front. Histochem Cell Biol 130(3):481–494. doi:10.1007/s00418-008-0464-1 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  70. Vasiliev JM (2008) Reorganization of molecular morphology of epitheliocytes and connective-tissue cells in morphogenesis and carcinogenesis. Biochemistry (Mosc) 73(5):528–531. doi:10.1134/S0006297908050052 DOI:dx.doi.org

    Article  CAS  Google Scholar 

  71. Kedrin D, van Rheenen J, Hernandez L, Condeelis J, Segall JE (2007) Cell motility and cytoskeletal regulation in invasion and metastasis. J Mammary Gland Biol Neoplasia 12(2–3):143–52. doi:10.1007/s10911-007-9046-4 DOI:dx.doi.org

    Article  PubMed  Google Scholar 

  72. Sablina AA, Chumakov PM, Kopnin BP (2003) Tumor suppressor p53 and its homologue p73alpha affect cell migration. J Biol Chem 278(30):27362–27371. doi:10.1074/jbc.M300547200 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  73. Roger L, Gadea G, Roux P (2006) Control of cell migration: a tumour suppressor function for p53? Biol Cell 98(3):141–152. doi:10.1042/BC20050058 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  74. Gloushankova N, Ossovskaya V, Vasiliev J, Chumakov P, Kopnin B (1997) Changes in p53 expression can modify cell shape of ras-transformed fibroblasts and epitheliocytes. Oncogene 15(24):2985–2989. doi:10.1038/sj.onc.1201483 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  75. Alexandrova A, Ivanov A, Chumakov P, Kopnin B, Vasiliev J (2000) Changes in p53 expression in mouse fibroblasts can modify motility and extracellular matrix organization. Oncogene 19(50):5826–5830. doi:10.1038/sj.onc.1203944 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  76. Broussard JA, Webb DJ, Kaverina I (2008) Asymmetric focal adhesion disassembly in motile cells. Curr Opin Cell Biol 20(1):85–90. doi:10.1016/j.ceb.2007.10.009 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  77. Lock JG, Wehrle-Haller B, Strömblad S (2008) Cell-matrix adhesion complexes: master control machinery of cell migration. Semin Cancer Biol 18(1):65–76. doi:10.1016/j.semcancer.2007.10.001 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  78. Alexandrova AY, Arnold K, Schaub S, Vasiliev JM, Meister JJ, Bershadsky AD, Verkhovsky AB (2008) Comparative dynamics of retrograde actin flow and focal adhesions: formation of nascent adhesions triggers transition from fast to slow flow. PLoS One 3(9):e3234

    Article  PubMed  CAS  Google Scholar 

  79. Giannone G, Mège RM, Thoumine O (2009) Multi-level molecular clutches in motile cell processes. Trends Cell Biol 19(9):475–486. doi:10.1016/j.tcb.2009.07.001 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  80. Páez MC, González MJ, Serrano NC, Shoenfeld Y, Anaya JM (2007) Physiological and pathological implications of laminins: from the gene to the protein. Autoimmunity 40(2):83–94. doi:10.1080/08916930600911519 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  81. Tzu J, Marinkovich MP (2008) Bridging structure with function: structural, regulatory, and developmental role of laminins. Int J Biochem Cell Biol 40(2):199–214. doi:10.1016/j.biocel.2007.07.015 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  82. Miner JH (2008) Laminins and their roles in mammals. Microsc Res Tech 71(5):349–356. doi:10.1002/jemt.20563 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  83. Durbeej M (2010) Laminins. Cell Tissue Res 339(1):259–268. doi:10.1007/s00441-009-0838-2 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  84. Guess CM, Quaranta V (2009) Defining the role of laminin-332 in carcinoma. Matrix Biol 28(8):445–455. doi:10.1016/j.matbio.2009.07.008 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  85. Hamill KJ, Paller AS, Jones JC (2010) Adhesion and migration, the diverse functions of the laminin alpha3 subunit. Dermatol Clin 28(1):79–87. doi:10.1016/j.det.2009.10.009 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  86. Marinkovich MP (2007) Tumour microenvironment: laminin 332 in squamous-cell carcinoma. Nat Rev Cancer 7(5):370–380. doi:10.1038/nrc2089 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  87. Tsuruta D, Kobayashi H, Imanishi H, Sugawara K, Ishii M, Jones JC (2008) Laminin-332-integrin interaction: a target for cancer therapy? Curr Med Chem 15(20):1968–1975. doi:10.2174/092986708785132834 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  88. Miyazaki K (2006) Laminin-5 (laminin-332): Unique biological activity and role in tumor growth and invasion. Cancer Sci 97(2):91–98. doi:10.1111/j.1349-7006.2006.00150.x DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  89. Chen P, Parks WC (2009) Role of matrix metalloproteinases in epithelial migration. J Cell Biochem 108(6):1233–1243. doi:10.1002/jcb.22363 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  90. Hintermann E, Quaranta V (2004) Epithelial cell motility on laminin-5: regulation by matrix assembly, proteolysis, integrins and erbB receptors. Matrix Biol 23(2):75–85. doi:10.1016/j.matbio.2004.03.001 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  91. Sugawara K, Tsuruta D, Ishii M, Jones JC, Kobayashi H (2008) Laminin-332 and -511 in skin. Exp Dermatol 17(6):473–480. doi:10.1111/j.1600-0625.2008.00721.x DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  92. Fujiwara H, Gu J, Sekiguchi K (2004) Rac regulates integrin-mediated endothelial cell adhesion and migration on laminin-8. Exp Cell Res 292(1):67–77. doi:10.1016/j.yexcr.2003.08.010 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  93. Stipp CS (2010) Laminin-binding integrins and their tetraspanin partners as potential antimetastatic targets. Expert Rev Mol Med 12:e3. doi:10.1017/S1462399409001355 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  94. Caswell P, Norman J (2008) Endocytic transport of integrins during cell migration and invasion. Trends Cell Biol 18(6):257–263. doi:10.1016/j.tcb.2008.03.004 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  95. Caswell PT, Vadrevu S, Norman JC (2009) Integrins: masters and slaves of endocytic transport. Nat Rev Mol Cell Biol 10(12):843–853. doi:10.1038/nrm2799 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  96. Ulrich F, Heisenberg CP (2009) Trafficking and cell migration. Traffic 10(7):811–818. doi:10.1111/j.1600-0854.2009.00929.x DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  97. Schlaepfer DD, Mitra SK (2004) Multiple connections link FAK to cell motility and invasion. Curr Opin Genet Dev 14(1):92–101. doi:10.1016/j.gde.2003.12.002 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  98. Kruchten AE, McNiven MA (2006) Dynamin as a mover and pincher during cell migration and invasion. J Cell Sci 119(Pt 9):1683–1690. doi:10.1242/jcs.02963 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  99. Mitra SK, Schlaepfer DD (2006) Integrin-regulated FAK-Src signaling in normal and cancer cells. Curr Opin Cell Biol 18(5):516–523. doi:10.1016/j.ceb.2006.08.011 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  100. Defilippi P, Di Stefano P, Cabodi S (2006) p130Cas: a versatile scaffold in signaling networks. Trends Cell Biol 16(5):257–63. doi:10.1016/j.tcb.2006.03.003 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  101. Sharma A, Mayer BJ (2008) Phosphorylation of p130Cas initiates Rac activation and membrane ruffling. BMC Cell Biol 9(1):50. doi:10.1186/1471-2121-9-50 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  102. Enomoto A, Ping J, Takahashi M (2006) Girdin, a novel actin-binding protein, and its family of proteins possess versatile functions in the Akt and Wnt signaling pathways. Ann N Y Acad Sci 1086:169–184. doi:10.1196/annals.1377.016 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  103. Stambolic V, Woodgett JR (2006) Functional distinctions of protein kinase B/Akt isoforms defined by their influence on cell migration. Trends Cell Biol 16(9):461–466. doi:10.1016/j.tcb.2006.07.001 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  104. Hall A (2005) Rho GTPases and the control of cell behaviour. Biochem Soc Trans 33 (Pt 5):891–895. doi:10.1042/BST20050891 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  105. Charest PG, Firtel RA (2007) Big roles for small GTPases in the control of directed cell movement. Biochem J 401(2):377–390. doi:10.1042/BJ20061432 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  106. Juliano RL, Reddig P, Alahari S, Edin M, Howe A, Aplin A (2004) Integrin regulation of cell signalling and motility. Biochem Soc Trans 32(Pt3):443–446. doi:10.1042/BST0320443 DOI:dx.doi.org

    Google Scholar 

  107. Suresh K Alahari, Peter J Reddig, Rudy L Juliano (2004) The integrin-binding protein Nischarin regulates cell migration by inhibiting PAK. The EMBO Journal 23: 2777–2788. doi:10.1038/sj.emboj.7600291 DOI:dx.doi.org

  108. Casazza A, Fazzari P, Tamagnone L (2007) Semaphorin signals in cell adhesion and cell migration: functional role and molecular mechanisms. Adv Exp Med Biol 600:90–108. doi:10.1007/978-0-387-70956-7_8 DOI:dx.doi.org

    Article  PubMed  Google Scholar 

  109. Tran TS, Kolodkin AL, Bharadwaj R (2007) Semaphorin regulation of cellular morphology. Annu Rev Cell Dev Biol 23:263–292. doi:10.1146/annurev.cellbio.22.010605.093554 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  110. Püschel AW (2007) GTPases in semaphorin signaling. Adv Exp Med Biol 600:12–23. doi:10.1007/978-0-387-70956-7_2 DOI:dx.doi.org

    Article  PubMed  Google Scholar 

  111. Brooks SA, Lomax-Browne HJ, Carter TM, Kinch CE, Hall DM (2010) Molecular interactions in cancer cell metastasis. Acta Histochem 112(1):3–25. doi:10.1016/j.acthis.2008.11.022 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  112. Geiger TR, Peeper DS (2009) Metastasis mechanisms. Biochim Biophys Acta 1796(2):293–308. doi:10.1016/j.bbcan.2009.07.006 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  113. Machesky LM (2008) Lamellipodia and filopodia in metastasis and invasion. FEBS Lett 582(14):2102–2111. doi:10.1016/j.febslet.2008.03.039 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  114. Yamaguchi H, Wyckoff J, Condeelis J (2005) Cell migration in tumors. Curr Opin Cell Biol 17(5):559–564. doi:10.1016/j.ceb.2005.08.002 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  115. Kopnin BP (2000) Targets of oncogenes and tumor suppressors: key for understanding basic mechanisms of carcinogenesis. Biochemistry (Mosc) 65(1):2–27

    CAS  Google Scholar 

  116. Karlsson R, Pedersen ED, Wang Z, Brakebusch C (2009) Rho GTPase function in tumorigenesis. Biochim Biophys Acta 1796(2):91–98. doi:10.1016/j.bbcan.2009.03.003 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  117. Tikhmyanova N, Little JL, Golemis EA (2010) CAS proteins in normal and pathological cell growth control. Cell Mol Life Sci 67(7):1025–1048. doi:10.1007/s00018-009-0213-1 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  118. Sahai E, Olson MF, Marshall CJ (2001) Cross-talk between Ras and Rho signalling pathways in transformation favours proliferation and increased motility. EMBO J 20(4):755–766. doi:10.1093/emboj/20.4.755 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  119. Lee S, Helfman DM (2004) Cytoplasmic p21Cip1 is involved in Ras-induced inhibition of the ROCK/LIMK/cofilin pathway. J Biol Chem.279(3):1885–1891. doi:10.1074/jbc.M306968200 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  120. Desgrosellier JS, Cheresh DA (2010) Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 10(1):9–22. doi:10.1038/nrc2748 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  121. Alexandrova AY (2008) Evolution of cell interactions with extracellular matrix during carcinogenesis. Biochemistry (Mosc) 73(7):733–741

    Article  CAS  Google Scholar 

  122. Ljubimova JY, Fujita M, Khazenzon NM, Ljubimov AV, Black KL (2006) Changes in laminin isoforms associated with brain tumor invasion and angiogenesis. Front Biosci 11:81–88. doi:10.2741/1781 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  123. Fujita M, Khazenzon NM, Ljubimov AV, Lee BS, Virtanen I, Holler E, Black KL, Ljubimova JY (2006) Inhibition of laminin-8 in vivo using a novel poly(malic acid)-based carrier reduces glioma angiogenesis. Angiogenesis 9(4):183–191. doi:10.1007/s10456-006-9046-9 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  124. Khazenzon NM, Ljubimov AV, Lakhter AJ, Fujita M, Fujiwara H, Sekiguchi K, Sorokin LM, Petäjäniemi N, Virtanen I, Black KL, Ljubimova JY (2003) Antisense inhibition of laminin-8 expression reduces invasion of human gliomas in vitro. Mol Cancer Ther 2(10):985–994

    PubMed  CAS  Google Scholar 

  125. Kariya Y, Kariya Y, Gu J (2009) Roles of laminin-332 and alpha6beta4 integrin in tumor progression. Mini Rev Med Chem 9(11):1284–1291. doi:10.2174/138955709789878114 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  126. Waterman EA, Sakai N, Nguyen NT, Horst BA, Veitch DP, Dey CN, Ortiz-Urda S, Khavari PA, Marinkovich MP (2007) A laminin-collagen complex drives human epidermal carcinogenesis through phosphoinositol-3-kinase activation. Cancer Res 67(9):4264–4270. doi:10.1158/0008-5472.CAN-06-4141 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  127. Guarino M (2007) Epithelial-mesenchymal transition and tumour invasion. Int J Biochem Cell Biol 39(12):2153–2160. doi:10.1016/j.biocel.2007.07.011 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  128. Klymkowsky MW, Savagner P (2009) Epithelial-mesenchymal transition: a cancer researcher’s conceptual friend and foe. Am J Pathol 174(5):1588–1593. doi:10.2353/ajpath.2009.080545 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  129. Voulgari A, Pintzas A (2009) Epithelial-mesenchymal transition in cancer metastasis: mechanisms, markers and strategies to overcome drug resistance in the clinic. Biochim Biophys Acta 1796(2):75–90. doi:10.1016/j.bbcan.2009.03.002 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  130. Yilmaz M, Christofori G (2009) EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev 28(1–2):15–33. doi:10.1007/s10555-008-9169-0 DOI:dx.doi.org

    Article  PubMed  Google Scholar 

  131. Vergara D, Merlot B, Lucot JP, Collinet P, Vinatier D, Fournier I, Salzet M (2010) Epithelial-mesenchymal transition in ovarian cancer. Cancer Lett 291(1):59–66. doi:10.1016/j.canlet.2009.09.017 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  132. Moustakas A, Heldin CH (2007) Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression. Cancer Sci 98(10):1512–1520. doi:10.1111/j.1349-7006.2007.00550.x DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  133. Imamichi Y, Menke A (2007) Signaling pathways involved in collagen-induced disruption of the E-cadherin complex during epithelial-mesenchymal transition. Cells Tissues Organs 185(1–3):180–190. doi:10.1159/000101319 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  134. Guarino M, Rubino B, Ballabio G (2007) The role of epithelial-mesenchymal transition in cancer pathology. Pathology 39(3):305–318. doi:10.1080/00313020701329914 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  135. Giehl K, Menke A (2008) Microenvironmental regulation of E-cadherin-mediated adherens junctions. Front Biosci 13:3975–85. doi:10.2741/2985 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  136. Zhang X, Nie D, Chakrabarty S (2010) Growth factors in tumor microenvironment. Front Biosci 15:151–165. doi:10.2741/3612 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  137. Hanna JA, Bordeaux J, Rimm DL, Agarwal S (2009) The function, proteolytic processing, and histopathology of Met in cancer. Adv Cancer Res 103:1–23. doi:10.1016/S0065-230X(09)03001-2 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  138. Appelmann I, Liersch R, Kessler T, Mesters RM, Berdel WE (2010) Angiogenesis inhibition in cancer therapy: platelet-derived growth factor (PDGF) and vascular endothelial growth factor (VEGF) and their receptors: biological functions and role in malignancy. Recent Results Cancer Res 180:51–81. doi:10.1007/978-3-540-78281-0_5 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  139. Matsumoto K, Nakamura T, Sakai K, Nakamura T (2008) Hepatocyte growth factor and Met in tumor biology and therapeutic approach with NK4. Proteomics 8(16):3360–3370. doi:10.1002/pmic.200800156 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  140. Korc M, Friesel RE (2009) The role of fibroblast growth factors in tumor growth. Curr Cancer Drug Targets 9(5):639–651. doi:10.2174/156800909789057006 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  141. Ivy SP, Wick JY, Kaufman BM (2009) An overview of small-molecule inhibitors of VEGFR signaling. Nat Rev Clin Oncol 6(10):569–579. doi:10.1038/nrclinonc.2009.130 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  142. Mitsudomi T, Yatabe Y (2010) Epidermal growth factor receptor in relation to tumor development: EGFR gene and cancer. FEBS J 277(2):301–308. doi:10.1111/j.1742-4658.2009.07448.x DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  143. Lu X, Kang Y (2010) Epidermal growth factor signalling and bone metastasis. Br J Cancer 102(3):457–461. doi:10.1038/sj.bjc.6605490 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  144. Feldner JC, Brandt BH (2002) Cancer cell motility--on the road from c-erbB-2 receptor steered signaling to actin reorganization. Exp Cell Res 272(2):93–108. doi:10.1006/excr.2001.5385 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  145. Govindan R (2010) A review of epidermal growth factor receptor/HER2 inhibitors in the treatment of patients with non-small-cell lung cancer. Clin Lung Cancer 11(1):8–12. doi:10.3816/CLC.2010.n.001 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  146. Halper J (2010) Growth factors as active participants in carcinogenesis: a perspective. Vet Pathol 47(1):77–97. doi:10.1177/0300985809352981 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  147. Rosell R, Viteri S, Molina MA, Benlloch S, Taron M (2010) Epidermal growth factor receptor tyrosine kinase inhibitors as first-line treatment in advanced nonsmall-cell lung cancer. Curr Opin Oncol 22(2):112–120. doi:10.1097/CCO.0b013e32833500d2 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  148. Okamoto I (2010) Epidermal growth factor receptor in relation to tumor development: EGFR-targeted anticancer therapy. FEBS J 277(2):309–315. doi:10.1111/j.1742-4658.2009.07449.x DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yury A. Rovensky M.D., Ph.D., D.Sci .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rovensky, Y.A. (2011). Cell Migration. In: Adhesive Interactions in Normal and Transformed Cells. Humana Press. https://doi.org/10.1007/978-1-61779-304-2_6

Download citation

Publish with us

Policies and ethics