Skip to main content

TASER ® Conducted Electrical Weapons

  • Chapter
  • First Online:
  • 1550 Accesses

Abstract

John H. “Jack” Cover was the original inventor of TASER CEW technology. Mr. Cover was the Chief Scientist at North American Aerospace when it was the prime contractor for the National Aeronautics and Space Administration’s (NASA’s) Apollo Moon Landing program. Jack was a dedicated physicist who in the 1960s read about President Lyndon Johnson’s Crime Commission report that urged the development of nonlethal weapons development to combat airplane hijacking, riots, and civil unrest. Jack’s quest to develop his first CEW began in 1966 when he developed ECD working models and named them after his favorite childhood character: Tom A. Swift and his Electric Rifle (TASER). TASER CEWs are now used by over 15,000 Law Enforcement agencies worldwide that possess over 550,000 U. As of 1 June 2011, the devices have been used approximately 1.32 million times in the field and 1.25 million times in officer training. These numbers do not include the large numbers of times a CEW was used to resolve a violent encounter simply by its brandishing or by “painting” the suspect with the laser pointer sight.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Dawes DM, Ho JD, Kroll MW, Miner JR (2010) Electrical characteristics of an electronic control device under a physiologic load: a brief report. Pacing Clin Electrophysiol 33(3):330–336

    Article  PubMed  Google Scholar 

  2. Reilly J, Diamant A, Comeaux J (2009) Dosimetry considerations for electrical stun devices. Phys Med Biol 54:1319–1335

    Article  Google Scholar 

  3. Lapicque L (1909) Definition experimentale de l’excitabilite. CR Acad Sci 67(2):280–283

    Google Scholar 

  4. Weiss G (1901) Sur la possibilite’ de rendre comparable entre eux les appareils survant a l’excitation electrique. Arch Ital de Biol 35:413–446

    Google Scholar 

  5. Reilly JP (1992) Cardiac sensitivity to electrical stimulation. Electrical stimulation and electropathology. Cambrige University Press, NY, pp 180–230

    Google Scholar 

  6. Reilly JP (1998) Applied bioelectricity: from electrical stimulation to electrical pathology. Springer, New York

    Google Scholar 

  7. International Electrotechnical Commission (2006) Household and similar electrical appliances – safety – part 2 – 76: particular requirements for electric fence energizers. In: Commission IE (ed) IEC 60335-2-76, edn 2.1. Vol IEC 60335-2-76, edn 2.1. 2.1 ed. IEC, Geneva

    Google Scholar 

  8. Underwriters Laboratories (2003) UL standard for electric-fence controllers. In: Laboratories U (ed) UL 69. Vol UL 69. 9 ed. Underwriters Laboratories, Northbrook

    Google Scholar 

  9. Nimunkar AJ, Webster JG (2009) Safety of pulsed electric devices. Physiol Meas 30(1):101–114

    Article  PubMed  Google Scholar 

  10. International Electrotechnical Commission (2007) Effects of current on human beings and livestock – part 2: special aspects. IEC 60479–2. 3rd Ed

    Google Scholar 

  11. Kouwenhoven WB, Hooker DR, Lotz EL (1936) Electric shock effects of frequency. AIEE Trans 55:384–386

    Google Scholar 

  12. Roberts J (2008) Medical effects of TASERs. Emerg Med News 30(2):12–15

    Google Scholar 

  13. Blain M (2008) Taser threat helps deter most suspects, national figures show. Janes police review. Janes, London

    Google Scholar 

  14. International Electrotechnical Commission (1988) Medical electrical equipment, part 1: general requirement for safety. International Electrotechnical Commission, Geneva

    Google Scholar 

  15. Cao M, Shinbane JS, Gillberg JM, Saxon LA, Swerdlow CD (2007) Taser-induced rapid ventricular myocardial capture demonstrated by pacemaker intracardiac electrograms. J Cardiovasc Electrophysiol 18(8):876–879

    Article  PubMed  Google Scholar 

  16. Haegeli LM, Sterns LD, Adam DC, Leather RA (2006) Effect of a Taser shot to the chest of a patient with an implantable defibrillator. Heart Rhythm 3(3):339–341

    Article  PubMed  Google Scholar 

  17. Vanga SR, Bommana S, Kroll MW, Swerdlow C, Lakkireddy D (2009) TASER conducted electrical weapons and implanted pacemakers and defibrillators. Conf Proc IEEE Eng Med Biol Soc 1:3199–3204

    Google Scholar 

  18. Nelson R, Gilman B, Shapland J, Lehmann M (1996) Leads for the ICD. In: Kroll M, Lehmann M (eds) Implantable cardioverter-defibrillator therapy: the engineering-clinical interface. Kluwer Academic Publishers, Norwell, pp 173–204

    Chapter  Google Scholar 

  19. Panescu D, Stratbucker R (2009) Current flow in the human body. In: Kroll M, Ho J (eds) TASER® electronic control devices: physiology, pathology, and law. Springer, New York

    Google Scholar 

  20. Eastman AL, Metzger JC, Pepe PE et al (2008) Conductive electrical devices: a prospective, population-based study of the medical safety of law enforcement use. J Trauma 64(6):1567–1572

    Article  PubMed  Google Scholar 

  21. Koplan BA, Gilligan DM, Nguyen LS, Lau TK, Thackeray LM, Berg KC (2008) A randomized trial of the effect of automated ventricular capture on device longevity and threshold measurement in pacemaker patients. Pacing Clin Electrophysiol 31(11):1467–1474

    Article  PubMed  Google Scholar 

  22. Brewer J, Kroll M (2009) Field statistics overview. In: Kroll M, Ho J (eds) TASER® electronic control devices: physiology, pathology, and law. Springer, New York

    Google Scholar 

  23. Pozner CN, Levine M, Zane R (2005) The cardiovascular effects of cocaine. J Emerg Med 29(2):173–178

    Article  PubMed  Google Scholar 

  24. Qureshi AI, Suri MF, Guterman LR, Hopkins LN (2001) Cocaine use and the likelihood of nonfatal myocardial infarction and stroke: data from the Third National Health and Nutrition Examination Survey. Circulation 103(4):502–506

    PubMed  CAS  Google Scholar 

  25. Karch SB (1996) Cardiac arrest in cocaine users. Am J Emerg Med 14(1):79–81

    Article  PubMed  CAS  Google Scholar 

  26. Schwartz AB, Boyle W, Janzen D, Jones RT (1988) Acute effects of cocaine on catecholamines and cardiac electrophysiology in the conscious dog. Can J Cardiol 4(4):188–192

    PubMed  CAS  Google Scholar 

  27. Schwartz AB, Janzen D, Jones RT (1989) Electrophysiologic effects of cocaine on the canine ventricle. J Cardiovasc Pharmacol 13(2):253–257

    Article  PubMed  CAS  Google Scholar 

  28. Tisdale JE, Shimoyama H, Sabbah HN, Webb CR (1996) The effect of cocaine on ventricular fibrillation threshold in the normal canine heart. Pharmacotherapy 16(3):429–437

    PubMed  CAS  Google Scholar 

  29. Lakkireddy D, Wallick D, Ryschon K et al (2006) Effects of cocaine intoxication on the threshold for stun gun induction of ventricular fibrillation. J Am Coll Cardiol 48(4):805–811

    Article  PubMed  CAS  Google Scholar 

  30. Inoue H, Saihara S, Toda I, Sugimoto T (1989) Summation and inhibition by ultrarapid train pulses in dogs: effects of frequency and duration of trains, lidocaine, and beta blockade. Pacing Clin Electrophysiol 12(11):1777–1786

    Article  PubMed  CAS  Google Scholar 

  31. Mitrani RD, Miles WM, Klein LS, Zipes DP (1998) Phenylephrine increases T wave shock energy required to induce ventricular fibrillation. J Cardiovasc Electrophysiol 9(1):34–40

    Article  PubMed  CAS  Google Scholar 

  32. Han J, Garciadejalon P, Moe GK (1964) Adrenergic effects on ventricular vulnerability. Circ Res 14:516–524

    PubMed  CAS  Google Scholar 

  33. Nanthakumar K, Billingsley IM, Masse S et al (2006) Cardiac electrophysiological consequences of neuromuscular incapacitating device discharges. J Am Coll Cardiol 48(4):798–804

    Article  PubMed  Google Scholar 

  34. McDaniel W, Stratbucker R, Smith R (2000) Surface application of TASER stun guns does not cause ventricular fibrillation in canines. Proc Annu Int Conf IEEE Eng Med Biol Soc. 2000.

    Google Scholar 

  35. Wilkinson D (2005) PDSB Further evaluation of TASER devices. Publication No. 19/2005. http://www.homeoffice.gov.uk/docs3/psdb09-02.pdf

  36. Ho J, Dawes D, Cole J et al (2010) Effect of an electronic control device exposure on a methamphetamine intoxicated animal model. Acad Emerg Med 17(4):436–443

    Article  PubMed  Google Scholar 

  37. Home_Office (2009) Figures on the reported and recorded uses of Taser by police forces in England and Wales. Scientific Development Branch, Sandridge

    Google Scholar 

  38. MacDonald JM, Kaminski RJ, Smith MR (2009) The effect of less-lethal weapons on injuries in police use-of-force events. Am J Public Health 99(12):2268–2274

    Article  PubMed  Google Scholar 

  39. Lee BK, Vittinghoff E, Whiteman D, Park M, Lau LL, Tseng ZH (2009) Relation of Taser (electrical stun gun) deployment to increase in in-custody sudden deaths. Am J Cardiol 103(6):877–880

    Article  PubMed  Google Scholar 

  40. Bozeman WP, Hauda WE 2nd, Heck JJ, Graham DD Jr, Martin BP, Winslow JE (2009) Safety and injury profile of conducted electrical weapons used by law enforcement officers against criminal suspects. Ann Emerg Med 53(4):480–489

    Article  PubMed  Google Scholar 

  41. Chen SL, Richard CK, Murthy RC, Lauer AK (2006) Perforating ocular injury by Taser. Clin Exp Ophthalmol 34(4):378–380

    Article  Google Scholar 

  42. Han JS, Chopra A, Carr D (2009) Ophthalmic injuries from a TASER. CJEM 11(1):90–93

    PubMed  Google Scholar 

  43. Ng W, Chehade M (2005) Taser penetrating ocular injury. Am J Ophthalmol 139(4):713–715

    Article  PubMed  Google Scholar 

  44. Seth RK, Abedi G, Daccache AJ, Tsai JC (2007) Cataract secondary to electrical shock from a Taser gun. J Cataract Refract Surg 33(9):1664–1665

    Article  PubMed  Google Scholar 

  45. Mangus BE, Shen LY, Helmer SD, Maher J, Smith RS (2008) Taser and Taser associated injuries: a case series. Am Surg 74(9):862–865

    PubMed  Google Scholar 

  46. Rehman TU, Yonas H, Marinaro J (2007) Intracranial penetration of a TASER dart. Am J Emerg Med 25(6):e733–e734

    Article  Google Scholar 

  47. Bui ET, Sourkes M, Wennberg R (2009) Generalized tonic-clonic seizure after a taser shot to the head. CMAJ 180(6):625–626

    Article  PubMed  Google Scholar 

  48. Hinchey PR, Subramaniam G (2009) Pneumothorax as a complication after TASER activation. Prehosp Emerg Care 13(4):532–535

    Article  PubMed  Google Scholar 

  49. Sloane CM, Chan TC, Vilke GM (2008) Thoracic spine compression fracture after TASER activation. J Emerg Med 34(3):283–285

    Article  PubMed  Google Scholar 

  50. Winslow JE, Bozeman WP, Fortner MC, Alson RL (2007) Thoracic compression fractures as a result of shock from a conducted energy weapon: a case report. Ann Emerg Med 50(5):584–586

    Article  PubMed  Google Scholar 

  51. Taser-hit man burst into flames. BBC World News. 21 July 2009

    Google Scholar 

  52. Karch S (2009) Stimulant abuse and sudden cardiac death. In: Kroll M, Ho J (eds) TASER® electronic control devices: physiology, pathology, and law. Springer, New York, pp 315–325

    Chapter  Google Scholar 

  53. Karch SB, Green GS, Young S (1995) Myocardial hypertrophy and coronary artery disease in male cocaine users. J Forensic Sci 40(4):591–595

    PubMed  CAS  Google Scholar 

  54. Awtry EH, Philippides GJ (2010) Alcoholic and cocaine-associated cardiomyopathies. Prog Cardiovasc Dis 52(4):289–299

    Article  PubMed  Google Scholar 

  55. Jauchem JR, Cook MC, Beason CW (2008) Blood factors of Sus scrofa following a series of three TASER electronic control device exposures. Forensic Sci Int 175(2–3):166–170

    Article  PubMed  CAS  Google Scholar 

  56. Ho J, Dawes D (2009) TASER device induced rhabdomyolysis is unlikely. J Emerg Med. Jan 2011;40(1):68–69

    Google Scholar 

  57. Ho JD, Miner JR, Lakireddy DR, Bultman LL, Heegaard WG (2006) Cardiovascular and physiologic effects of conducted electrical weapon discharge in resting adults. Acad Emerg Med 13(6):589–595

    Article  PubMed  Google Scholar 

  58. Dawes DM, Ho JD, Sweeney JD, Lundin EJ, Kunz SN, Miner JR (2011) The effect of an electronic control device on muscle injury as determined by creatine kinase enzyme. Forensic Sci Med Pathol 7(1):3–8

    Article  PubMed  CAS  Google Scholar 

  59. Vanmeenen KM, Cherniack NS, Bergen MT, Gleason LA, Teichman R, Servatius RJ (2010) Cardiovascular evaluation of electronic control device exposure in law enforcement trainees: a multisite study. J Occup Environ Med 52(2):197–201

    Article  PubMed  Google Scholar 

  60. Jauchem JR (2009) Repeated or long-duration TASER((R)) electronic control device exposures: acidemia and lack of respiration. Forensic Sci Med Pathol 6(1):46–53

    Article  Google Scholar 

  61. Jauchem JR, Sherry CJ, Fines DA, Cook MC (2006) Acidosis, lactate, electrolytes, muscle enzymes, and other factors in the blood of Sus scrofa following repeated TASER exposures. Forensic Sci Int 161(1):20–30

    Article  PubMed  CAS  Google Scholar 

  62. Ho J, Dawes D (2008) The effect of the eXtended Range Electronic Projectile (XREP) on breathing. Australian College of Emergency Medicine Winter Symposium. Newcastle

    Google Scholar 

  63. Dawes D (2009) Effects of CEWs on respiration. In: Kroll M, Ho J (eds) TASER conducted electrical weapons: physiology, pathology, and law. Springer-Kluwer, New York City

    Google Scholar 

  64. Ho J, Lapine A, Joing S, Reardon R, Dawes D (2008) Confirmation of respiration during trapezial conducted electrical weapon application. Acad Emerg Med 15(4):398

    Article  PubMed  Google Scholar 

  65. Vilke GM, Sloane CM, Bouton KD et al (2007) Physiological effects of a conducted electrical weapon on human subjects. Ann Emerg Med 50(5):569–575

    Article  PubMed  Google Scholar 

  66. Ho JD, Dawes DM, Bultman LL et al (2007) Respiratory effect of prolonged electrical weapon application on human volunteers. Acad Emerg Med 14:197–201

    Article  PubMed  Google Scholar 

  67. Ho JD, Dawes DM, Cole JB, Hottinger JC, Overton KG, Miner JR (2009) Lactate and pH evaluation in exhausted humans with prolonged TASER X26 exposure or continued exertion. Forensic Sci Int 190(1–3):80–86

    Article  PubMed  CAS  Google Scholar 

  68. Ho JD, Dawes DM, Bultman LL, Moscati RM, Janchar TA, Miner JR (2009) Prolonged TASER use on exhausted humans does not worsen markers of acidosis. Am J Emerg Med 27(4):413–418

    Article  PubMed  Google Scholar 

  69. Stutz N, Weiss D, Reichert B (2006) Lightning injuries: case report of a 17-year-old man and a brief review of the literature. Unfallchirurg 109(6):495–498

    Article  PubMed  CAS  Google Scholar 

  70. Sloane CM, Chan TC, Levine SD, Dunford JV, Neuman T, Vilke GM (2008) Serum troponin I measurement of subjects exposed to the Taser X-26. J Emerg Med 35(1):29–32

    Article  PubMed  Google Scholar 

  71. Rechtin C, Jones JS (2009) Best evidence topic reports. Bet 2: cardiac monitoring in adults after taser discharge. Emerg Med J 26(9):666–667

    Article  PubMed  Google Scholar 

  72. Link MS, Wang PJ, Pandian NG et al (1998) An experimental model of sudden death due to low-energy chest-wall impact (commotio cordis). N Engl J Med 338(25):1805–1811

    Article  PubMed  CAS  Google Scholar 

  73. Link MS, Maron BJ, Wang PJ, VanderBrink BA, Zhu W, Estes NA 3rd (2003) Upper and lower limits of vulnerability to sudden arrhythmic death with chest-wall impact (commotio cordis). J Am Coll Cardiol 41(1):99–104

    Article  PubMed  Google Scholar 

  74. Link MS, Estes NA 3rd (2007) Mechanically induced ventricular fibrillation (commotio cordis). Heart Rhythm 4(4):529–532

    Article  PubMed  Google Scholar 

  75. Geddes LA, Roeder RA (2005) Evolution of our knowledge of sudden death due to commotio cordis. Am J Emerg Med 23(1):67–75

    Article  PubMed  Google Scholar 

  76. Bozeman W, Winslow J, Hauda W, Graham D, Martin B, Heck J (2007) Injury profile of TASER® electrical conducted energy weapons (CEWs). Ann Emerg Med 50:S65

    Article  Google Scholar 

  77. Strote J, Range Hutson H (2006) Taser use in restraint-related deaths. Prehosp Emerg Care 10(4):447–450

    Article  PubMed  Google Scholar 

  78. Fedorov V, Livshitz L, Kostecki G, Efimov I (2009) Electroporation of cardiac and nerve cells. In: Kroll M, Ho J (eds) TASER conducted electrical weapons: physiology, pathology, and law. Springer-Kluwer, New York City, pp 187–200

    Chapter  Google Scholar 

  79. Panescu D, Kroll MW, Efimov IR, Sweeney JD (2006) Finite element modeling of electric field effects of TASER devices on nerve and muscle. Conf Proc IEEE Eng Med Biol Soc 1:1277–1279

    Article  PubMed  Google Scholar 

  80. Davalos RV, Mir IL, Rubinsky B (2005) Tissue ablation with irreversible electroporation. Ann Biomed Eng 33(2):223–231

    Article  PubMed  CAS  Google Scholar 

  81. Fahim K, Hauser C (2008) Taser use in man’s death broke rules, police say. New York Times

    Google Scholar 

  82. Boyle J Man (2007) ignites in dispute. San Angelo Standard Times

    Google Scholar 

  83. Swerdlow CD, Fishbein MC, Chaman L, Lakkireddy DR, Tchou P (2009) Presenting rhythm in sudden deaths temporally proximate to discharge of TASER conducted electrical weapons. Acad Emerg Med 16(8):726–739

    Article  PubMed  Google Scholar 

  84. Nanji AA, Filipenko JD (1984) Asystole and ventricular fibrillation associated with cocaine intoxication. Chest 85(1):132–133

    Article  PubMed  CAS  Google Scholar 

  85. Raval M, Wetli C (1995) Sudden death from cocaine-induced excited delirium: an analysis of 45 cases. Am J Clin Pathol 104(3):329

    Google Scholar 

  86. Harrison D (2007) Science undecided on safety of stun guns. Can West News Service

    Google Scholar 

  87. Antoni H (1985) Pathophysiological basis of ventricular fibrillation. In: Bridges JF, Ford GL, Sherman IA, Vainberg M (eds) Electrical shock safety criteria. Pergammon Press, New York, pp 33–43

    Google Scholar 

  88. Antoni H (1998) Cardiac sensitivity to electrical stimulation. In: Reilly J (ed) Applied bioelectricity: from electrical stimulation to electrical pathology. New York, Springer, pp 194–239

    Google Scholar 

  89. Biegelmeier G (1987) Effect of current passing through the human body and the electrical impedance of the human body: a guide to IEC-Report 469. VDE, ETZ, Berlin, p 20

    Google Scholar 

  90. Biegelmeier G, Lee WR (1980) New considerations on the threshold of ventricular fibrillation for a.c.shocks at 50∼60 Hz. IEE Proc 127(2 Pt A):103–110

    Google Scholar 

  91. Jacobsen J, Buntenkotter S, Reinhard HJ (1975) Experimental studies in pigs on mortality due to sinusoidal and phase-controlled alternating and rectified currents (author’s transl). Biomed Tech (Berl) 20(3):99–107

    Article  CAS  Google Scholar 

  92. Roy OZ, Park GC, Scott JR (1977) Intracardiac catheter fibrillation thresholds as a function of the duration of 60 Hz current and electrode area. IEEE Trans Biomed Eng 24(5):430–435

    Article  PubMed  CAS  Google Scholar 

  93. Sharma AD, Fain E, O’Neill PG et al (2004) Shock on T versus direct current voltage for induction of ventricular fibrillation: a randomized prospective comparison. Pacing Clin Electrophysiol 27(1):89–94

    Article  PubMed  Google Scholar 

  94. Swerdlow CD, Olson WH, O’Connor ME, Gallik DM, Malkin RA, Laks M (1999) Cardiovascular collapse caused by electrocardiographically silent 60-Hz intracardiac leakage current. Implications for electrical safety. Circulation 99(19):2559–2564

    PubMed  CAS  Google Scholar 

  95. Weismuller P, Richter P, Binner L et al (1992) Direct current application: easy induction of ventricular fibrillation for the determination of the defibrillation threshold in patients with implantable cardioverter defibrillators. Pacing Clin Electrophysiol 15(8):1137–1143

    Article  PubMed  CAS  Google Scholar 

  96. Kroll M, Tchou P (2006) Testing of implantable defibrillator functions at implantation. In: Ellenbogen K, Kay G, Lau C, Wilkoff B (eds) Clinical cardiac pacing, defibrillation and resynchronization therapy, 3rd edn. W.B. Saunders Company, Philadelphia, pp 531–557

    Google Scholar 

  97. Singer I, Lang D (1996) The defibrillation threshold. In: Kroll M, Lehmann M (eds) Implantable cardioverter-defibrillator therapy: the engineering-clinical interface. Kluwer, Boston

    Google Scholar 

  98. Frame R, Brodman R, Furman S et al (1992) Clinical evaluation of the safety of repetitive intraoperative defibrillation threshold testing. Pacing Clin Electrophysiol 15(6):870–877

    Article  PubMed  CAS  Google Scholar 

  99. Schipke JD, Heusch G, Sanii AP, Gams E, Winter J (2003) Static filling pressure in patients during induced ventricular fibrillation. Am J Physiol Heart Circ Physiol 285(6):H2510–H2515

    PubMed  CAS  Google Scholar 

  100. Yoon RS, DeMonte TP, Hasanov KF, Jorgenson DB, Joy ML (2003) Measurement of thoracic current flow in pigs for the study of defibrillation and cardioversion. IEEE Trans Biomed Eng 50(10):1167–1173

    Article  PubMed  Google Scholar 

  101. Camacho MA, Lehr JL, Eisenberg SR (1995) A three-dimensional finite element model of human transthoracic defibrillation: paddle placement and size. IEEE Trans Biomed Eng 42(6):572–578

    Article  PubMed  CAS  Google Scholar 

  102. Lerman BB, Deale OC (1990) Relation between transcardiac and transthoracic current during defibrillation in humans. Circ Res 67(6):1420–1426

    PubMed  CAS  Google Scholar 

  103. Panescu D (2007) Less-than-lethal weapons: design and medical safety of neuromuscular incapacitation devices. IEEE Eng Med Biol Mag 26(4):57–67

    Article  PubMed  Google Scholar 

  104. Panescu D, Kroll M, Efimov I, Sweeney J (2006) Finite element modeling of electric field effects of TASER devices on nerve and muscle. Paper presented at: IEEE Engineering in Medicine and Biology. New York City

    Google Scholar 

  105. Stratbucker R, Kroll M, McDaniel W, Panescu D (2006) Cardiac current density distribution by electrical pulses from TASER devices. Paper presented at: IEEE Engineering in Medicine and Biology Society. New York City

    Google Scholar 

  106. Ferris LP, King BG, Spence PW, Williams HB (1936) Effect of electric shock on the heart. Electr Eng 55:498–515

    Google Scholar 

  107. Scott JR, Lee WR, Zoledziowski S (1973) Ventricular fibrillation threshold for AC shocks of long duration, in dogs with normal acid-base state. Br J Ind Med 30(2):155–161

    PubMed  CAS  Google Scholar 

  108. Chilbert M (1998) Standards and rationale. In: Reilly J (ed) Applied bioelectricity: from electrical stimulation to electrical pathology. Springer, New York, pp 454–501

    Google Scholar 

  109. Russell S (2005) Heart expert warns about using Tasers. San Fransisco Chronicle

    Google Scholar 

  110. Garay A (2004) As orders soar, concern over stun guns soar. Associated Press. 30 Nov 2004

    Google Scholar 

  111. Schlosberg M (2005) Stun gun fallacy: how the lack of Taser regulation endangers lives. http://www.aclunc.org/issues/criminal_justice/police_practices/stun_gun_fallacy_how_the_lack_of_taser_regulation_endangers_lives.shtml

  112. Hou CJ, Chang-Sing P, Flynn E et al (1995) Determination of ventricular vulnerable period and ventricular fibrillation threshold by use of T-wave shocks in patients undergoing implantation of cardioverter/defibrillators. Circulation 92(9):2558–2564

    PubMed  CAS  Google Scholar 

  113. Schnabel PA, Richter J, Schmiedl A et al (1991) Patterns of structural deterioration due to ischemia in Purkinje fibres and different layers of the working myocardium. Thorac Cardiovasc Surg 39(4):174–182

    Article  PubMed  CAS  Google Scholar 

  114. Howe BB, Fehn PA, Pensinger RR (1968) Comparative anatomical studies of the coronary arteries of canine and porcine hearts. I. Free ventricular walls. Acta Anat (Basel) 71(1):13–21

    Article  CAS  Google Scholar 

  115. Allison JS, Qin H, Dosdall DJ et al (2007) The transmural activation sequence in porcine and canine left ventricle is markedly different during long-duration ventricular fibrillation. J Cardiovasc Electrophysiol 18(12):1306–1312

    Article  PubMed  Google Scholar 

  116. Pak HN, Kim YH, Lim HE et al (2006) Role of the posterior papillary muscle and purkinje potentials in the mechanism of ventricular fibrillation in open chest dogs and Swine: effects of catheter ablation. J Cardiovasc Electrophysiol 17(7):777–783

    Article  PubMed  Google Scholar 

  117. Li GR, Du XL, Siow YL, O K, Tse HF, Lau CP (2003) Calcium-activated transient outward chloride current and phase 1 repolarization of swine ventricular action potential. Cardiovasc Res 58(1):89–98

    Google Scholar 

  118. Hamlin RL, Burton RR, Leverett SD, Burns JW (1975) Ventricular activation process in minipigs. J Electrocardiol 8(2):113–116

    Article  PubMed  CAS  Google Scholar 

  119. Kano M, Toyoshi T, Iwasaki S, Kato M, Shimizu M, Ota T (2005) QT PRODACT: usability of miniature pigs in safety pharmacology studies: assessment for drug-induced QT interval prolongation. J Pharmacol Sci 99(5):501–511

    Article  PubMed  CAS  Google Scholar 

  120. Dalziel CF, Lee WR (1968) Reevaluation of lethal electric currents. IEEE Trans Ind Gen Appl 4(5):467–476

    Article  Google Scholar 

  121. Geddes LA, Cabler P, Moore AG, Rosborough J, Tacker WA (1973) Threshold 60-Hz current required for ventricular fibrillation in subjects of various body weights. IEEE Trans Biomed Eng 20(6):465–468

    Article  PubMed  CAS  Google Scholar 

  122. McDaniel WC, Stratbucker RA, Nerheim M, Brewer JE (2005) Cardiac safety of neuromuscular incapacitating defensive devices. Pacing Clin Electrophysiol 28(Suppl 1):S284–S287

    Article  PubMed  Google Scholar 

  123. Stratton SJ, Rogers C, Brickett K, Gruzinski G (2001) Factors associated with sudden death of individuals requiring restraint for excited delirium. Am J Emerg Med 19(3):187–191

    Article  PubMed  CAS  Google Scholar 

  124. Dennis AJ, Valentino DJ, Walter RJ et al (2007) Acute effects of TASER X26 discharges in a swine model. J Trauma 63(3):581–590

    Article  PubMed  Google Scholar 

  125. Jauchem JR, Cook MC, Beason CW (2007) Blood factors of Sus scrofa following a series of three TASER((R)) electronic control device exposures. Forensic Sci Int. 175(2–3):166–170

    Google Scholar 

  126. Lakkireddy D, Wallick D, Verma A et al (2008) Cardiac effects of electrical stun guns: does position of barbs contact make a difference? Pacing Clin Electrophysiol 31(4):398–408

    Article  PubMed  Google Scholar 

  127. Walter RJ, Dennis AJ, Valentino DJ et al (2008) TASER X26 discharges in swine produce potentially fatal ventricular arrhythmias. Acad Emerg Med 15(1):66–73

    Article  PubMed  Google Scholar 

  128. Wu JY, Sun H, O’Rourke AP et al (2007) Taser dart-to-heart distance that causes ventricular fibrillation in pigs. IEEE Trans Biomed Eng 54(3):503–508

    Article  PubMed  Google Scholar 

  129. DiMaio T, Di Maio VJM (2006) Excited delirium syndrome cause of death and prevention. Taylor & Francis, Boca Raton

    Google Scholar 

  130. Pollanen MS, Chiasson DA, Cairns JT, Young JG (1998) Unexpected death related to restraint for excited delirium: a retrospective study of deaths in police custody and in the community. CMAJ 158(12):1603–1607

    PubMed  CAS  Google Scholar 

  131. Allam S, Noble JS (2001) Cocaine-excited delirium and severe acidosis. Anaesthesia 56(4):385–386

    Article  PubMed  CAS  Google Scholar 

  132. Brice JH, Pirrallo RG, Racht E, Zachariah BS, Krohmer J (2003) Management of the violent patient. Prehosp Emerg Care 7(1):48–55

    Article  PubMed  Google Scholar 

  133. Wetli C (2006) Excited delirium. In: Chan R (ed) Sudden deaths in custody. Humana Press, Totawa, pp 99–112

    Chapter  Google Scholar 

  134. Tabereaux PB, Walcott GP, Rogers JM et al (2007) Activation patterns of Purkinje fibers during long-duration ventricular fibrillation in an isolated canine heart model. Circulation 116(10):1113–1119

    Article  PubMed  Google Scholar 

  135. Mischke K, Schimpf T, Knackstedt C et al (2008) Efficacy of transesophageal defibrillation in ventricular fibrillation of long duration. Am J Emerg Med 26(3):287–290

    Article  PubMed  Google Scholar 

  136. Veltmann C, Borggrefe M, Schimpf R, Wolpert C (2007) Fatal inappropriate ICD shock. J Cardiovasc Electrophysiol 18(3):326–328

    Article  PubMed  Google Scholar 

  137. Kroll M, Panescu D (2011) Physics of electrical injury. In: Ho J, Dawes D, Kroll M (eds) Forensic medicine of conducted electrical weapons. Springer, New York City

    Google Scholar 

  138. Adams R (1955) Case of ventricular fibrillation of long duration with recovery; lessons from six cases in prevention and treatment. J Am Med Assoc 158(12):1026–1030

    PubMed  CAS  Google Scholar 

  139. Holden SJ, Sheridan RD, Coffey TJ, Scaramuzza RA, Diamantopoulos P (2007) Electromagnetic modelling of current flow in the heart from TASER devices and the risk of cardiac dysrhythmias. Phys Med Biol 52(24):7193–7209

    Article  PubMed  CAS  Google Scholar 

  140. Ideker RE, Dosdall DJ (2007) Can the direct cardiac effects of the electric pulses generated by the TASER X26 cause immediate or delayed sudden cardiac arrest in normal adults? Am J Forensic Med Pathol 28(3):195–201

    Article  PubMed  Google Scholar 

  141. Dawes D, Ho J, Kroll M, Miner J (2010) Electrical characteristics of an electronic control device under a physiologic load: a brief report. Pacing Clin Electrophysiol. 33(3):330–336

    Google Scholar 

  142. Vilke GM, Sloane CM, Suffecool A et al (2009) Physiologic effects of the TASER after exercise. Acad Emerg Med 16(8):704–710

    Article  PubMed  Google Scholar 

  143. Dawes D, Ho J, Reardon R, Miner J (2009) Multiple simultaneous exposures of the TASER X26 in human volunteers. Europace 11:i49

    Article  Google Scholar 

  144. Dawes DM, Ho JD, Reardon RF, Miner JR (2010) Echocardiographic evaluation of TASER X26 probe deployment into the chests of human volunteers. Am J Emerg Med 28(1):49–55

    Article  PubMed  Google Scholar 

  145. Reardon RF (2009) Echocardiographic effects of the CEW. In: Kroll M, Ho J (eds) TASER conducted electrical weapons: physiology, pathology, and law. Springer-Kluwer, New York City, pp 153–162

    Chapter  Google Scholar 

  146. Ho JD, Dawes DM, Reardon RF et al (2008) Echocardiographic evaluation of a TASER-X26 application in the ideal human cardiac axis. Acad Emerg Med 15(9):838–844

    Article  PubMed  Google Scholar 

  147. Dawes DM, Ho JD, Reardon RF, Miner JR (2010) Echocardiographic evaluation of TASER X26 probe deployment into the chests of human volunteers. Am J Emerg Med. 28(1):49–55

    Google Scholar 

  148. Bozeman WP (2009) Additional information on taser safety. Ann Emerg Med 54(5):758–759

    Article  PubMed  Google Scholar 

  149. Main F (2005) Taser killed man, pathologist finds medical examiner’s ruling on drug suspect first to blame stun gun. Chicago Sun Times

    Google Scholar 

  150. Jeffers G (2004) Medical examiner’s sons charged; FBI agent beaten, city cop assaulted. Chicago Tribune

    Google Scholar 

  151. Kroll MW, Panescu D, Carver M, Kroll RM, Hinz AF (2009) Cardiac effects of varying pulse charge and polarity of TASER(R) conducted electrical weapons. Conf Proc IEEE Eng Med Biol Soc 1:3195–3198

    Google Scholar 

  152. Roy OZ, Scott JR, Park GC (1976) 60-Hz ventricular fibrillation and pump failure thresholds versus electrode area. IEEE Trans Biomed Eng 23(1):45–48

    Article  PubMed  CAS  Google Scholar 

  153. Kroll M, Panescu D, Hinz A, Lakkireddy D (2010) A novel mechanism for electrical currents inducing ventricular fibrillation: The three-fold way to fibrillation. Engineering in Medicine and Biology Society Proceedings. 1990–1996

    Google Scholar 

  154. Nimunkar A, Wu J, O’Rourke A, Huebner S, Will J, Webster J (2010) Ventricular fibrillation and blood chemistry after multiple Tasering of Pigs. Physiol Meas

    Google Scholar 

  155. Dawes DM, Ho JD, Reardon RF, Miner JR (2010) Echocardiographic evaluation of TASER X26 probe deployment into the chests of human volunteers. Am J Emerg Med. 28(1):49–55

    Google Scholar 

  156. Strote J, Verzemnieks E, Walsh M, Hutson HR (2010) Use of force by law enforcement: an evaluation of safety and injury. J Trauma. 69(5):1288–1293

    Google Scholar 

  157. Smith M, Kaminski R, Rojek J, Alpert G, Mathis J (2007) The impact of conducted energy devices and other types of force and resistance on officer and suspect injuries. Policing Int J Police Strateg Management 30(3):423–446

    Article  Google Scholar 

  158. Brewer J, Kroll M (2009) Field statistics overview. In: Kroll M, Ho J (eds) TASER conducted electrical weapons: physiology, pathology, and law. Springer-Kluwer, New York City

    Google Scholar 

  159. Valentino DJ, Walter RJ, Dennis AJ et al (2008) Acute effects of MK63 stun device discharges in miniature swine. Mil Med 173(2):167–173

    PubMed  Google Scholar 

  160. Ewy GA, Zuercher M, Hilwig RW et al (2007) Improved neurological outcome with continuous chest compressions compared with 30:2 compressions-to-ventilations cardiopulmonary resuscitation in a realistic swine model of out-of-hospital cardiac arrest. Circulation 116(22):2525–2530

    Article  PubMed  Google Scholar 

  161. DiMaio V, DiMaio T (2009) Excited delirium syndrome. In: Kroll M, Ho J (eds) TASER conducted electrical weapons: physiology, pathology, and law. Springer-Kluwer, New York City, pp 347–363

    Chapter  Google Scholar 

  162. Park KS, Korn CS, Henderson SO (2001) Agitated delirium and sudden death: two case reports. Prehosp Emerg Care 5(2):214–216

    Article  PubMed  CAS  Google Scholar 

  163. Wu J, Sun H, O’Rourke A et al (2009) Taser blunt probe dart-to-heart distance causing ventricular fibrillation in pigs. IEEE Trans Biomed Eng. 55(12):2768–2771

    Google Scholar 

  164. Kroll MW, Calkins H, Luceri RM, Graham M, Heegaard W (2008) Sensitive swine and TASER electronic control devices. Acad Emerg Med 15(7):695–696

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Special thanks to Jeffrey Ho, MD for providing the probe and drive-stun wound images. Thanks to Dr. Ho, Don Dawes, MD, Michael Brave, JD, and Max Nerheim, MSEE for their helpful review of the chapter drafts.

AIR TASER, M26, and X26 are trademarks of TASER International, Inc., Scottsdale, AZ USA. TASER® and ADVANCED TASER® are registered trademarks of TASER International, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark W. Kroll .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kroll, M.W. (2011). TASER ® Conducted Electrical Weapons. In: Stark, M. (eds) Clinical Forensic Medicine. Humana Press. https://doi.org/10.1007/978-1-61779-258-8_8

Download citation

Publish with us

Policies and ethics