Skip to main content

The Consequences of Reprogramming a Somatic Cell for Mitochondrial DNA Transmission, Inheritance and Replication

  • Chapter
  • First Online:
Nuclear Reprogramming and Stem Cells

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 1131 Accesses

Abstract

Reprogramming promotes the generation of animals and pluripotent stem cells from a variety of somatic cells, which was not previously possible through natural or in vitro fertilisation. Whilst much of the debate on reprogramming has been related to epigenetic regulation, chromosomal gene expression and the establishment of pluripotency, the regulation and expression of the genes encoded by the mitochondrial genome have been largely ignored. The maternally inherited mitochondrial genome encodes 13 key proteins of the electron transfer chain, which is the cell’s major generator of ATP through the biochemical process of oxidative phosphorylation (OXPHOS). OXPHOS is essential for driving a large number of cellular functions. Mitochondrial DNA (mtDNA) rearrangements and depletion can lead to phenotypes that are either severely debilitating or lethal. Following natural fertilisation, mtDNA is maternally inherited and its copy number is strictly regulated during early development and differentiation. This ensures that specialised cells acquire the appropriate numbers of mtDNA to meet their specific requirements for OXPHOS-generated ATP. We discuss how somatic cell nuclear transfer disrupts the strict control of mtDNA replication and how this will affect cellular function in specialised cells. We discuss how the transfer of the somatic cell results in the loss of maternal-only inheritance of mtDNA and the consequences of this. We further highlight the importance of choosing the appropriate recipient oocyte, as the electron transfer chain is highly dependent on chromosomally- and mtDNA-encoded genes and their compatibility is essential to cellular and offspring function and survival.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almeida-Santos T, El Shourbagy S, St John JC (2006) Mitochondrial content reflects oocyte variability and fertilization outcome. Fertil Steril 85:584–591

    Article  Google Scholar 

  • Anderson S, Bankier AT, Barrell BG et al (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465

    Article  PubMed  CAS  Google Scholar 

  • Barrientos A, Kenyon L, Moraes CT (1998) Human xenomitochondrial cybrids. Cellular models of mitochondrial complex I deficiency. J Biol Chem 273:14210–14217

    Article  PubMed  CAS  Google Scholar 

  • Barritt JA, Brenner CA, Malter HE et al (2001) Rebuttal: interooplasmic transfers in humans. Reprod Biomed Online 3:47–48

    Article  PubMed  Google Scholar 

  • Bibb MJ, Van Etten RA, Wright CT et al (1981) Sequence and gene organization of mouse mitochondrial DNA. Cell 26:167–180

    Article  PubMed  CAS  Google Scholar 

  • Boulet L, Karpati G, Shoubridge EA (1992) Distribution and threshold expression of the tRNA (Lys) mutation in skeletal muscle of patients with myoclonic epilepsy and ragged-red fibers (MERRF). Am J Hum Genet 51:1187–1200

    PubMed  CAS  Google Scholar 

  • Bowles EJ, Campbell KH, St John JC (2007a) Nuclear transfer: preservation of a nuclear genome at the expense of its associated mtDNA genome(s). Curr Top Dev Biol 77:251–290

    Article  PubMed  CAS  Google Scholar 

  • Bowles EJ, Lee JH, Alberio R et al (2007b) Contrasting effects of in vitro fertilization and nuclear transfer on the expression of mtDNA replication factors. Genetics 176:1511–1526

    Article  PubMed  CAS  Google Scholar 

  • Bowles EJ, Tecirlioglu RT, French A et al (2008) Mitochondrial DNA transmission and transcription after somatic cell fusion to one or more cytoplasts. Stem Cells 26:775–782

    Article  PubMed  CAS  Google Scholar 

  • Braude P, Bolton V, Moore S et al (1988) Human gene expression first occurs between the four- and eight-cell stages of preimplantation development. Nature 332:459–461

    Article  PubMed  CAS  Google Scholar 

  • Bruggerhoff K, Zakhartchenko V, Wenigerkind H et al (2002) Bovine somatic cell nuclear transfer using recipient oocytes recovered by ovum pick-up: effect of maternal lineage of oocyte donors. Biol Reprod 66:367–373

    Article  PubMed  CAS  Google Scholar 

  • Byrne JA, Pedersen DA, Clepper LL et al (2007) Producing primate embryonic stem cells by somatic cell nuclear transfer. Nature 450:497–502

    Article  PubMed  CAS  Google Scholar 

  • Campbell KHS, Ritchie WA, Wilmut I (1996) Sheep cloned by nuclear transfer from a cultured cell line. Nature 380:64–66

    Article  PubMed  CAS  Google Scholar 

  • Chang KH, Lim JM, Kang S et al (2003) Blastocyst formation, karyotype, and mitochondrial DNA of interspecies embryos derived from nuclear transfer of human cord fibroblasts into enucleated bovine oocytes. Fertil Steril 80:1380–1387

    Article  PubMed  Google Scholar 

  • Chen L, Daley GQ (2008) Molecular basis of pluripotency. Hum Mol Genet 17:R23–R27

    Article  PubMed  CAS  Google Scholar 

  • Chen T, Zhang YL, Jiang Y et al (2006) Interspecies nuclear transfer reveals that demethylation of specific repetitive sequences is determined by recipient ooplasm but not by donor intrinsic property in cloned embryos. Mol Reprod Dev 73:313–317

    Article  PubMed  CAS  Google Scholar 

  • Chinnery PF, Andrews RM, Turnbull DM et al (2001) Leber hereditary optic neuropathy: does heteroplasmy influence the inheritance and expression of the G11778A mitochondrial DNA mutation? Am J Med Genet 98:235–243

    Article  PubMed  CAS  Google Scholar 

  • Chung Y, Bishop CE, Treff NR et al (2009) Reprogramming of human somatic cells using human and animal oocytes. Cloning Stem Cells 11(2):213–223

    Article  PubMed  CAS  Google Scholar 

  • Cibelli JB, Campbell KHS, Seidel GE et al (2002) The health profile of cloned animals. Nat Biotechnol 20:13–14

    Article  PubMed  CAS  Google Scholar 

  • Cohen J, Scott R, Schimmel T et al (1997) Birth of infant after transfer of anucleate donor oocyte cytoplasm into recipient eggs [letter] [see comments]. Lancet 350:186–187

    Article  PubMed  CAS  Google Scholar 

  • Do JT, Lee JW, Lee B et al (2002) Fate of donor mitochondrial DNA in cloned bovine embryos produced by microinjection of cumulus cells. Biol Reprod 67:555–560

    Article  PubMed  CAS  Google Scholar 

  • Facucho-Oliveira JM, St John JC (2009) The relationship between pluripotency and mitochondrial DNA proliferation during early embryo development and embryonic stem cell differentiation. Stem Cell Rev Rep. 5:140–158

    Google Scholar 

  • Facucho-Oliveira JM, Alderson J, Spikings EC et al (2007) Mitochondrial DNA replication during differentiation of murine embryonic stem cells. J Cell Sci 120:4025–4034

    Article  PubMed  CAS  Google Scholar 

  • Hance N, Ekstrand MI, Trifunovic A (2005) Mitochondrial DNA polymerase gamma is essential for mammalian embryogenesis. Hum Mol Genet 14:1775–1783

    Article  PubMed  CAS  Google Scholar 

  • Hauswirth WW, Laipis PJ (1982) Mitochondrial DNA polymorphism in a maternal lineage of Holstein cows. Proc Natl Acad Sci USA 79:4686–4690

    Article  PubMed  CAS  Google Scholar 

  • Houghton FD (2006) Energy metabolism of the inner cell mass and trophectoderm of the mouse blastocyst. Differentiation 74:11–18

    Article  PubMed  CAS  Google Scholar 

  • Houghton FD, Thompson JG, Kennedy CJ et al (1996) Oxygen consumption and energy metabolism of the early mouse embryo. Mol Reprod Dev 44:476–485

    Article  PubMed  CAS  Google Scholar 

  • Jiang Y, Liu SZ, Zhang Y et al (2004) The fate of mitochondria in Ibex-hirus reconstructed early embryos. Acta Biochim Biophys Sin (Shanghai) 36:371–374

    Article  CAS  Google Scholar 

  • Kasai K, Sano F, Miyashita N et al (2007) Comparison of the growth performances of offspring produced by a pair of cloned cattle and their nuclear donor animals. J Reprod Dev 53:135–142

    Article  PubMed  CAS  Google Scholar 

  • Larsson NG, Oldfors A, Holme E et al (1994) Low levels of mitochondrial transcription factor A in mitochondrial DNA depletion. Biochem Biophys Res Commun 200:1374–1381

    Article  PubMed  CAS  Google Scholar 

  • Lee J-H, Peters A, Fisher P et al (2010) Generation of mtDNA homoplasmic cloned lambs. Cell Reprogram 12:347–355

    Article  PubMed  CAS  Google Scholar 

  • Li F, Cao H, Zhang Q et al (2008) Activation of human embryonic gene expression in cytoplasmic hybrid embryos constructed between bovine oocytes and human fibroblasts. Cloning Stem Cells 10:297–305

    Article  PubMed  CAS  Google Scholar 

  • Lloyd RE, Lee JH, Alberio R et al (2006) Aberrant nucleo-cytoplasmic cross-talk results in donor cell mtDNA persistence in cloned embryos. Genetics 172:2515–2527

    Article  PubMed  CAS  Google Scholar 

  • McFarland R, Taylor RW, Turnbull DM (2007) Mitochondrial disease – its impact, etiology and pathology. Curr Top Dev Biol 77:113–155

    Article  PubMed  CAS  Google Scholar 

  • McKenzie M, Trounce I (2000) Expression of Rattus norvegicus mtDNA in Mus musculus cells results in multiple respiratory chain defects. J Biol Chem 275:31514–31519

    Article  PubMed  CAS  Google Scholar 

  • Meirelles FV, Bordignon V, Watanabe Y et al (2001) Complete replacement of the mitochondrial genotype in a Bos indicus calf reconstructed by nuclear transfer to a Bos taurus oocyte. Genetics 158:351–356

    PubMed  CAS  Google Scholar 

  • MITOMAP (2011) A human mitochondrial genome database. From http://www.mitomap.org

  • Montiel-Sosa F, Ruiz-Pesini E, Enriquez JA et al (2006) Differences of sperm motility in mitochondrial DNA haplogroup U sublineages. Gene 368:21–27

    Article  PubMed  CAS  Google Scholar 

  • Pfieffer T, Schuster S, Bonhoeffer S (2001) Cooperation and competition in the evolution of ATP-producing pathways. Science 292:504–507

    Article  Google Scholar 

  • Poulton J, Morten K, Freeman-Emmerson C et al (1994) Deficiency of the human mitochondrial transcription factor h-mtTFA in infantile mitochondrial myopathy is associated with mtDNA depletion. Hum Mol Genet 3:1763–1769

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Pesini E, Lapena AC, Diez-Sanchez C et al (2000) Human mtDNA haplogroups associated with high or reduced spermatozoa motility. Am J Hum Genet 67:682–696

    Article  PubMed  CAS  Google Scholar 

  • Schnieke AE, Kind AJ, Ritchie WA et al (1997) Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science 278:2130–2133

    Article  PubMed  CAS  Google Scholar 

  • Shimozawa N, Ono Y, Kono T (2002) Abnormalities in cloned mice are not transmitted to the progeny. Tanpakushitsu Kakusan Koso 47(13):1810–1815

    PubMed  CAS  Google Scholar 

  • Shoubridge EW, Wai T (2007) Mitochondrial DNA and the mammalian oocyte. Curr Top Dev Biol 77:87–111

    Article  PubMed  CAS  Google Scholar 

  • Siciliano G, Mancuso M, Pasquali L et al (2000) Abnormal levels of human mitochondrial transcription factor A in skeletal muscle in mitochondrial encephalomyopathies. Neurol Sci 21:S985–S987

    Article  PubMed  CAS  Google Scholar 

  • Smith LC, Alcivar AA (1993) Cytoplasmic inheritance and its effects on development and performance. J Reprod Fertil Suppl 48:31–43

    PubMed  CAS  Google Scholar 

  • Spelbrink JN, Van Galen MJ, Zwart R et al (1998) Familial mitochondrial DNA depletion in liver: haplotype analysis of candidate genes. Hum Genet 102:327–331

    Article  PubMed  CAS  Google Scholar 

  • Spikings EC, Alderson J, St John JC et al (2007) Regulated mitochondrial DNA replication during oocyte maturation is essential for successful porcine embryonic development. Biol Reprod 76:327–335

    Article  PubMed  CAS  Google Scholar 

  • St John JC, Lloyd RE, Bowles E et al (2004) The consequences of nuclear transfer for mammalian foetal development and offspring survival. A mitochondrial DNA perspective. Reproduction 127:631–641

    Article  PubMed  CAS  Google Scholar 

  • St John JC, Moffatt O, D’Souza N (2005) Aberrant heteroplasmic transmission of mtDNA in cloned pigs arising from double nuclear transfer. Mol Reprod Dev 72:450–460

    Article  PubMed  CAS  Google Scholar 

  • St. John JC, Facucho-Oliveira J, Jiang Y, Kelly RDW, Salah R (2010) Mitochondrial DNA transmission, replication and inheritance: a journey from the gamete through the embryo and into offspring and embryonic stem cells. Hum Reprod Update 16:488–509

    Google Scholar 

  • Steinborn R, Schinogl P, Wells D et al (2002) Coexistence of Bos taurus and B. indicus mitochondrial DNAs in nuclear transfer-derived somatic cattle clones. Genetics 162:823–829

    PubMed  CAS  Google Scholar 

  • Sutovsky P, Moreno RD, Ramalho-Santos J et al (1999) Ubiquitin tag for sperm mitochondria. Nature 402:371–372

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  PubMed  CAS  Google Scholar 

  • Takeda K, Akagi S, Kaneyama K et al (2003) Proliferation of donor mitochondrial DNA in nuclear transfer calves (Bos taurus) derived from cumulus cells. Mol Reprod Dev 64:429–437

    Article  PubMed  CAS  Google Scholar 

  • Takeda K, Tasai M, Iwamoto M et al (2005) Microinjection of cytoplasm or mitochondria derived from somatic cells affects parthenogenetic development of murine oocytes. Biol Reprod 72:1397–1404

    Article  PubMed  CAS  Google Scholar 

  • Takeda K, Tasai M, Iwamoto M et al (2006) Transmission of mitochondrial DNA in pigs and progeny derived from nuclear transfer of Meishan pig fibroblast cells. Mol Reprod Dev 73:306–312

    Article  PubMed  CAS  Google Scholar 

  • Tamassia M, Nuttinck F, May-Panloup P et al (2004) In vitro embryo production efficiency in cattle and its association with oocyte adenosine triphosphate content, quantity of mitochondrial DNA, and mitochondrial DNA haplogroup. Biol Reprod 71:697–704

    Article  PubMed  CAS  Google Scholar 

  • Ursing BM, Arnason U (1998) The complete mitochondrial DNA sequence of the pig (Sus scrofa). J Mol Evol 47:302–306

    Article  PubMed  CAS  Google Scholar 

  • Wai T, Teoli D, Shoubridge E et al (2008) The mitochondrial DNA genetic bottleneck results from replication of a subpopulation of genomes. Nat Genet 40:1484–1488

    Article  PubMed  CAS  Google Scholar 

  • Wakayama T (2003) Cloned mice and embryonic stem cell lines generated from adult somatic cells by nuclear transfer. Oncol Res 13:309–314

    PubMed  Google Scholar 

  • Wakayama T, Tabar V, Rodriguez I et al (2001) Differentiation of embryonic stem cell lines generated from adult somatic cells by nuclear transfer. Science 292:740–743

    Article  PubMed  CAS  Google Scholar 

  • Wall RJ, Powell AM, Paape MJ et al (2005) Genetically enhanced cows resist intramammary Staphylococcus aureus infection. Nat Biotechnol 23:445–451

    Article  PubMed  CAS  Google Scholar 

  • Wallace DC (1999) Mitochondrial diseases in man and mouse. Science 283:1482–1488

    Article  PubMed  CAS  Google Scholar 

  • Williams D (2003) Sows’ ears, silk purses and goats’ milk: new production methods and medical applications for silk. Med Device Technol 14:9–11

    Google Scholar 

  • Yang CX, Han ZM, Wen D et al (2003) In vitro development and mitochondrial fate of macaca-rabbit cloned embryos. Mol Reprod Dev 65:396–401

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin C. St. John .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

John, J.C.S., Campbell, K.H.S. (2011). The Consequences of Reprogramming a Somatic Cell for Mitochondrial DNA Transmission, Inheritance and Replication. In: Ainscough, J., Yamanaka, S., Tada, T. (eds) Nuclear Reprogramming and Stem Cells. Stem Cell Biology and Regenerative Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-225-0_8

Download citation

Publish with us

Policies and ethics