Skip to main content

The Generation of Disease-Specific Cell Lines and Their Use for Developing Drug Therapies

  • Chapter
  • First Online:
Nuclear Reprogramming and Stem Cells

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 1117 Accesses

Abstract

Regenerative medicine has become an increasingly important field of research in contemporary bioscience. The importance of this research area is based on demographic changes in our aging societies and driven by the establishment of human embryonic stem cell lines. Disease-specific cell lines can be derived by various strategies, all aiming to enhance the understanding of disease at a cellular level and opening doors for drug discovery and development. The long-term goal of stem cells could lie in the potential to replace tissue and organs susceptible to age-related degeneration or traumatic injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amano T et al (2009) Nuclear transfer embryonic stem cells provide an in vitro culture model for parkinson’s disease. Cloning Stem Cells 11:77–88

    Article  PubMed  CAS  Google Scholar 

  • Aoi T et al (2008) Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science 321:699–702

    Article  PubMed  CAS  Google Scholar 

  • Briggs R, King TJ (1952) Transplantation of living nuclei from blastula cells into enucleate frogs’ eggs. Proc Natl Acad Sci 38(5):455–463

    Article  PubMed  CAS  Google Scholar 

  • Bromhall JD (1975) Nuclear transplantation in the rabbit egg. Nature 258:719–722

    Article  PubMed  CAS  Google Scholar 

  • Byrne JA et al (2007) Producing primate embryonic stem cells by somatic cell nuclear transfer. Nature 450:497–502

    Article  PubMed  CAS  Google Scholar 

  • Chen Y et al (2003) Embryonic stem cells generated by nuclear transfer of human somatic nuclei into rabbit oocytes. Cell Res 13:251–263

    Article  PubMed  Google Scholar 

  • Chung Y et al (2009) Reprogramming of human somatic cells using human and animal oocytes. Cloning Stem Cells 11(2):213–223

    Article  Google Scholar 

  • Cowan CA, Atienza J, Melton DA, Eggan K (2005) Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science 309:1369–1373

    Article  PubMed  CAS  Google Scholar 

  • Dimos JT et al (2008) Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321:1218–1221

    Article  PubMed  CAS  Google Scholar 

  • Ebert AD et al (2009) Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 457:277–280

    Article  PubMed  CAS  Google Scholar 

  • Gurdon JB (1962) The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J Embryol Exp Morphol. 10:622–640

    Article  PubMed  CAS  Google Scholar 

  • Gurdon JB, Uehlinger V (1966) ‘Fertile’ intestine nuclei. Nature 210:1240–1241

    Article  PubMed  CAS  Google Scholar 

  • Hanna J et al (2007) Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 318:1920–1923

    Article  PubMed  CAS  Google Scholar 

  • Hanna J et al (2008) Direct reprogramming of terminally differentiated mature b lymphocytes to pluripotency. Cell 133(2):250–264

    Article  PubMed  CAS  Google Scholar 

  • Huangfu D et al (2008) Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol 26:1269–1275

    Article  PubMed  CAS  Google Scholar 

  • Jingjuan J et al (2005) Experimental cloning of embryos through human-rabbit interspecies nuclear transfer. Zool Res 26:416–421

    Article  PubMed  CAS  Google Scholar 

  • Kaji K et al (2009) Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 458:771–775

    Article  PubMed  CAS  Google Scholar 

  • Kim JB et al (2009) Oct4-induced pluripotency in adult neural stem cells. Cell 136(3):411–419

    Article  PubMed  CAS  Google Scholar 

  • Lefebvre S et al (1995) Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80:155–165

    Article  PubMed  CAS  Google Scholar 

  • Li F et al (2008) Activation of human embryonic gene expression in cytoplasmic hybrid embryos constructed between bovine oocytes and human fibroblasts. Cloning Stem Cells 10:297–305

    Article  PubMed  CAS  Google Scholar 

  • Lorincz MT, Detloff PJ, Albin RL, O’Shea KS (2004) Embryonic stem cells expressing expanded CAG repeats undergo aberrant neuronal differentiation and have persistent Oct-4 and REST/NRSF expression. Mol Cell Neurosci 26:135–143

    Article  PubMed  CAS  Google Scholar 

  • Mitalipov SM et al (2007) Reprogramming following somatic cell nuclear transfer in primates is dependent upon nuclear remodeling. Hum Reprod 22:2232–2242

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa M et al (2008) Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 26(1):101–106

    Article  PubMed  CAS  Google Scholar 

  • Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S (2008) Generation of mouse induced pluripotent stem cells without viral vectors. Science 322:949–953

    Article  PubMed  CAS  Google Scholar 

  • Park IH et al (2008) Disease-specific induced pluripotent stem cells. Cell 134(5):877–886

    Article  PubMed  CAS  Google Scholar 

  • Piccini P et al (1999) Dopamine release from nigral transplants visualized in vivo in a Parkinson’s patient. Nat Neurosci 2:1137–1140

    Article  PubMed  CAS  Google Scholar 

  • Shoubridge EA, Wai T (2007) Current topics in developmental biology. In: Justin CS (ed) The mitochondrion in the germline and early development. Academic, New York, pp 87–111

    Chapter  Google Scholar 

  • Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K (2008) Induced pluripotent stem cells generated without viral integration. Science 322:945–949

    Article  PubMed  CAS  Google Scholar 

  • Stephenson EL et al (2009) Preimplantation genetic diagnosis as a source of human embryonic stem cells for disease research and drug discovery. BJOG 116:158–165

    Article  PubMed  CAS  Google Scholar 

  • Stojkovic M et al (2005) Derivation of a human blastocyst after heterologous nuclear transfer to donated oocytes. Reprod Biomed Online 11:226–231

    Article  PubMed  Google Scholar 

  • Tada M, Takahama Y, Abe K, Nakatsuji N, Tada T (2001) Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr Biol 11(19):1553–1558

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    Article  PubMed  CAS  Google Scholar 

  • Taylor CJ et al (2005) Banking on human embryonic stem cells: estimating the number of donor cell lines needed for HLA matching. Lancet 366:2019–2025

    Article  PubMed  Google Scholar 

  • Thomson JA et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  PubMed  CAS  Google Scholar 

  • Vogel G (2006) Stem cells: ethical oocytes: available for a price. Science 313:155b

    Article  Google Scholar 

  • Wernig M et al (2007) In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448:318–324

    Article  PubMed  CAS  Google Scholar 

  • Wernig M et al (2008) Neurons derived from reprogrammed fibroblasts functionally integrate into fetal brain and improve symptoms of rats with Parkinson’s disease. PNAS 105:5856–5861

    Article  PubMed  CAS  Google Scholar 

  • Wilmut I et al (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385:810–813

    Article  PubMed  CAS  Google Scholar 

  • Woltjen K et al (2009) piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458:766–770

    Article  PubMed  CAS  Google Scholar 

  • Yu J et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    Article  PubMed  CAS  Google Scholar 

  • Yu J et al (2009) Assessment of the developmental competence of human somatic cell nuclear transfer embryos by oocyte morphology classification. Hum Reprod 1:1–9

    Google Scholar 

  • Zhou H et al (2009) Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4:381–384

    Article  PubMed  CAS  Google Scholar 

  • Zwaka TM, Thomson JA (2003) Homologous recombination in human embryonic stem cells. Nat Biotechnol 21:319–321

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefanie Gögel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gögel, S., Minger, S.L. (2011). The Generation of Disease-Specific Cell Lines and Their Use for Developing Drug Therapies. In: Ainscough, J., Yamanaka, S., Tada, T. (eds) Nuclear Reprogramming and Stem Cells. Stem Cell Biology and Regenerative Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-225-0_17

Download citation

Publish with us

Policies and ethics