Skip to main content

Phenotype and Developmental Potential of Cardiomyocytes from Induced Pluripotent Stem Cells and Human Embryonic Stem Cells

  • Chapter
  • First Online:
Nuclear Reprogramming and Stem Cells

Abstract

The adult human heart has limited regenerative capacity. Loss of ­myocardium, most commonly through ischemic injury, results in the clinical syndrome of heart failure. Current therapies are largely palliative and the only treatment for end-stage heart failure with established long-term efficacy is transplantation. Consequently, there has been significant interest in developing novel regenerative strategies. Use of human embryonic stem cell (hESC) therapy is complicated by ethical and technical problems including possible host immune rejection of transplanted cells. Induced pluripotent stem cells (iPSCs) share many properties with hESC but do not require the ethically problematic destruction of embryos. Furthermore, as iPSC can be generated from somatic cells of specific patients, it is theoretically possible to perform allogenic cell transplantation or to create patient-specific in vitro disease models using iPSC-derived cardiac myocytes. In this chapter, we discuss the developmental potential of hESC and iPSC for cardiomyogenesis, including existing methods for differentiation and maturation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Latif A, Bolli R, Tleyjeh IM et al (2007) Adult bone marrow-derived cells for cardiac repair: a systematic review and meta-analysis. Arch Intern Med 167:989–997

    Article  PubMed  Google Scholar 

  • Abdul Kadir S, Ali N, Mioulane M et al (2009) Embryonic stem cell-derived cardiomyocytes as a model to study fetal arrhythmia related to maternal disease. J Cell Mol Med 13:3730–3741

    Article  PubMed  Google Scholar 

  • Abraham MR, Henrikson CA, Tung L et al (2005) Antiarrhythmic engineering of skeletal myoblasts for cardiac transplantation. Circ Res 97:159–167

    Article  PubMed  CAS  Google Scholar 

  • Adewumi O, Aflatoonian B, Ahrlund-Richter L et al (2007) Characterization of human embryonic stem cell lines by the international stem cell initiative. Nat Biotechnol 25:803–816

    Article  PubMed  CAS  Google Scholar 

  • Ameen C, Strehl R, Bjorquist P et al (2008) Human embryonic stem cells: current technologies and emerging industrial applications. Crit Rev Oncol Hematol 65:54–80

    Article  PubMed  Google Scholar 

  • Baharvand H, Piryaei A, Rohani R et al (2006) Ultrastructural comparison of developing mouse embryonic stem cell- and in vivo-derived cardiomyocytes. Cell Biol Int 30:800–807

    Article  PubMed  CAS  Google Scholar 

  • Bassani JW, Yuan W, Bers DM (1995) Fractional SR Ca release is regulated by trigger Ca and SR Ca content in cardiac myocytes. Am J Physiol 268:C1313–C1319

    PubMed  CAS  Google Scholar 

  • Beard NA, Laver DR, Dulhunty AF (2004) Calsequestrin and the calcium release channel of skeletal and cardiac muscle. Prog Biophys Mol Biol 85:33–69

    Article  PubMed  CAS  Google Scholar 

  • Bearzi C, Rota M, Hosoda T et al (2007) Human cardiac stem cells. Proc Natl Acad Sci USA 104:14068–14073

    Article  PubMed  CAS  Google Scholar 

  • Beltrami AP, Barlucchi L, Torella D et al (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114:763–776

    Article  PubMed  CAS  Google Scholar 

  • Bergmann O, Bhardwaj RD, Bernard S et al (2009) Evidence for cardiomyocyte renewal in humans. Science 324:98–102

    Article  PubMed  CAS  Google Scholar 

  • Bers DM (2002) Cardiac excitation-contraction coupling. Nature 415:198–205

    Article  PubMed  CAS  Google Scholar 

  • Bers DM, Despa S (2009) Na+ transport in cardiac myocytes; Implications for excitation-­contraction coupling. IUBMB Life 61:215–221

    Article  PubMed  CAS  Google Scholar 

  • Bers DM, Despa S, Bossuyt J (2006) Regulation of Ca2+ and Na+ in normal and failing cardiac myocytes. Ann N Y Acad Sci 1080:165–177

    Article  PubMed  CAS  Google Scholar 

  • Bi W, Drake CJ, Schwarz JJ (1999) The transcription factor MEF2C-null mouse exhibits complex vascular malformations and reduced cardiac expression of angiopoietin 1 and VEGF. Dev Biol 211:255–267

    Article  PubMed  CAS  Google Scholar 

  • Boheler K, Czyz J, Tweedie D et al (2002) Differentiation of pluripotent embryonic stem cells into cardiomyocytes. Circ Res 91:189–201

    Article  PubMed  CAS  Google Scholar 

  • Bonneux L, Barendregt JJ, Meeter K et al (1994) Estimating clinical morbidity due to ischemic heart disease and congestive heart failure: the future rise of heart failure. Am J Public Health 84:20–28

    Article  PubMed  CAS  Google Scholar 

  • Brand NJ, Dabhade N, Yacoub M et al (1991) Determination of the 5′ exon structure of the human cardiac alpha-myosin heavy chain gene. Biochem Biophys Res Commun 179:1255–1258

    Article  PubMed  CAS  Google Scholar 

  • Brette F, Orchard C (2003) T-tubule function in mammalian cardiac myocytes. Circ Res 92:1182–1192

    Article  PubMed  CAS  Google Scholar 

  • Brette F, Orchard C (2007) Resurgence of cardiac t-tubule research. Physiology (Bethesda) 22:167–173

    Article  CAS  Google Scholar 

  • Burridge PW, Anderson D, Priddle H et al (2007) Improved human embryonic stem cell embryoid body homogeneity and cardiomyocyte differentiation from a novel V-96 plate aggregation system highlights interline variability. Stem Cells 25:929–938

    Article  PubMed  CAS  Google Scholar 

  • Cao F, Wagner RA, Wilson KD et al (2008) Transcriptional and functional profiling of human embryonic stem cell-derived cardiomyocytes. PLoS One 3:e3474

    Article  PubMed  CAS  Google Scholar 

  • Carvajal-Vergara X, Sevilla A, D’Souza SL et al (2010) Patient-specific induced pluripotent stem-cell-derived models of LEOPARD syndrome. Nature 465:808–812

    Article  PubMed  CAS  Google Scholar 

  • Caspi O, Itzhaki I, Kehat I et al (2009) In vitro electrophysiological drug testing using human embryonic stem cell derived cardiomyocytes. Stem Cells Dev 18:161–172

    Article  PubMed  CAS  Google Scholar 

  • Chambers I, Colby D, Robertson M et al (2003) Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113:643–655

    Article  PubMed  CAS  Google Scholar 

  • Chen QZ, Ishii H, Thouas GA et al (2010) An elastomeric patch derived from poly(glycerol sebacate) for delivery of embryonic stem cells to the heart. Biomaterials 31:3885–3893

    Article  PubMed  CAS  Google Scholar 

  • Chin M, Mason M, Xie W et al (2009) Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell Stem Cell 5:111–123

    Article  PubMed  CAS  Google Scholar 

  • Clegg AJ, Scott DA, Loveman E et al (2006) Clinical and cost-effectiveness of left ventricular assist devices as a bridge to heart transplantation for people with end-stage heart failure: a systematic review and economic evaluation. Eur Heart J 27:2929–2938

    Article  PubMed  Google Scholar 

  • Cohen ED, Wang Z, Lepore JJ et al (2007) Wnt/beta-catenin signaling promotes expansion of Isl-1-positive cardiac progenitor cells through regulation of FGF signaling. J Clin Invest 117:1794–1804

    Article  PubMed  CAS  Google Scholar 

  • de Boer TP, van Veen TAB, Houtman MJC et al (2006) Inhibition of cardiomyocyte automaticity by electrotonic application of inward rectifier current from Kir2.1 expressing cells. Med Biol Eng Comput 44:537–542

    Article  PubMed  Google Scholar 

  • De Miguel MP, Fuentes-Julian S, Alcaina Y (2010) Pluripotent stem cells: origin, maintenance and induction. Stem Cell Rev 6:633–649

    Article  PubMed  Google Scholar 

  • Deng J, Shoemaker R, Xie B et al (2009) Targeted bisulfite sequencing reveals changes in DNA methylation associated with nuclear reprogramming. Nat Biotechnol 27:353–360

    Article  PubMed  CAS  Google Scholar 

  • Desplantez T, Dupont E, Severs NJ et al (2007) Gap junction channels and cardiac impulse propagation. J Membr Biol 218:13–28

    Article  PubMed  CAS  Google Scholar 

  • DiFrancesco D (2010) The role of the funny current in pacemaker activity. Circ Res 106:434–446

    Article  PubMed  CAS  Google Scholar 

  • Dolnikov K, Shilkrut M, Zeevi-Levin N et al (2006) Functional properties of human embryonic stem cell-derived cardiomyocytes: intracellular Ca2+ handling and the role of sarcoplasmic reticulum in the contraction. Stem Cells 24:236–245

    Article  PubMed  CAS  Google Scholar 

  • Durocher D, Charron F, Warren R et al (1997) The cardiac transcription factors Nkx2-5 and GATA-4 are mutual cofactors. EMBO J 16:5687–5696

    Article  PubMed  CAS  Google Scholar 

  • Eldstrom J, Choi WS, Steele DF et al (2003) SAP97 increases Kv1.5 currents through an indirect N-terminal mechanism. FEBS Lett 547:205–211

    Article  PubMed  CAS  Google Scholar 

  • Filipczyk AA, Passier R, Rochat A et al (2007) Regulation of cardiomyocyte differentiation of embryonic stem cells by extracellular signalling. Cell Mol Life Sci 64:704–718

    Article  PubMed  CAS  Google Scholar 

  • Flaherty MP, Abdel-Latif A, Li Q et al (2008) Noncanonical Wnt11 signaling is sufficient to induce cardiomyogenic differentiation in unfractionated bone marrow mononuclear cells. Circulation 117:2241–2252

    Article  PubMed  CAS  Google Scholar 

  • Fu JD, Li J, Tweedie D et al (2006) Crucial role of the sarcoplasmic reticulum in the developmental regulation of Ca2+ transients and contraction in cardiomyocytes derived from embryonic stem cells. FASEB J 20:181–183

    Article  PubMed  CAS  Google Scholar 

  • Fu JD, Jiang P, Rushing S et al (2010) Na+/Ca2+ exchanger is a determinant of excitation-contraction coupling in human embryonic stem cell-derived ventricular cardiomyocytes. Stem Cells Dev 19:773–782

    Article  PubMed  CAS  Google Scholar 

  • Garg V, Kathiriya IS, Barnes R et al (2003) GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature 424:443–447

    Article  PubMed  CAS  Google Scholar 

  • Gersh BJ, Simari RD, Behfar A et al (2009) Cardiac cell repair therapy: a clinical perspective. Mayo Clin Proc 84:876–892

    Article  PubMed  CAS  Google Scholar 

  • Graichen R, Xu X, Braam SR et al (2008) Enhanced cardiomyogenesis of human embryonic stem cells by a small molecular inhibitor of p38 MAPK. Differentiation 76:357–370

    Article  PubMed  CAS  Google Scholar 

  • Gridelli B, Remuzzi G (2000) Strategies for making more organs available for transplantation. N Engl J Med 343:404–410

    Article  PubMed  CAS  Google Scholar 

  • Habib M, Caspi O, Gepstein L (2008) Human embryonic stem cells for cardiomyogenesis. J Mol Cell Cardiol 45:462–474

    Article  PubMed  CAS  Google Scholar 

  • Hattori F, Chen H, Yamashita H et al (2010) Nongenetic method for purifying stem cell-derived cardiomyocytes. Nat Methods 7:61–66

    Article  PubMed  CAS  Google Scholar 

  • He JQ, Ma Y, Lee Y et al (2003) Human embryonic stem cells develop into multiple types of cardiac myocytes: action potential characterization. Circ Res 93:32–39

    Article  PubMed  CAS  Google Scholar 

  • Hescheler J, Fleischmann BK, Lentini S et al (1997) Embryonic stem cells: a model to study structural and functional properties in cardiomyogenesis. Cardiovasc Res 36:149–162

    Article  PubMed  CAS  Google Scholar 

  • Hu BY, Weick JP, Yu J et al (2010) Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proc Natl Acad Sci USA 107:4335–4340

    Article  PubMed  CAS  Google Scholar 

  • Ieda M, Fu JD, Delgado-Olguin P et al (2010) Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142:375–386

    Article  PubMed  CAS  Google Scholar 

  • Itskovitz-Eldor J, Schuldiner M, Karsenti D et al (2000) Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol Med 6:88–95

    PubMed  CAS  Google Scholar 

  • Kattman SJ, Huber TL, Keller GM (2006) Multipotent flk-1+ cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial, and vascular smooth muscle lineages. Dev Cell 11:723–732

    Article  PubMed  CAS  Google Scholar 

  • Kehat I, Kenyagin-Karsenti D, Snir M et al (2001) Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest 108:407–414

    PubMed  CAS  Google Scholar 

  • Kleber AG, Rudy Y (2004) Basic mechanisms of cardiac impulse propagation and associated arrhythmias. Physiol Rev 84:431–488

    Article  PubMed  CAS  Google Scholar 

  • Kolossov E, Lu Z, Drobinskaya I et al (2005) Identification and characterization of embryonic stem cell-derived pacemaker and atrial cardiomyocytes. FASEB J 19:577–579

    PubMed  CAS  Google Scholar 

  • Kong CW, Akar FG, Li RA (2010) Translational potential of human embryonic and induced pluripotent stem cells for myocardial repair: insights from experimental models. Thromb Haemost 104:30–38

    Article  PubMed  CAS  Google Scholar 

  • Kubalak SW, Miller-Hance WC, O’Brien TX et al (1994) Chamber specification of atrial myosin light chain-2 expression precedes septation during murine cardiogenesis. J Biol Chem 269:16961–16970

    PubMed  CAS  Google Scholar 

  • Kuratomi S, Ohmori Y, Ito M et al (2009) The cardiac pacemaker-specific channel Hcn4 is a direct transcriptional target of MEF2. Cardiovasc Res 83:682–687

    Article  PubMed  CAS  Google Scholar 

  • Laflamme MA, Chen KY, Naumova AV et al (2007) Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 25:1015–1024

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Terracciano CM (2010) Cell therapy for cardiac repair. Br Med Bull 94:65–80

    Article  PubMed  Google Scholar 

  • Lev S, Kehat I, Gepstein L (2005) Differentiation pathways in human embryonic stem cell-derived cardiomyocytes. Ann N Y Acad Sci 1047:50–65

    Article  PubMed  CAS  Google Scholar 

  • Lieu DK, Liu J, Siu CW et al (2009) Absence of transverse tubules contributes to non-uniform Ca(2+) wavefronts in mouse and human embryonic stem cell-derived cardiomyocytes. Stem Cells Dev 18:1493–1500

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Fu JD, Siu CW et al (2007) Functional sarcoplasmic reticulum for calcium handling of human embryonic stem cell-derived cardiomyocytes: insights for driven maturation. Stem Cells 25:3038–3044

    Article  PubMed  CAS  Google Scholar 

  • Lo B, Parham L (2009) Ethical issues in stem cell research. Endocr Rev 30:204–213

    Article  PubMed  Google Scholar 

  • Ludwig T, Thomson J (2007) Defined, feeder-independent medium for human embryonic stem cell culture. Curr Protoc Stem Cell Biol Chapter 1:Unit 1C.2

    Google Scholar 

  • Lukyanenko V, Gyorke I, Gyorke S (1996) Regulation of calcium release by calcium inside the sarcoplasmic reticulum in ventricular myocytes. Pflugers Arch 432:1047–1054

    Article  PubMed  CAS  Google Scholar 

  • Macera MJ, Szabo P, Wadgaonkar R et al (1992) Localization of the gene coding for ventricular myosin regulatory light chain (MYL2) to human chromosome 12q23-q24.3. Genomics 13:829–831

    Article  PubMed  CAS  Google Scholar 

  • Marcellini S, Technau U, Smith JC et al (2003) Evolution of Brachyury proteins: identification of a novel regulatory domain conserved within bilateria. Dev Biol 260:352–361

    Article  PubMed  CAS  Google Scholar 

  • Mauritz C, Schwanke K, Reppel M et al (2008) Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation 118:507–517

    Article  PubMed  Google Scholar 

  • McMurray JJ, Stewart S (2000) Epidemiology, aetiology, and prognosis of heart failure. Heart 83:596–602

    Article  PubMed  CAS  Google Scholar 

  • Menasche P, Hagege AA, Scorsin M et al (2001) Myoblast transplantation for heart failure. Lancet 357:279–280

    Article  PubMed  CAS  Google Scholar 

  • Messina E, De Angelis L, Frati G et al (2004) Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res 95:911–921

    Article  PubMed  CAS  Google Scholar 

  • Mitsui K, Tokuzawa Y, Itoh H et al (2003) The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113:631–642

    Article  PubMed  CAS  Google Scholar 

  • Moore JC, Fu J, Chan YC et al (2008) Distinct cardiogenic preferences of two human embryonic stem cell (hESC) lines are imprinted in their proteomes in the pluripotent state. Biochem Biophys Res Commun 372:553–558

    Article  PubMed  CAS  Google Scholar 

  • Moretti A, Caron L, Nakano A et al (2006) Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell 127:1151–1165

    Article  PubMed  CAS  Google Scholar 

  • Moretti A, Bellin M, Welling A et al (2010) Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N Engl J Med 363:1397–1409

    Article  PubMed  CAS  Google Scholar 

  • Muller M, Fleischmann BK, Selbert S et al (2000) Selection of ventricular-like cardiomyocytes from ES cells in vitro. FASEB J 14:2540–2548

    Article  PubMed  CAS  Google Scholar 

  • Mummery C, Ward-van Oostwaard D, Doevendans P et al (2003) Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation 107:2733–2740

    Article  PubMed  CAS  Google Scholar 

  • Murry CE, Soonpaa MH, Reinecke H et al (2004) Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428:664–668

    Article  PubMed  CAS  Google Scholar 

  • Narazaki G, Uosaki H, Teranishi M et al (2008) Directed and systematic differentiation of cardiovascular cells from mouse induced pluripotent stem cells. Circulation 118:498–506

    Article  PubMed  Google Scholar 

  • Nelson TJ, Martinez-Fernandez A, Yamada S et al (2009) Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cells. Circulation 120:408–416

    Article  PubMed  Google Scholar 

  • Niwa H, Miyazaki J, Smith AG (2000) Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 24:372–376

    Article  PubMed  CAS  Google Scholar 

  • Nostro MC, Cheng X, Keller GM et al (2008) Wnt, activin, and BMP signaling regulate distinct stages in the developmental pathway from embryonic stem cells to blood. Cell Stem Cell 2:60–71

    Article  PubMed  CAS  Google Scholar 

  • Novak K (2010) Stem cell therapies: California Dreamin’? Cell 140:10–12

    Article  PubMed  CAS  Google Scholar 

  • Olson EN (2001) Development. The path to the heart and the road not taken. Science 291:2327–2328

    Article  PubMed  CAS  Google Scholar 

  • Olson EN (2004) A decade of discoveries in cardiac biology. Nat Med 10:467–474

    Article  PubMed  CAS  Google Scholar 

  • Orlic D, Kajstura J, Chimenti S et al (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410:701–705

    Article  PubMed  CAS  Google Scholar 

  • Osafune K, Caron L, Borowiak M et al (2008) Marked differences in differentiation propensity among human embryonic stem cell lines. Nat Biotechnol 26:313–315

    Article  PubMed  CAS  Google Scholar 

  • Otsuji TG, Minami I, Kurose Y et al (2010) Progressive maturation in contracting cardiomyocytes derived from human embryonic stem cells: qualitative effects on electrophysiological responses to drugs. Stem Cell Res 4:201–213

    Article  PubMed  CAS  Google Scholar 

  • Pal R, Khanna A (2007) Similar pattern in cardiac differentiation of human embryonic stem cell lines, BG01V and ReliCellhES1, under low serum concentration supplemented with bone morphogenetic protein-2. Differentiation 75:112–122

    Article  PubMed  CAS  Google Scholar 

  • Pantalos GM, Marks JD, Riebman JB et al (1988) Hemodynamic and energetic assessment of calves implanted with a left-ventricular assist device (Lvad). Int J Artif Organs 11:119–126

    PubMed  CAS  Google Scholar 

  • Passier R, Oostwaard DW, Snapper J et al (2005) Increased cardiomyocyte differentiation from human embryonic stem cells in serum-free cultures. Stem Cells 23:772–780

    Article  PubMed  CAS  Google Scholar 

  • Passier R, van Laake LW, Mummery CL (2008) Stem-cell-based therapy and lessons from the heart. Nature 453:322–329

    Article  PubMed  CAS  Google Scholar 

  • Pekkanen-Mattila M, Kerkela E, Tanskanen JM et al (2009) Substantial variation in the cardiac differentiation of human embryonic stem cell lines derived and propagated under the same conditions – a comparison of multiple cell lines. Ann Med 41:360–370

    Article  PubMed  CAS  Google Scholar 

  • Pekkanen-Mattila M, Chapman H, Kerkela E et al (2010a) Human embryonic stem cell-derived cardiomyocytes: demonstration of a portion of cardiac cells with fairly mature electrical phenotype. Exp Biol Med (Maywood) 235:522–530

    Article  CAS  Google Scholar 

  • Pekkanen-Mattila M, Pelto-Huikko M, Kujala V et al (2010b) Spatial and temporal expression pattern of germ layer markers during human embryonic stem cell differentiation in embryoid bodies. Histochem Cell Biol 133:595–606

    Article  PubMed  CAS  Google Scholar 

  • Qyang Y, Martin-Puig S, Chiravuri M et al (2007) The renewal and differentiation of Isl1+ cardiovascular progenitors are controlled by a Wnt/beta-catenin pathway. Cell Stem Cell 1:165–179

    Article  PubMed  CAS  Google Scholar 

  • Rubart M, Soonpaa MH, Nakajima H et al (2004) Spontaneous and evoked intracellular calcium transients in donor-derived myocytes following intracardiac myoblast transplantation. J Clin Invest 114:775–783

    PubMed  CAS  Google Scholar 

  • Saito Y, Nakao K, Arai H et al (1989) Augmented expression of atrial natriuretic polypeptide gene in ventricle of human failing heart. J Clin Invest 83:298–305

    Article  PubMed  CAS  Google Scholar 

  • Saric T, Frenzel LP, Hescheler J (2008) Immunological barriers to embryonic stem cell-derived therapies. Cells Tissues Organs 188:78–90

    Article  PubMed  Google Scholar 

  • Sartiani L, Bettiol E, Stillitano F et al (2007) Developmental changes in cardiomyocytes differentiated from human embryonic stem cells: a molecular and electrophysiological approach. Stem Cells 25:1136–1144

    Article  PubMed  CAS  Google Scholar 

  • Satin J, Kehat I, Caspi O et al (2004) Mechanism of spontaneous excitability in human embryonic stem cell derived cardiomyocytes. J Physiol 559:479–496

    Article  PubMed  CAS  Google Scholar 

  • Satin J, Itzhaki I, Rapoport S et al (2008) Calcium handling in human embryonic stem cell-derived cardiomyocytes. Stem Cells 26:1961–1972

    Article  PubMed  CAS  Google Scholar 

  • Sato N, Meijer L, Skaltsounis L et al (2004) Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med 10:55–63

    Article  PubMed  CAS  Google Scholar 

  • Schuldiner M, Yanuka O, Itskovitz-Eldor J et al (2000) Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proc Natl Acad Sci USA 97:11307–11312

    Article  PubMed  CAS  Google Scholar 

  • Selvaraj V, Plane JM, Williams AJ et al (2010) Switching cell fate: the remarkable rise of induced pluripotent stem cells and lineage reprogramming technologies. Trends Biotechnol 28:214–223

    Article  PubMed  CAS  Google Scholar 

  • Shannon TR, Ginsburg KS, Bers DM (2000) Potentiation of fractional sarcoplasmic reticulum calcium release by total and free intra-sarcoplasmic reticulum calcium concentration. Biophys J 78:334–343

    Article  PubMed  CAS  Google Scholar 

  • Snir M, Kehat I, Gepstein A et al (2003) Assessment of the ultrastructural and proliferative properties of human embryonic stem cell-derived cardiomyocytes. Am J Physiol Heart Circ Physiol 285:H2355–H2363

    PubMed  CAS  Google Scholar 

  • Song LS, Guatimosim S, Gomez-Viquez L et al (2005) Calcium biology of the transverse tubules in heart. Ann N Y Acad Sci 1047:99–111

    Article  PubMed  CAS  Google Scholar 

  • Tada M, Kirchberger MA, Repke DI et al (1974) The stimulation of calcium transport in cardiac sarcoplasmic reticulum by adenosine 3′:5′-monophosphate-dependent protein kinase. J Biol Chem 249:6174–6180

    PubMed  CAS  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  PubMed  CAS  Google Scholar 

  • Takahashi T, Lord B, Schulze PC et al (2003) Ascorbic acid enhances differentiation of embryonic stem cells into cardiac myocytes. Circulation 107:1912–1916

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  PubMed  CAS  Google Scholar 

  • Tanaka T, Tohyama S, Murata M et al (2009) In vitro pharmacologic testing using human induced pluripotent stem cell-derived cardiomyocytes. Biochem Biophys Res Commun 385:497–502

    Article  PubMed  CAS  Google Scholar 

  • Tansley P, Yacoub M, Rimoldi O et al (2004) Effect of left ventricular assist device combination therapy on myocardial blood flow in patients with end-stage dilated cardiomyopathy. J Heart Lung Transplant 23:1283–1289

    Article  PubMed  Google Scholar 

  • Taylor DO, Edwards LB, Boucek MM et al (2007) Registry of the International Society for Heart and Lung Transplantation: twenty-fourth official adult heart transplant report – 2007. J Heart Lung Transplant 26:769–781

    Article  PubMed  Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  PubMed  CAS  Google Scholar 

  • Townsend PJ, Farza H, MacGeoch C et al (1994) Human cardiac troponin T: identification of fetal isoforms and assignment of the TNNT2 locus to chromosome 1q. Genomics 21:311–316

    Article  PubMed  CAS  Google Scholar 

  • Tran TH, Wang X, Browne C et al (2009) Wnt3a-induced mesoderm formation and cardiomyogenesis in human embryonic stem cells. Stem Cells 27:1869–1878

    Article  PubMed  CAS  Google Scholar 

  • Ueno S, Weidinger G, Osugi T et al (2007) Biphasic role for Wnt/beta-catenin signaling in cardiac specification in zebrafish and embryonic stem cells. Proc Natl Acad Sci USA 104:9685–9690

    Article  PubMed  CAS  Google Scholar 

  • Viatchenko-Karpinski S, Fleischmann BK, Liu Q et al (1999) Intracellular Ca2+ oscillations drive spontaneous contractions in cardiomyocytes during early development. Proc Natl Acad Sci USA 96:8259–8264

    Article  PubMed  CAS  Google Scholar 

  • Vidarsson H, Hyllner J, Sartipy P (2010) Differentiation of human embryonic stem cells to cardiomyocytes for in vitro and in vivo applications. Stem Cell Rev 6:108–120

    Article  PubMed  Google Scholar 

  • Vierbuchen T, Ostermeier A, Pang ZP et al (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463:1035–1041

    Article  PubMed  CAS  Google Scholar 

  • Willems E, Bushway PJ, Mercola M (2009) Natural and synthetic regulators of embryonic stem cell cardiogenesis. Pediatr Cardiol 30:635–642

    Article  PubMed  Google Scholar 

  • Wollert KC, Drexler H (2010) Cell therapy for the treatment of coronary heart disease: a critical appraisal. Nat Rev Cardiol 7:204–215

    Article  PubMed  Google Scholar 

  • Wu X, Ding S, Ding Q et al (2004) Small molecules that induce cardiomyogenesis in embryonic stem cells. J Am Chem Soc 126:1590–1591

    Article  PubMed  CAS  Google Scholar 

  • Wu SM, Fujiwara Y, Cibulsky SM et al (2006) Developmental origin of a bipotential myocardial and smooth muscle cell precursor in the mammalian heart. Cell 127:1137–1150

    Article  PubMed  CAS  Google Scholar 

  • Xu C, Police S, Rao N et al (2002) Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circ Res 91:501–508

    Article  PubMed  CAS  Google Scholar 

  • Xu XQ, Graichen R, Soo SY et al (2008) Chemically defined medium supporting cardiomyocyte differentiation of human embryonic stem cells. Differentiation 76:958–970

    PubMed  CAS  Google Scholar 

  • Xue T, Cho H, Akar F et al (2005) Functional integration of electrically active cardiac derivatives from genetically engineered human embryonic stem cells with quiescent recipient ventricular cardiomyocytes: insights into the development of cell-based pacemakers. Circulation 111:11–20

    Article  PubMed  Google Scholar 

  • Yamada S, Nelson TJ, Crespo-Diaz RJ et al (2008) Embryonic stem cell therapy of heart failure in genetic cardiomyopathy. Stem Cells 26:2644–2653

    Article  PubMed  Google Scholar 

  • Yang L, Soonpaa MH, Adler ED et al (2008) Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature 453:524–528

    Article  PubMed  CAS  Google Scholar 

  • Yao S, Chen S, Clark J et al (2006) Long-term self-renewal and directed differentiation of human embryonic stem cells in chemically defined conditions. Proc Natl Acad Sci USA 103:6907–6912

    Article  PubMed  CAS  Google Scholar 

  • Ying QL, Nichols J, Chambers I et al (2003) BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115:281–292

    Article  PubMed  CAS  Google Scholar 

  • Yoshida Y, Yamanaka S (2010) Recent stem cell advances: induced pluripotent stem cells for disease modeling and stem cell-based regeneration. Circulation 122:80–87

    Article  PubMed  Google Scholar 

  • Yu J, Vodyanik M, Smuga-Otto K et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    Article  PubMed  CAS  Google Scholar 

  • Zaffran S, Frasch M (2002) Early signals in cardiac development. Circ Res 91:457–469

    Article  PubMed  CAS  Google Scholar 

  • Zhang P, Li J, Tan Z et al (2008) Short-term BMP-4 treatment initiates mesoderm induction in human embryonic stem cells. Blood 111:1933–1941

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Wilson GF, Soerens AG et al (2009) Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ Res 104:e30–e41

    Article  PubMed  CAS  Google Scholar 

  • Zwi L, Caspi O, Arbel G et al (2009) Cardiomyocyte differentiation of human induced pluripotent stem cells. Circulation 120:1513–1523

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sian Harding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rao, C., Ali, N.N., Athanasiou, T., Terracciano, C., Harding, S. (2011). Phenotype and Developmental Potential of Cardiomyocytes from Induced Pluripotent Stem Cells and Human Embryonic Stem Cells. In: Ainscough, J., Yamanaka, S., Tada, T. (eds) Nuclear Reprogramming and Stem Cells. Stem Cell Biology and Regenerative Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-225-0_16

Download citation

Publish with us

Policies and ethics