Skip to main content

Pancreatic Plasticity and Reprogramming: Novel Directions Towards Disease Therapy

  • Chapter
  • First Online:
Nuclear Reprogramming and Stem Cells

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 1143 Accesses

Abstract

Generating new β-cells de novo, or regenerating them in vivo, as a cellular therapy, is becoming more tenable as a realistic goal for treatment of the devastating disease of diabetes. One suitable approach towards generating β-cells is to use ­combinations of instructive and permissive cues to induce the transdifferentiation of terminally differentiated cell types into functional β-cells, which is called ­reprogramming. Interesting cellular transformations reported recently during development and regeneration suggest that a wide variety of differentiated cell types in the human body may be amenable to such reprogramming. In this chapter, we highlight findings and potential approaches using cell types that are developmentally related to β-cells, and the known molecular players that may be used to control β-cell-directed transdifferentiation. Further investigation with genetic model systems, coupled with the translation to clinically sound reprogramming methods, could lead to efficient reprogramming of specific cell types, with a massive impact on human health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahlgren U, Jonsson J, Jonsson L et al (1998) β-Cell-specific inactivation of the mouse Ipf1/Pdx1 gene results in loss of the β-cell phenotype and maturity onset diabetes. Genes Dev 12:1763–1768

    Article  PubMed  CAS  Google Scholar 

  • Apelqvist A, Li H, Sommer L et al (1999) Notch signalling controls pancreatic cell differentiation. Nature 400:877–881

    Article  PubMed  CAS  Google Scholar 

  • Baeyens L, Bonne S, Bos T et al (2009) Notch signaling as gatekeeper of rat acinar-to-beta-cell conversion in vitro. Gastroenterology 136:1750–1760

    Article  PubMed  CAS  Google Scholar 

  • Ber I, Shternhall K, Perl S et al (2003) Functional, persistent, and extended liver to pancreas transdifferentiation. J Biol Chem 278:31950–31957

    Article  PubMed  CAS  Google Scholar 

  • Bhushan A, Itoh N, Kato S et al (2001) Fgf10 is essential for maintaining the proliferative capacity of epithelial progenitor cells during early pancreatic organogenesis. Development 128:5109–5117

    PubMed  CAS  Google Scholar 

  • Blaine SA, Ray KC, Anunobi R et al (2010) Adult pancreatic acinar cells give rise to ducts but not endocrine cells in response to growth factor signaling. Development 137:2289–2296

    Article  PubMed  CAS  Google Scholar 

  • Bonal C, Thorel F, Ait-Lounis A et al (2009) Pancreatic inactivation of c-myc decreases acinar mass and transdifferentiates acinar cells into adipocytes in mice. Gastroenterology 136:309–319

    Article  PubMed  CAS  Google Scholar 

  • Borowiak M, Maehr R, Chen S et al (2009) Small molecules efficiently direct endodermal differentiation of mouse and human embryonic stem cells. Cell Stem Cell 4:348–358

    Article  PubMed  CAS  Google Scholar 

  • Bort R, Martinez-Barbera JP, Beddington RS et al (2004) Hex homeobox gene-dependent tissue positioning is required for organogenesis of the ventral pancreas. Development 131:797–806

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Borowiak M, Fox JL et al (2009) A small molecule that directs differentiation of human ESCs into the pancreatic lineage. Nat Chem Biol 5:258–265

    Article  PubMed  CAS  Google Scholar 

  • Chung WS, Shin CH, Stainier DY (2008) Bmp2 signaling regulates the hepatic versus pancreatic fate decision. Dev Cell 15:738–748

    Article  PubMed  CAS  Google Scholar 

  • Cleaver O, MacDonald RJ (2009) Developmental molecular biology of the pancreas. In: Neoptolemos JAJ, Buchler M, Urrutia R (eds) Handbook of pancreatic cancer. Springer, New York

    Google Scholar 

  • Collombat P, Mansouri A, Hecksher-Sorensen J et al (2003) Opposing actions of Arx and Pax4 in endocrine pancreas development. Genes Dev 17:2591–2603

    Article  PubMed  CAS  Google Scholar 

  • Collombat P, Hecksher-Sorensen J, Krull J et al (2007) Embryonic endocrine pancreas and mature beta cells acquire alpha and PP cell phenotypes upon Arx misexpression. J Clin Invest 117:961–970

    Article  PubMed  CAS  Google Scholar 

  • Collombat P, Xu X, Ravassard P et al (2009) The ectopic expression of pax4 in the mouse pancreas converts progenitor cells into α and subsequently β cells. Cell 138:449–462

    Article  PubMed  CAS  Google Scholar 

  • D’Amour KA, Bang AG, Eliazer S et al (2006) Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 24:1392–1401

    Article  PubMed  CAS  Google Scholar 

  • Dabeva MD, Hwang SG, Vasa SR et al (1997) Differentiation of pancreatic epithelial progenitor cells into hepatocytes following transplantation into rat liver. Proc Natl Acad Sci U S A 94:7356–7361

    Article  PubMed  CAS  Google Scholar 

  • Desai BM, Oliver-Krasinski J, De Leon DD et al (2007) Preexisting pancreatic acinar cells contribute to acinar cell, but not islet beta cell, regeneration. J Clin Invest 117:971–977

    Article  PubMed  CAS  Google Scholar 

  • Desgraz R, Herrera PL (2010) Pancreatic neurogenin 3-expressing cells are unipotent islet precursors. Development 136:3567–3574

    Article  CAS  Google Scholar 

  • Deutsch G, Jung J, Zheng M et al (2001) A bipotential precursor population for pancreas and liver within the embryonic endoderm. Development 128:871–881

    PubMed  CAS  Google Scholar 

  • Dor Y, Brown J, Martinez OI et al (2004) Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature 429:41–46

    Article  PubMed  CAS  Google Scholar 

  • Du A, Hunter CS, Murray J et al (2009) Islet-1 is required for the maturation, proliferation, and survival of the endocrine pancreas. Diabetes 58:2059–2069

    Article  PubMed  CAS  Google Scholar 

  • Dutton JR, Chillingworth NL, Eberhard D et al (2007) Beta cells occur naturally in extrahepatic bile ducts of mice. J Cell Sci 120:239–245

    Article  PubMed  CAS  Google Scholar 

  • Eberhard D, Tosh D, Slack JM (2008) Origin of pancreatic endocrine cells from biliary duct epithelium. Cell Mol Life Sci 65:3467–3480

    Article  PubMed  CAS  Google Scholar 

  • Esposito I, Seiler C, Bergmann F et al (2007) Hypothetical progression model of pancreatic cancer with origin in the centroacinar-acinar compartment. Pancreas 35:12–217

    Article  Google Scholar 

  • Fang L, Zhimin H, Jingping S et al (2010) Apoptotic caspases regulate induction of iPSCs from human fibroblasts. Cell Stem Cell 7:508–520

    Article  CAS  Google Scholar 

  • Ferber S, Halkin A, Cohen H et al (2000) Pancreatic and duodenal homeobox gene 1 induces expression of insulin genes in liver and ameliorates streptozotocin-induced hyperglycemia. Nat Med 6:568–572

    Article  PubMed  CAS  Google Scholar 

  • Finegood DT, Scaglia L, Bonner-Wier S (1995) Dynamics of beta-cell mass in the growing rat pancreas. Estimation with a simple mathematical model. Diabetes 44:249–256

    Article  PubMed  CAS  Google Scholar 

  • Fukuda A, Kawaguchi Y, Furuyama K et al (2006) Ectopic pancreas formation in Hes1-knockout mice reveals plasticity of endodermal progenitors of the gut, bile duct, and pancreas. J Clin Invest 116:1484–1493

    Article  PubMed  CAS  Google Scholar 

  • Furuta M, Yano H, Zhou A et al (1997) Defective prohormone processing and altered pancreatic islet morphology in mice lacking active SPC2. Proc Natl Acad Sci U S A 94:6646–6651

    Article  PubMed  CAS  Google Scholar 

  • Furuya F, Shimura H, Yamashita S et al (2010) Liganded thyroid hormone receptor-alpha enhances proliferation of pancreatic beta-cells. J Biol Chem 285:4477–4486

    Article  CAS  Google Scholar 

  • Gannon M, Tweedie Ables E, Crawford L et al (2008) Pdx-1 function is specifically required in embryonic β cells to generate appropriate numbers of endocrine cell types and maintain glucose homeostasis. Dev Biol 314:406–417

    Article  PubMed  CAS  Google Scholar 

  • Gelling RW, Du XQ, Dichmann DS et al (2003) Lower blood glucose, hyperglucagonemia, and pancreatic alpha cell hyperplasia in glucagon receptor knockout mice. Proc Natl Acad Sci U S A 100:1438–1443

    Article  PubMed  CAS  Google Scholar 

  • Gierl MS, Karoulias N, Wende H et al (2006) The zinc-finger factor Insm1 (IA-1) is essential for the development of pancreatic β cells and intestinal endocrine cells. Genes Dev 20:2465–2478

    Article  PubMed  CAS  Google Scholar 

  • Gradwohl G, Dierich A, LeMeur M et al (2000) Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc Natl Acad Sci U S A 97:1607–1611

    Article  PubMed  CAS  Google Scholar 

  • Gu D, Sarvetnick N (1993) Epithelial cell proliferation and islet neogenesis in IFN-g transgenic mice. Development 118:33–46

    PubMed  CAS  Google Scholar 

  • Gu G, Dubauskaite J, Melton DA (2002) Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development 129:2447–2457

    PubMed  CAS  Google Scholar 

  • Gu C, Stein GH, Pan N et al (2010) Pancreatic beta cells require NeuroD to achieve and maintain functional maturity. Cell Metab 11:298–310

    Article  PubMed  CAS  Google Scholar 

  • Hart A, Papadopoulou S, Edlund H (2003) Fgf10 maintains notch activation, stimulates proliferation, and blocks differentiation of pancreatic epithelial cells. Dev Dyn 228:185–193

    Article  PubMed  CAS  Google Scholar 

  • Heitz PU, Kasper M, Polak JM et al (1982) Pancreatic endocrine tumors. Hum Pathol 13:263–271

    Article  PubMed  CAS  Google Scholar 

  • Herrera PL (2000) Adult insulin- and glucagon-producing cells differentiate from two independent cell lineages. Development 127:2317–2322

    PubMed  CAS  Google Scholar 

  • Horb ME, Shen CN, Tosh D et al (2003) Experimental conversion of liver to pancreas. Curr Biol 13:105–115

    Article  PubMed  CAS  Google Scholar 

  • Ieda M, Fu JD, Delgado-Olguin P et al (2010) Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142:375–386

    Article  PubMed  CAS  Google Scholar 

  • Inada A, Nienaber C, Katsuta H et al (2008) Carbonic anhydrase II-positive pancreatic cells are progenitors for both endocrine and exocrine pancreas after birth. Proc Natl Acad Sci U S A 105(19915–1):9919

    Google Scholar 

  • Jensen J, Pedersen EE, Galante P et al (2000a) Control of endodermal endocrine development by Hes-1. Nat Genet 24:36–44

    Article  PubMed  CAS  Google Scholar 

  • Jensen J, Heller RS, Funder-Nielsen T et al (2000b) Independent development of pancreatic α- and β-cells from neurogenin3-expressing precursors: a role for the notch pathway in repression of premature differentiation. Diabetes 49:163–176

    Article  PubMed  CAS  Google Scholar 

  • Johansson KA, Dursun U, Jordan N et al (2007) Temporal control of neurogenin3 activity in pancreas progenitors reveals competence windows for the generation of different endocrine cell types. Dev Cell 12:457–465

    Article  PubMed  CAS  Google Scholar 

  • Kaneto H, Nakatani Y, Miyatsuka T et al (2005) PDX-1/VP16 fusion protein, together with NeuroD or Ngn3, markedly induces insulin gene transcription and ameliorates glucose tolerance. Diabetes 54:1009–1022

    Article  PubMed  CAS  Google Scholar 

  • Kapran Y, Bauersfeld J, Anlauf M et al (2006) Multihormonality and entrapment of islets in pancreatic endocrine tumors. Virchows Arch 448:394–398

    Article  PubMed  CAS  Google Scholar 

  • Kawaguchi Y, Cooper B, Gannon M et al (2002) The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors. Nat Genet 32:128–134

    Article  PubMed  CAS  Google Scholar 

  • Kesavan G, Sand FW, Greiner TU et al (2009) Cdc42-mediated tubulogenesis controls cell specification. Cell 139:791–801

    Article  PubMed  CAS  Google Scholar 

  • Kim D, Kim CH, Moon JI et al (2009) Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 5:442–449

    Article  PubMed  CAS  Google Scholar 

  • Kim K, Doi A, Wen B et al (2010) Epigenetic memory in induced pluripotent stem cells. Nature 467:285–290

    Article  PubMed  CAS  Google Scholar 

  • Kopan R, Llagan MX (2009) The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137:216–233

    Article  PubMed  CAS  Google Scholar 

  • Kordowich S, Mansouri A, Collombat P (2010) Reprogramming into pancreatic endocrine cells based on developmental cues. Mol Cell Endocrinol 323:62–69

    Article  PubMed  CAS  Google Scholar 

  • Krakowski ML, Kritzik MR, Jones EM et al (1999) Pancreatic expression of keratinocyte growth factor leads to differentiation of islet hepatocytes and proliferation of duct cells. Am J Pathol 154:683–691

    Article  PubMed  CAS  Google Scholar 

  • Kroon E, Martinson LA, Kadoya K et al (2008) Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol 26:443–452

    Article  PubMed  CAS  Google Scholar 

  • Liu TH, Zhu Y, Cui QC et al (1992) Nonfunctioning pancreatic endocrine tumors. An immunohistochemical and electron microscopic analysis of 26 cases. Pathol Res Pract 188:191–198

    Article  PubMed  CAS  Google Scholar 

  • Lu J, Herrera PL, Carreria C et al (2010) α cell-specific men1 ablation triggers the transdifferentiation of glucagon-expressing cells and insulinoma development. Gastroenterology 138:1954–1965

    Article  PubMed  CAS  Google Scholar 

  • Madsen OD, Karlsen C, Nielsen E et al (1993) The dissociation of tumor-induced weight loss from hypoglycemia in a transplantable pluripotent rat tumor results in the segregation of stable alpha-cell and beta-cell tumor phenotypes. Endocrinology 133:2022–2030

    Article  PubMed  CAS  Google Scholar 

  • Masui T, Long Q, Beres TM et al (2007) Early pancreatic development requires the vertebrate suppressor of hairless (RBPJ) in the PTF1 bHLH complex. Genes Dev 21:2629–2643

    Article  PubMed  CAS  Google Scholar 

  • Mellitzer G, Bonne S, Luco RF et al (2006) IA1 is NGN3-dependent and essential for differentiation of the endocrine pancreas. EMBO J 25:1344–1352

    Article  PubMed  CAS  Google Scholar 

  • Metz DC, Jensen RT (2008) Gastrointestinal neuroendocrine tumors: pancreatic endocrine tumors. Gastroenterology 135:1469–1492

    Article  PubMed  CAS  Google Scholar 

  • Minami K, Okuno M, Miyawaki K et al (2005) Lineage tracing and characterization of insulin-secreting cells generated from adult pancreatic acinar cells. Proc Natl Acad Sci U S A 102:15116–15121

    Article  PubMed  CAS  Google Scholar 

  • Naya FJ, Huang HP, Qui Y et al (1997) Diabetes, defective pancreatic morphogenesis, and abnormal enteroendocrine differentiation in BETA2/NeuroD-deficient mice. Genes Dev 11:2323–2334

    Article  PubMed  CAS  Google Scholar 

  • Nishimura W, Kondo T, Salameh T et al (2006) A switch from MafB to MafA expression accompanies differentiation to pancreatic β-cells. Dev Biol 293:526–539

    Article  PubMed  CAS  Google Scholar 

  • Nir T, Melton DA, Dor Y (2007) Recovery from diabetes in mice by beta cell regeneration. J Clin Invest 117:2553–2561

    Article  PubMed  CAS  Google Scholar 

  • Norgaard GA, Jensen JN, Jensen J (2003) FGF10 signaling maintains the pancreatic progenitor cell state revealing a novel role of Notch in organ development. Dev Biol 264:323–338

    Article  PubMed  CAS  Google Scholar 

  • Oliver-Krasinski JM, Stoffers DA (2008) On the origin of the beta cell. Genes Dev 22:1998–2021

    Article  CAS  Google Scholar 

  • Phillips JM, O’Reilly L, Bland C et al (2007) Patients with chronic pancreatitis have islet progenitor cells in their ducts, but reversal of overt diabetes in NOD mice by anti-CD3 shows no evidence for islet regeneration. Diabetes 56:634–640

    Article  PubMed  CAS  Google Scholar 

  • Pictet R, Rutter WJ (1972) Endocrinology vol. 1 endocrine pancreas. In: Steiner DF, Freinkel N (eds) Handbook of physiology. Williams and Wilkins, Baltimore

    Google Scholar 

  • Piper K, Brickwood S, Turnpenny LW et al (2004) Beta cell differentiation during early human pancreas development. J Endocr 181:11–23

    Article  PubMed  CAS  Google Scholar 

  • Polak M, Bouchareb-Banaei L, Scharfmann R et al (2000) Early pattern of differentiation in the human pancreas. Diabetes 49:225–232

    Article  PubMed  CAS  Google Scholar 

  • Polo JM, Liu S, Figueroa ME et al (2010) Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nat Biotechnol 28:848–855

    Article  PubMed  CAS  Google Scholar 

  • Prado CL, Pugh-Bernard AE, Elghazi L et al (2004) Ghrelin cells replace insulin-producing β cells in two mouse models of pancreas development. Proc Natl Acad Sci U S A 101:2924–2929

    Article  PubMed  CAS  Google Scholar 

  • Rao MS, Subbarao V, Reddy JK (1986) Induction of hepatocytes in the pancreas of copper-depleted rats following copper repletion. Cell Differ 18:109–117

    Article  PubMed  CAS  Google Scholar 

  • Rao MS, Dwivedi RS, Subbarao V et al (1988) Almost total conversion of pancreas to liver in the adult rat: a reliable model to study transdifferentiation. Biochem Biophys Res Commun 156:131–136

    Article  PubMed  CAS  Google Scholar 

  • Rovira M, Scott SG, Liss AS et al (2010) Isolation and characterization of centroacinar/terminal ductal progenitor cells in adult mouse pancreas. Proc Natl Acad Sci U S A 107:75–80

    Article  PubMed  CAS  Google Scholar 

  • Ryan EA, Lakey JR, Rajotte RV et al (2001) Clinical outcomes and insulin secretion after islet transplantation with the Edmonton protocol. Diabetes 50:710–719

    Article  PubMed  CAS  Google Scholar 

  • Ryan EA, Paty BW, Senior PA et al (2005) Five-year follow-up after clinical islet transplantation. Diabetes 54:2060–2069

    Article  PubMed  CAS  Google Scholar 

  • Sapir T, Shternhall K, Meivar-Levy I et al (2005) Cell-replacement therapy for diabetes: generating functional insulin producing tissue from adult human liver cells. Proc Natl Acad Sci U S A 102:7964–7969

    Article  PubMed  CAS  Google Scholar 

  • Schwitzgebel VM, Scheel DW, Conners JR et al (2000) Expression of neurogenin3 reveals an islet cell precursor population in the pancreas. Development 127:3533–3542

    PubMed  CAS  Google Scholar 

  • Shapiro AM, Lakey JR, Ryan EA et al (2000) Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med 343:230–238

    Article  PubMed  CAS  Google Scholar 

  • Shen CN, Slack JMW, Tosh D (2000) Molecular basis of transdifferentiation of pancreas to liver. Nat Cell Biol 2:879–887

    Article  PubMed  CAS  Google Scholar 

  • Solar M, Cardalda C, Houbracken I et al (2009) Pancreatic exocrine duct cells give rise to insulin-producing beta cells during embryogenesis but not after birth. Dev Cell 17:849–860

    Article  PubMed  CAS  Google Scholar 

  • Song SY, Gannon M, Washington MK et al (1999) Expansion of Pdx1-expressing pancreatic epithelium and islet neogenesis in transgenic mice overexpressing transforming growth factor alpha. Gastroenterology 117:1416–1426

    Article  PubMed  CAS  Google Scholar 

  • Sosa-Pineda B, Chowdhury K, Torres M et al (1997) The Pax4 gene is essential for differentiation of insulin-producing β cells in the mammalian pancreas. Nature 386:399–402

    Article  PubMed  CAS  Google Scholar 

  • Spence JR, Lange AW, Lin SC et al (2009) Sox17 regulates organ lineage segregation of ventral foregut progenitor cells. Dev Cell 17:62–74

    Article  PubMed  CAS  Google Scholar 

  • Stanger BZ, Tanaka AJ, Melton DA (2007) Organ size is limited by the number of embryonic progenitor cells in the pancreas but not the liver. Nature 445:886–891

    Article  PubMed  CAS  Google Scholar 

  • Strobel O, Dor Y, Alsina J et al (2007) In vivo lineage tracing defines the role of acinar-to-ductal transdifferentiation in inflammatory ductal metaplasia. Gastroenterology 133:1999–2009

    Article  PubMed  Google Scholar 

  • Sussel L, Kalamaras J, Hartigan-O’Connor DJ et al (1998) Mice lacking the homeodomain transcription factor Nkx2.2 have diabetes due to arrested differentiation of pancreatic beta cells. Development 125:2213–2221

    PubMed  CAS  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  PubMed  CAS  Google Scholar 

  • Teta M, Rankin MM, Long SY et al (2007) Growth and regeneration of adult beta cells does not involve specialized progenitors. Dev Cell 12:817–826

    Article  PubMed  CAS  Google Scholar 

  • Thorel F, Népote V, Avri I et al (2010) Conversion of adult pancreatic α-cells to β-cells after extreme β-cell loss. Nature 464:1149–1154

    Article  PubMed  CAS  Google Scholar 

  • Vanhoose AM, Samaras S, Artner I et al (2008) Mafa and mafb regulate Pdx1 transcription through the area II control region in pancreatic beta cells. J Biol Chem 283:22612–22619

    Article  PubMed  CAS  Google Scholar 

  • Vierbuchen T, Ostermeier A, Pang ZP et al (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463:1035–1042

    Article  PubMed  CAS  Google Scholar 

  • Wandzioch E, Zaret KS (2009) Dynamic signaling network for the specification of embryonic pancreas and liver progenitors. Science 324:1707–1710

    Article  PubMed  CAS  Google Scholar 

  • Wang AY, Ehrhardt A, Xu H et al (2007) Adenovirus transduction is required for the correction of diabetes using Pdx-1 or Neurogenin-3 in the liver. Mol Ther 15:255–263

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Yan J, Anderson DA et al (2010) Neurog3 gene dosage regulates allocation of endocrine and exocrine cell fates in the developing mouse pancreas. Dev Biol 339(1):26–37

    Article  PubMed  CAS  Google Scholar 

  • Xu X, D’Hoker J, Stange G et al (2008) Beta cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell 132:197–207

    Article  PubMed  CAS  Google Scholar 

  • Yee NS, Lorent K, Pack M (2005) Exocrine pancreas development in zebrafish. Dev Biol 284:84–101

    Article  PubMed  CAS  Google Scholar 

  • Zhang C, Moriguchi T, Kajihara M et al (2005) MafA is a key regulator of glucose stimulated insulin secretion. Mol Cell Biol 25:4969–4976

    Article  PubMed  CAS  Google Scholar 

  • Zhou Q, Law AC, Rajagopal J et al (2007) A multipotent progenitor domain guides pancreatic organogenesis. Dev Cell 13:103–114

    Article  PubMed  CAS  Google Scholar 

  • Zhou Q, Brown J, Kanarek A et al (2008) In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature 455:627–632

    Article  PubMed  CAS  Google Scholar 

  • Zwaka TP (2010) Stem cells: troublesome memories. Nature 467:280–281

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Wright .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Willet, S., Wright, C. (2011). Pancreatic Plasticity and Reprogramming: Novel Directions Towards Disease Therapy. In: Ainscough, J., Yamanaka, S., Tada, T. (eds) Nuclear Reprogramming and Stem Cells. Stem Cell Biology and Regenerative Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-225-0_15

Download citation

Publish with us

Policies and ethics