Skip to main content

Probe Cocktail Studies

  • Chapter
  • First Online:
Drug Interactions in Infectious Diseases

Part of the book series: Infectious Disease ((ID))

  • 1794 Accesses

Abstract

The conduct of drug interaction studies was revolutionized by the ability to evaluate more than one potential drug-drug interaction (DDI) within a single study. Cocktail studies provide a means to screen for DDIs through multiple metabolic pathways within a single study. Usually conducted in healthy volunteers, these studies use concurrent administration of probe substrates and assessment of biomarkers to simultaneously assess drug metabolizing enzyme (DME) activities before (baseline) and during drug treatment. Evaluation of DME can be for effect of a drug on constitutive DME or to evaluate the effect of an inhibitor or inducer on the pharmacokinetics and pharmacodynamics of the DME pathway of the drug in question. Studies should be designed with the use of safe, validated probes and published, validated cocktails. Advantages of using cocktail studies in drug development include reduced subject variability, increased efficiency, and lower costs. Potential limitations can be addressed by proper study design. Because cocktail studies assess the potential extent of DDIs, inferences for drug dosing and use may be drawn.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AUC:

Area under the concentration time curve

CI:

Confidence intervals

Cmax :

Maximum concentration

CYP:

Cytochrome P450

DDI:

Drug-drug interaction

DME:

Drug metabolizing enzymes

EM:

Extensive metabolizer

EMA:

European Medicines Agency

FDA:

U.S. Food and Drug Administration

NAT2:

N-acetyltransferase 2

PhRMA:

Pharmaceutical Research and Manufacturers of America

PM:

Poor metabolizer

UM:

Ultra-rapid metabolizer

References

  1. In vivo drug metabolism/drug interaction studies--study design, data analysis, and recommendations for dosing and labeling. In: (CDER) CfDEaR, (CBER) CfBEaR, eds. Guidance for Industry. Rockville, MD: Food and Drug Administration, 1999.

    Google Scholar 

  2. Zhou H, Tong Z, McLeod JF. “Cocktail” approaches and strategies in drug development: valuable tool or flawed science? J Clin Pharmacol 2004;44:120–34.

    Article  PubMed  CAS  Google Scholar 

  3. Ma JD, Tsunoda SM, Bertino JS, Jr., Trivedi M, Beale KK, Nafziger AN. Evaluation of in vivo p-glycoprotein phenotyping probes: a need for validation. Clin Pharmacokinet 2010;49:223–37.

    Article  PubMed  CAS  Google Scholar 

  4. Fuhr U, Jetter A, Kirchheiner J. Appropriate phenotyping procedures for drug metabolizing enzymes and transporters in humans and their simultaneous use in the “cocktail” approach. Clin Pharmacol Ther 2007;81:270–83.

    Article  PubMed  CAS  Google Scholar 

  5. Baker SD, van Schaik RH, Rivory LP, et al. Factors affecting cytochrome P-450 3A activity in cancer patients. Clin Cancer Res 2004;10:8341–50.

    Article  PubMed  CAS  Google Scholar 

  6. Frye RF, Zgheib NK, Matzke GR, et al. Liver disease selectively modulates cytochrome P450--mediated metabolism. Clin Pharmacol Ther 2006;80:235–45.

    Article  PubMed  CAS  Google Scholar 

  7. Frye RF, Schneider VM, Frye CS, Feldman AM. Plasma levels of TNF-alpha and IL-6 are inversely related to cytochrome P450-dependent drug metabolism in patients with congestive heart failure. J Card Fail 2002;8:315–9.

    Article  PubMed  CAS  Google Scholar 

  8. McConn DJ, 2nd, Lin YS, Mathisen TL, et al. Reduced duodenal cytochrome P450 3A protein expression and catalytic activity in patients with cirrhosis. Clin Pharmacol Ther 2009;85:387–93.

    Article  PubMed  CAS  Google Scholar 

  9. Lee CM, Pohl J, Morgan ET. Dual mechanisms of CYP3A protein regulation by proinflammatory cytokine stimulation in primary hepatocyte cultures. Drug Metab Dispos 2009;37:865–72.

    Article  PubMed  CAS  Google Scholar 

  10. Jones AE, Brown KC, Werner RE, et al. Variability in drug metabolizing enzyme activity in HIV-infected patients. Eur J Clin Pharmacol 2010. Epub 01/20/2010.

    Google Scholar 

  11. Hukkanen J, Vaisanen T, Lassila A, et al. Regulation of CYP3A5 by glucocorticoids and cigarette smoke in human lung-derived cells. J Pharmacol Exp Ther 2003;304:745–52.

    Article  PubMed  CAS  Google Scholar 

  12. He P, Court MH, Greenblatt DJ, Von Moltke LL. Genotype-phenotype associations of cytochrome P450 3A4 and 3A5 polymorphism with midazolam clearance in vivo. Clin Pharmacol Ther 2005;77:373–87.

    Article  PubMed  CAS  Google Scholar 

  13. Saari TI, Laine K, Neuvonen M, Neuvonen PJ, Olkkola KT. Effect of voriconazole and fluconazole on the pharmacokinetics of intravenous fentanyl. Eur J Clin Pharmacol 2008;64:25–30.

    Article  PubMed  CAS  Google Scholar 

  14. Culm-Merdek KE, von Moltke LL, Gan L, et al. Effect of extended exposure to grapefruit juice on cytochrome P450 3A activity in humans: comparison with ritonavir. Clin Pharmacol Ther 2006;79:243–54.

    Article  PubMed  CAS  Google Scholar 

  15. Ngo N, Yan Z, Graf TN, et al. Identification of a cranberry juice product that inhibits enteric CYP3A-mediated first-pass metabolism in humans. Drug Metab Dispos 2009;37:514–22.

    Article  PubMed  CAS  Google Scholar 

  16. Zhou SF. Drugs behave as substrates, inhibitors and inducers of human cytochrome P450 3A4. Curr Drug Metab 2008;9:310–22.

    Article  PubMed  CAS  Google Scholar 

  17. Blake MJ, Gaedigk A, Pearce RE, et al. Ontogeny of dextromethorphan O- and N-demethylation in the first year of life. Clin Pharmacol Ther 2007;81:510–6.

    Article  PubMed  CAS  Google Scholar 

  18. Tracy TS, Venkataramanan R, Glover DD, Caritis SN. Temporal changes in drug metabolism (CYP1A2, CYP2D6 and CYP3A Activity) during pregnancy. Am J Obstet Gynecol 2005;192:633–9.

    Article  PubMed  CAS  Google Scholar 

  19. Nolin TD, Appiah K, Kendrick SA, Le P, McMonagle E, Himmelfarb J. Hemodialysis acutely improves hepatic CYP3A4 metabolic activity. J Am Soc Nephrol 2006;17:2363–7.

    Article  PubMed  CAS  Google Scholar 

  20. Morgan ET, Goralski KB, Piquette-Miller M, et al. Regulation of drug-metabolizing enzymes and transporters in infection, inflammation, and cancer. Drug Metab Dispos 2008;36:205–16.

    Article  PubMed  CAS  Google Scholar 

  21. Zgheib NK, Frye RF, Tracy TS, Romkes M, Branch RA. Validation of incorporating flurbiprofen into the Pittsburgh cocktail. Clin Pharmacol Ther 2006;80:257–63.

    Article  PubMed  CAS  Google Scholar 

  22. Ozdemir V, Kalowa W, Tang BK, et al. Evaluation of the genetic component of variability in CYP3A4 activity: a repeated drug administration method. Pharmacogenetics 2000;10:373–88.

    Article  PubMed  CAS  Google Scholar 

  23. Schellens JH, van der Wart JH, Brugman M, Breimer DD. Influence of enzyme induction and inhibition on the oxidation of nifedipine, sparteine, mephenytoin and antipyrine in humans as assessed by a “cocktail” study design. J Pharmacol Exp Ther 1989;249:638–45.

    PubMed  CAS  Google Scholar 

  24. Ryu JY, Song IS, Sunwoo YE, et al. Development of the “Inje cocktail” for high-throughput evaluation of five human cytochrome P450 isoforms in vivo. Clin Pharmacol Ther 2007;82:531–40.

    Article  PubMed  CAS  Google Scholar 

  25. Rezk NL, Brown KC, Kashuba AD. A simple and sensitive bioanalytical assay for simultaneous determination of omeprazole and its three major metabolites in human blood plasma using RP-HPLC after a simple liquid-liquid extraction procedure. J Chromatogr B Analyt Technol Biomed Life Sci 2006;844:314–21.

    Article  PubMed  CAS  Google Scholar 

  26. CHMP Efficacy Working Party Therapeutic Subgroup on Pharmacokinetics. London: European Medicines Agency, 2009.

    Google Scholar 

  27. Tucker GT, Houston JB, Huang SM. Optimizing drug development: strategies to assess drug metabolism/transporter interaction potential--toward a consensus. Pharm Res 2001;18:1071–80.

    Article  PubMed  CAS  Google Scholar 

  28. Bertino Jr JS, Nafziger AN. Labeling of drug interactions. Is change needed? Clin Pharmacol Ther 2007;81(Suppl):S90.

    Google Scholar 

  29. Drug interaction studies-study design, data analysis, and implications for dosing and labeling. In: Research CfDEa, Research CfBEa, eds. Guidance for industry. Rockville, MD: U.S. Food and Drug Administration, 2006.

    Google Scholar 

  30. Ingelman-Sundberg M. Human drug metabolising cytochrome P450 enzymes: properties and polymorphisms. Naunyn Schmiedebergs Arch Pharmacol 2004;369:89–104.

    Article  PubMed  CAS  Google Scholar 

  31. Bjornsson T, Callaghan J, Einolf H, Fischer V, Gan L, Grimm S, et al. The conduct of in vitro and in vivo drug-drug interaction studies: a PhRMA perspective. J Clin Pharmacol 2003;43:443–69.

    PubMed  CAS  Google Scholar 

  32. Venkatakrishnan K, von Moltke LL, Obach RS, Greenblatt DJ. Drug metabolism and drug ­interactions: application and clinical value of in vitro models. Curr Drug Metab 2003;4:423–59.

    Article  PubMed  CAS  Google Scholar 

  33. Krosser S, Neugebauer R, Dolgos H, Fluck M, Rost KL, Kovar A. Investigation of sarizotan’s impact on the pharmacokinetics of probe drugs for major cytochrome P450 isoenzymes: a combined cocktail trial. Eur J Clin Pharmacol 2006;62:277–84.

    Article  PubMed  CAS  Google Scholar 

  34. Rostami-Hodjegan A, Tucker G. ‘In silico’ simulations to assess the ‘in vivo’ consequences of ‘in vitro’ metabolic drug–drug interactions. Drug Discover Today: Technologies 2004;1:441–8.

    Article  CAS  Google Scholar 

  35. Davit B, Reynolds K, Yuan R, et al. FDA evaluations using in vitro metabolism to predict and interpret in vivo metabolic drug-drug interactions: impact on labeling. J Clin Pharmacol 1999;39:899–910.

    Article  PubMed  CAS  Google Scholar 

  36. Weaver RJ. Assessment of drug-drug interactions: concepts and approaches. Xenobiotica 2001;31:499–538.

    Article  PubMed  CAS  Google Scholar 

  37. Lu C, Hatsis P, Berg C, Lee FW, Balani SK. Prediction of pharmacokinetic drug-drug interactions using human hepatocyte suspension in plasma and cytochrome P450 phenotypic data. II. In vitro-in vivo correlation with ketoconazole. Drug Metab Dispos 2008;36:1255–60.

    Article  PubMed  CAS  Google Scholar 

  38. Lu C, Miwa GT, Prakash SR, Gan LS, Balani SK. A novel model for the prediction of drug-drug interactions in humans based on in vitro cytochrome p450 phenotypic data. Drug Metab Dispos 2007;35:79–85.

    Article  PubMed  CAS  Google Scholar 

  39. Watkins P. Noninvasive tests of CYP3A enzymes. Pharmacogenetics 1994;4:171–84.

    Article  PubMed  CAS  Google Scholar 

  40. Frank D, Jaehde U, Fuhr U. Evaluation of probe drugs and pharmacokinetic metrics for CYP2D6 phenotyping. Eur J Clin Pharmacol 2007;63:321–33.

    Article  PubMed  CAS  Google Scholar 

  41. Borges S, Li L, Hamman MA, Jones DR, Hall SD, Gorski JC. Dextromethorphan to dextrorphan urinary metabolic ratio does not reflect dextromethorphan oral clearance. Drug Metab Dispos 2005;33:1052–5.

    Article  PubMed  CAS  Google Scholar 

  42. Ozdemir M, Crewe KH, Tucker GT, Rostami-Hodjegan A. Assessment of in vivo CYP2D6 activity: differential sensitivity of commonly used probes to urine pH. J Clin Pharmacol 2004;44:1398–404.

    Article  PubMed  CAS  Google Scholar 

  43. Labbe L, Sirois C, Pilote S, et al. Effect of gender, sex hormones, time variables and physiological urinary pH on apparent CYP2D6 activity as assessed by metabolic ratios of marker substrates. Pharmacogenetics 2000;10:425–38.

    Article  PubMed  CAS  Google Scholar 

  44. Bioavailability and bioequivalence requirements; Abbreviated applications; Final Rule. In: Food and Drug Administration H, ed: U.S. Department of Health and Human Services, 2002:77668–75.

    Google Scholar 

  45. Thummel KE, Shen DD, Podoll TD, et al. Use of midazolam as a human cytochrome P450 3A probe: II. Characterization of inter- and intraindividual hepatic CYP3A variability after liver transplantation. J Pharmacol Exp Ther 1994;271:557–66.

    PubMed  CAS  Google Scholar 

  46. Thummel KE, Shen DD, Podoll TD, et al. Use of midazolam as a human cytochrome P450 3A probe: I. In vitro-in vivo correlations in liver transplant patients. J Pharmacol Exp Ther 1994;271:549–56.

    PubMed  CAS  Google Scholar 

  47. Streetman DS, Kashuba AD, Bertino JS, Jr., Kulawy R, Rocci ML, Jr., Nafziger AN. Use of midazolam urinary metabolic ratios for cytochrome P450 3A (CYP3A) phenotyping. Pharmacogenetics 2001;11:349–55.

    Article  PubMed  CAS  Google Scholar 

  48. Lee LS, Bertino JS, Jr., Nafziger AN. Limited Sampling Models for Oral Midazolam: Midazolam Plasma Concentrations, Not the Ratio of 1-Hydroxymidazolam to Midazolam Plasma Concentrations, Accurately Predicts AUC as a Biomarker of CYP3A Activity. J Clin Pharmacol 2006;46:229–34.

    Article  PubMed  CAS  Google Scholar 

  49. Ma JD, Nafziger AN, Kashuba AD, et al. Limited sampling strategy of S-warfarin concentrations, but not warfarin S/R ratios, accurately predicts S-warfarin AUC during baseline and inhibition in CYP2C9 extensive metabolizers. J Clin Pharmacol 2004;44:570–6.

    Article  PubMed  CAS  Google Scholar 

  50. Rogers JF, Nafziger AN, Kashuba AD, et al. Single plasma concentrations of 1′-hydroxymidazolam or the ratio of 1′-hydroxymidazolam:midazolam do not predict midazolam clearance in healthy subjects. J Clin Pharmacol 2002;42:1079–82.

    Article  PubMed  CAS  Google Scholar 

  51. Fuhr U, Rost KL. Simple and reliable CYP1A2 phenotyping by the paraxanthine/caffeine ratio in plasma and in saliva. Pharmacogenetics 1994;4:109–16.

    Article  PubMed  CAS  Google Scholar 

  52. Johnson BM, Song IH, Adkison KK, et al. Evaluation of the drug interaction potential of aplaviroc, a novel human immunodeficiency virus entry inhibitor, using a modified Cooperstown 5  +  1 cocktail. J Clin Pharmacol 2006;46:577–87.

    Article  PubMed  CAS  Google Scholar 

  53. Sarkar MA, Jackson BJ. Theophylline N-demethylations as probes for P4501A1 and P4501A2. Drug Metab Dispos 1994;22:827–34.

    PubMed  CAS  Google Scholar 

  54. Faucette SR, Hawke RL, Lecluyse EL, et al. Validation of bupropion hydroxylation as a selective marker of human cytochrome P450 2B6 catalytic activity. Drug Metab Dispos 2000;28:1222–30.

    PubMed  CAS  Google Scholar 

  55. Kharasch ED, Mitchell D, Coles R. Stereoselective bupropion hydroxylation as an in vivo phenotypic probe for cytochrome P4502B6 (CYP2B6) activity. J Clin Pharmacol 2008;48:464–74.

    Article  PubMed  CAS  Google Scholar 

  56. Totah RA, Rettie AE. Cytochrome P450 2C8: substrates, inhibitors, pharmacogenetics, and clinical relevance. Clin Pharmacol Ther 2005;77:341–52.

    Article  PubMed  CAS  Google Scholar 

  57. Niemi M, Backman JT, Neuvonen PJ. Effects of trimethoprim and rifampin on the pharmacokinetics of the cytochrome P450 2C8 substrate rosiglitazone. Clin Pharmacol Ther 2004;76:239–49.

    Article  PubMed  CAS  Google Scholar 

  58. Kumar V, Wahlstrom JL, Rock DA, Warren CJ, Gorman LA, Tracy TS. CYP2C9 inhibition: impact of probe selection and pharmacogenetics on in vitro inhibition profiles. Drug Metab Dispos 2006;34:1966–75.

    Article  PubMed  CAS  Google Scholar 

  59. Jetter A, Kinzig-Schippers M, Skott A, et al. Cytochrome P450 2C9 phenotyping using low-dose tolbutamide. Eur J Clin Pharmacol 2004;60:165–71.

    Article  PubMed  CAS  Google Scholar 

  60. Kupfer A, Preisig R. Pharmacogenetics of mephenytoin: a new drug hydroxylation polymorphism in man. Eur J Clin Pharmacol 1984;26:753–9.

    Article  PubMed  CAS  Google Scholar 

  61. Xie HG, Stein CM, Kim RB, Wilkinson GR, Flockhart DA, Wood AJ. Allelic, genotypic and phenotypic distributions of S-mephenytoin 4′-hydroxylase (CYP2C19) in healthy Caucasian populations of European descent throughout the world. Pharmacogenetics 1999;9:539–49.

    Article  PubMed  CAS  Google Scholar 

  62. Chang M, Tybring G, Dahl ML, et al. Interphenotype differences in disposition and effect on gastrin levels of omeprazole--suitability of omeprazole as a probe for CYP2C19. Br J Clin Pharmacol 1995;39:511–8.

    PubMed  CAS  Google Scholar 

  63. Lasker JM, Wester MR, Aramsombatdee E, Raucy JL. Characterization of CYP2C19 and CYP2C9 from human liver: respective roles in microsomal tolbutamide, S-mephenytoin, and omeprazole hydroxylations. Arch Biochem Biophys 1998;353:16–28.

    Article  PubMed  CAS  Google Scholar 

  64. Karam WG, Goldstein JA, Lasker JM, Ghanayem BI. Human CYP2C19 is a major omeprazole 5-hydroxylase, as demonstrated with recombinant cytochrome P450 enzymes. Drug Metab Dispos 1996;24:1081–7.

    PubMed  CAS  Google Scholar 

  65. Miura M, Tada H, Yasui-Furukori N, et al. Pharmacokinetic differences between the enantiomers of lansoprazole and its metabolite, 5-hydroxylansoprazole, in relation to CYP2C19 genotypes. Eur J Clin Pharmacol 2004;60:623–8.

    Article  PubMed  CAS  Google Scholar 

  66. Thacker DL, Modak AS, Lemler SM, Flockhart DA, Desta Z. Cytochrome P450 (CYP) 2C19 specific breath test using (+)-[13C]-pantoprazole as a phenotype probe. Clin Pharmacol Ther 2010;87(Suppl 1):S51.

    Google Scholar 

  67. Desta Z, Modak A, Nguyen PD, et al. Rapid identification of the hepatic cytochrome P450 2C19 activity using a novel and noninvasive [13C]pantoprazole breath test. J Pharmacol Exp Ther 2009;329:297–305.

    Article  PubMed  CAS  Google Scholar 

  68. Streetman D, Bertino J, Jr., Nafziger A. Phenotyping of drug-metabolizing enzymes in adults: a review of in-vivo cytochrome P450 phenotyping probes. Pharmacogenetics 2000;10:187–216.

    Article  PubMed  CAS  Google Scholar 

  69. Spina E, Avenoso A, Campo GM, Scordo MG, Caputi AP, Perucca E. Effect of ketoconazole on the pharmacokinetics of imipramine and desipramine in healthy subjects. Br J Clin Pharmacol 1997;43:315–8.

    Article  PubMed  CAS  Google Scholar 

  70. Frye RF, Adedoyin A, Mauro K, Matzke GR, Branch RA. Use of chlorzoxazone as an in vivo probe of cytochrome P450 2E1: choice of dose and phenotypic trait measure. J Clin Pharmacol 1998;38:82–9.

    PubMed  CAS  Google Scholar 

  71. Mishin VM, Rosman AS, Basu P, Kessova I, Oneta CM, Lieber CS. Chlorzoxazone pharmacokinetics as a marker of hepatic cytochrome P4502E1 in humans. Am J Gastroenterol 1998;93:2154–61.

    Article  PubMed  CAS  Google Scholar 

  72. Tsunoda S, Velez R, von Moltke L, Greenblatt D. Differentiation of intestinal and hepatic cytochrome P450 3A activity with use of midazolam as an in vivo proble: effect of ketoconazole. Clin Pharmacol Ther 1999;66:461–71.

    Article  PubMed  CAS  Google Scholar 

  73. Chaobal HN, Kharasch ED. Single-point sampling for assessment of constitutive, induced, and inhibited cytochrome P450 3A activity with alfentanil or midazolam. Clin Pharmacol Ther 2005;78:529–39.

    Article  PubMed  CAS  Google Scholar 

  74. Kharasch ED, Walker A, Hoffer C, Sheffels P. Intravenous and oral alfentanil as in vivo probes for hepatic and first-pass cytochrome P450 3A activity: noninvasive assessment by use of pupillary miosis. Clin Pharmacol Ther 2004;76:452–66.

    Article  PubMed  CAS  Google Scholar 

  75. Kharasch ED, Hoffer C, Walker A, Sheffels P. Disposition and miotic effects of oral alfentanil: a potential noninvasive probe for first-pass cytochrome P4503A activity. Clin Pharmacol Ther 2003;73:199–208.

    Article  PubMed  CAS  Google Scholar 

  76. Jalava KM, Olkkola KT, Neuvonen PJ. Itraconazole greatly increases plasma concentrations and effects of felodipine. Clin Pharmacol Ther 1997;61:410–5.

    Article  PubMed  CAS  Google Scholar 

  77. von Moltke LL, Greenblatt DJ, Harmatz JS, et al. Triazolam biotransformation by human liver microsomes in vitro: effects of metabolic inhibitors and clinical confirmation of a predicted interaction with ketoconazole. J Pharmacol Exp Ther 1996;276:370–9.

    Google Scholar 

  78. Perloff MD, von Moltke LL, Court MH, Kotegawa T, Shader RI, Greenblatt DJ. Midazolam and triazolam biotransformation in mouse and human liver microsomes: relative contribution of CYP3A and CYP2C isoforms. J Pharmacol Exp Ther 2000;292:618–28.

    PubMed  CAS  Google Scholar 

  79. Chainuvati S, Nafziger AN, Leeder JS, et al. Combined phenotypic assessment of cytochrome p450 1A2, 2C9, 2C19, 2D6, and 3A, N-acetyltransferase-2, and xanthine oxidase activities with the “Cooperstown 5  +  1 cocktail”. Clin Pharmacol Ther 2003;74:437–47.

    Article  PubMed  CAS  Google Scholar 

  80. Turpault S, Brian W, Van Horn R, et al. Pharmacokinetic assessment of a five-probe cocktail for CYPs 1A2, 2C9, 2C19, 2D6 and 3A. Br J Clin Pharmacol 2009;68:928–35.

    Article  PubMed  CAS  Google Scholar 

  81. Berthou F, Goasduff T, Lucas D, Dreano Y, Le Bot MH, Menez JF. Interaction between two probes used for phenotyping cytochromes P4501A2 (caffeine) and P4502E1 (chlorzoxazone) in humans. Pharmacogenetics 1995;5:72–9.

    Article  PubMed  CAS  Google Scholar 

  82. Bruce MA, Hall SD, Haehner-Daniels BD, Gorski JC. In vivo effect of clarithromycin on multiple cytochrome P450s. Drug Metab Dispos 2001;29:1023–8.

    PubMed  CAS  Google Scholar 

  83. Yasar U, Forslund-Bergengren C, Tybring G, et al. Pharmacokinetics of losartan and its metabolite E-3174 in relation to the CYP2C9 genotype. Clin Pharmacol Ther 2002;71:89–98.

    Article  PubMed  CAS  Google Scholar 

  84. Allabi AC, Gala JL, Horsmans Y, et al. Functional impact of CYP2C95, CYP2C96, CYP2C98, and CYP2C911 in vivo among black Africans. Clin Pharmacol Ther 2004;76:113–8.

    Article  PubMed  CAS  Google Scholar 

  85. Babaoglu MO, Yasar U, Sandberg M, et al. CYP2C9 genetic variants and losartan oxidation in a Turkish population. Eur J Clin Pharmacol 2004;60:337–42.

    PubMed  CAS  Google Scholar 

  86. Christensen M, Andersson K, Dalen P, et al. The Karolinska cocktail for phenotyping of five human cytochrome P450 enzymes. Clin Pharmacol Ther 2003;73:517–28.

    Article  PubMed  CAS  Google Scholar 

  87. Hassan-Alin M, Andersson T, Niazi M, Rohss K. A pharmacokinetic study comparing single and repeated oral doses of 20 mg and 40 mg omeprazole and its two optical isomers, S-omeprazole (esomeprazole) and R-omeprazole, in healthy subjects. Eur J Clin Pharmacol 2005;60:779–84.

    Article  PubMed  CAS  Google Scholar 

  88. Tybring G, Bottiger Y, Widen J, Bertilsson L. Enantioselective hydroxylation of omeprazole catalyzed by CYP2C19 in Swedish white subjects. Clin Pharmacol Ther 1997;62:129–37.

    Article  PubMed  CAS  Google Scholar 

  89. Masica AL, Mayo G, Wilkinson GR. In vivo comparisons of constitutive cytochrome P450 3A activity assessed by alprazolam, triazolam, and midazolam. Clin Pharmacol Ther 2004;76:341–9.

    Article  PubMed  CAS  Google Scholar 

  90. Kim JS, Nafziger AN, Tsunoda SM, et al. Limited sampling strategy to predict AUC of the CYP3A phenotyping probe midazolam in adults: application to various assay techniques. J Clin Pharmacol 2002;42:376–82.

    Article  PubMed  CAS  Google Scholar 

  91. Chung E, Nafziger AN, Kazierad DJ, Bertino JS, Jr. Comparison of midazolam and simvastatin as cytochrome P450 3A probes. Clin Pharmacol Ther 2006;79:350–61.

    Article  PubMed  CAS  Google Scholar 

  92. Mirghani RA, Ericsson O, Tybring G, Gustafsson LL, Bertilsson L. Quinine 3-hydroxylation as a biomarker reaction for the activity of CYP3A4 in man. Eur J Clin Pharmacol 2003;59:23–8.

    Article  PubMed  CAS  Google Scholar 

  93. Foti RS, Rock DA, Wienkers LC, Wahlstrom JL. Selection of alternative CYP3A4 probe substrates for clinical drug interaction studies using in vitro data and in vivo simulation. Drug Metab Dispos 2010;38:981–7.

    Article  PubMed  CAS  Google Scholar 

  94. Mitra AK, Thummel KE, Kalhorn TF, Kharasch ED, Unadkat JD, Slattery JT. Metabolism of dapsone to its hydroxylamine by CYP2E1 in vitro and in vivo. Clin Pharmacol Ther 1995;58:556–66.

    Article  PubMed  CAS  Google Scholar 

  95. Gill HJ, Tingle MD, Park BK. N-Hydroxylation of dapsone by multiple enzymes of cytochrome P450: implications for inhibition of haemotoxicity. Br J Clin Pharmacol 1995;40:531–8.

    PubMed  CAS  Google Scholar 

  96. Gass RJ, Gal J, Fogle PW, Detmar-Hanna D, Gerber JG. Neither dapsone hydroxylation nor cortisol 6beta-hydroxylation detects the inhibition of CYP3A4 by HIV-1 protease inhibitors. Eur J Clin Pharmacol 1998;54:741–7.

    Article  PubMed  CAS  Google Scholar 

  97. Frye RF, Matzke GR, Adedoyin A, Porter JA, Branch RA. Validation of the five-drug “Pittsburgh cocktail” approach for assessment of selective regulation of drug-metabolizing enzymes. Clin Pharmacol Ther 1997;62:365–76.

    Article  PubMed  CAS  Google Scholar 

  98. Sharma A, Pilote S, Belanger PM, Arsenault M, Hamelin BA. A convenient five-drug cocktail for the assessment of major drug metabolizing enzymes: a pilot study. Br J Clin Pharmacol 2004;58:288–97.

    Article  PubMed  CAS  Google Scholar 

  99. Kinirons MT, O’Shea D, Kim RB, et al. Failure of erythromycin breath test to correlate with midazolam clearance as a probe of cytochrome P4503A. Clin Pharmacol Ther 1999;66:224–31.

    Article  PubMed  CAS  Google Scholar 

  100. Ragueneau-Majlessi I, Boulenc X, Rauch C, Hachad H, Levy RH. Quantitative correlations among CYP3A sensitive substrates and inhibitors: literature analysis. Curr Drug Metab 2007;8:810–4.

    Article  PubMed  CAS  Google Scholar 

  101. Zhu M, Zhao W, Jimenez H, et al. Cytochrome P450 3A-mediated metabolism of buspirone in human liver microsomes. Drug Metab Dispos 2005;33:500–7.

    Article  PubMed  CAS  Google Scholar 

  102. Ku HY, Ahn HJ, Seo KA, et al. The contributions of cytochromes P450 3A4 and 3A5 to the metabolism of the phosphodiesterase type 5 inhibitors sildenafil, udenafil, and vardenafil. Drug Metab Dispos 2008;36:986–90.

    Article  PubMed  CAS  Google Scholar 

  103. Xie HG, Wood AJ, Kim RB, Stein CM, Wilkinson GR. Genetic variability in CYP3A5 and its possible consequences. Pharmacogenomics 2004;5:243–72.

    Article  PubMed  CAS  Google Scholar 

  104. Lin YS, Dowling AL, Quigley SD, et al. Co-regulation of CYP3A4 and CYP3A5 and contribution to hepatic and intestinal midazolam metabolism. Mol Pharmacol 2002;62:162–72.

    Article  PubMed  CAS  Google Scholar 

  105. Daly AK. Significance of the minor cytochrome P450 3A isoforms. Clin Pharmacokinet 2006;45:13–31.

    Article  PubMed  CAS  Google Scholar 

  106. Lucas D, Ferrara R, Gonzalez E, et al. Chlorzoxazone, a selective probe for phenotyping CYP2E1 in humans. Pharmacogenetics 1999;9:377–88.

    Article  PubMed  CAS  Google Scholar 

  107. Girre C, Lucas D, Hispard E, Menez C, Dally S, Menez JF. Assessment of cytochrome P4502E1 induction in alcoholic patients by chlorzoxazone pharmacokinetics. Biochem Pharmacol 1994;47:1503–8.

    Article  PubMed  CAS  Google Scholar 

  108. Palmer JL, Scott RJ, Gibson A, Dickins M, Pleasance S. An interaction between the cytochrome P450 probe substrates chlorzoxazone (CYP2E1) and midazolam (CYP3A). Br J Clin Pharmacol 2001;52:555–61.

    Article  PubMed  CAS  Google Scholar 

  109. Jetter A, Kinzig M, Rodamer M, Tomalik-Scharte D, Sorgel F, Fuhr U. Phenotyping of N-acetyltransferase type 2 and xanthine oxidase with caffeine: when should urine samples be collected? Eur J Clin Pharmacol 2009;65:411–7.

    Article  PubMed  CAS  Google Scholar 

  110. Kalow W, Tang BK. The use of caffeine for enzyme assays: a critical appraisal. Clin Pharmacol Ther 1993;53:503–14.

    Article  PubMed  CAS  Google Scholar 

  111. Rothman N, Hayes RB, Bi W, et al. Correlation between N-acetyltransferase activity and NAT2 genotype in Chinese males. Pharmacogenetics 1993;3:250–5.

    Article  PubMed  CAS  Google Scholar 

  112. O’Neil WM, Drobitch RK, MacArthur RD, et al. Acetylator phenotype and genotype in patients infected with HIV: discordance between methods for phenotype determination and genotype. Pharmacogenetics 2000;10:171–82.

    Article  PubMed  Google Scholar 

  113. Galteau MM, Shamsa F. Urinary 6beta-hydroxycortisol: a validated test for evaluating drug induction or drug inhibition mediated through CYP3A in humans and in animals. Eur J Clin Pharmacol 2003;59:713–33.

    Article  PubMed  CAS  Google Scholar 

  114. Luo X, Li XM, Hu ZY, Cheng ZN. Evaluation of CYP3A activity in humans using three different parameters based on endogenous cortisol metabolism. Acta Pharmacol Sin 2009;30:1323–9.

    Article  PubMed  CAS  Google Scholar 

  115. Chen YC, Gotzkowsky SK, Nafziger AN, et al. Poor correlation between 6beta–hydroxycortisol:cortisol molar ratios and midazolam clearance as measure of hepatic CYP3A activity. Br J Clin Pharmacol 2006;62:187–95.

    Article  PubMed  CAS  Google Scholar 

  116. Penzak SR, Busse KH, Robertson SM, Formentini E, Alfaro RM, Davey RT, Jr. Limitations of using a single postdose midazolam concentration to predict CYP3A-mediated drug interactions. J Clin Pharmacol 2008;48:671–80.

    Article  PubMed  CAS  Google Scholar 

  117. Wang Z, Gorski JC, Hamman MA, Huang SM, Lesko LJ, Hall SD. The effects of St John’s wort (Hypericum perforatum) on human cytochrome P450 activity. Clin Pharmacol Ther 2001;70:317–26.

    PubMed  CAS  Google Scholar 

  118. Tomalik-Scharte D, Jetter A, Kinzig-Schippers M, et al. Effect of propiverine on cytochrome P450 enzymes: a cocktail interaction study in healthy volunteers. Drug Metab Dispos 2005;33:1859–66.

    PubMed  CAS  Google Scholar 

  119. Videau O, Delaforge M, Levi M, et al. Biochemical and analytical development of the CIME cocktail for drug fate assessment in humans. Rapid Commun Mass Spectrom 2010;24:2407–19.

    Article  PubMed  CAS  Google Scholar 

  120. Streetman DS, Bleakley JF, Kim JS, et al. Combined phenotypic assessment of CYP1A2, CYP2C19, CYP2D6, CYP3A, N-acetyltransferase-2, and xanthine oxidase with the “Cooperstown cocktail”. Clin Pharmacol Ther 2000;68:375–83.

    Article  PubMed  CAS  Google Scholar 

  121. Rendic S. Summary of information on human CYP enzymes: human P450 metabolism data. Drug Metab Rev 2002;34:83–448.

    Article  PubMed  CAS  Google Scholar 

  122. Furman KD, Grimm DR, Mueller T, et al. Impact of CYP2D6 intermediate metabolizer alleles on single-dose desipramine pharmacokinetics. Pharmacogenetics 2004;14:279–84.

    Article  PubMed  CAS  Google Scholar 

  123. Kim MJ, Bertino JS, Jr., Gaedigk A, Zhang Y, Sellers EM, Nafziger AN. Effect of sex and menstrual cycle phase on cytochrome P450 2C19 activity with omeprazole used as a biomarker. Clin Pharmacol Ther 2002;72:192–9.

    Article  PubMed  CAS  Google Scholar 

  124. Bromley CM, Close S, Cohen N, et al. Designing pharmacogenetic projects in industry: practical design perspectives from the Industry Pharmacogenomics Working Group. Pharmacogenomics J 2009;9:14–22.

    Article  PubMed  CAS  Google Scholar 

  125. Williams JA, Johnson K, Paulauskis J, Cook J. So many studies, too few subjects: establishing functional relevance of genetic polymorphisms on pharmacokinetics. J Clin Pharmacol 2006;46:258–64.

    Article  PubMed  CAS  Google Scholar 

  126. Eap CB, Lessard E, Baumann P, et al. Role of CYP2D6 in the stereoselective disposition of venlafaxine in humans. Pharmacogenetics 2003;13:39–47.

    Article  PubMed  CAS  Google Scholar 

  127. Kirchheiner J, Schmidt H, Tzvetkov M, et al. Pharmacokinetics of codeine and its metabolite morphine in ultra-rapid metabolizers due to CYP2D6 duplication. Pharmacogenomics J 2007;7:257–65.

    Article  PubMed  CAS  Google Scholar 

  128. Scott RJ, Palmer J, Lewis IA, Pleasance S. Determination of a ‘GW cocktail’ of cytochrome P450 probe substrates and their metabolites in plasma and urine using automated solid phase extraction and fast gradient liquid chromatography tandem mass spectrometry. Rapid Commun Mass Spectrom 1999;13:2305–19.

    Article  PubMed  CAS  Google Scholar 

  129. Statistical approaches to establishing bioequivalence. Guidance for Industry. Rockville: U.S. Department of Health and Human Services, Food and Drug Administration, 2001:1–48.

    Google Scholar 

  130. Lin YS, Lockwood GF, Graham MA, et al. In-vivo phenotyping for CYP3A by a single-point determination of midazolam plasma concentration. Pharmacogenetics 2001;11:781–91.

    Article  PubMed  CAS  Google Scholar 

  131. Watkins PB, Wrighton SA, Maurel P, et al. Identification of an inducible form of cytochrome P-450 in human liver. Proc Natl Acad Sci U S A 1985;82:6310–4.

    Article  PubMed  CAS  Google Scholar 

  132. Kronbach T, Fischer V, Meyer UA. Cyclosporine metabolism in human liver: identification of a cytochrome P-450III gene family as the major cyclosporine-metabolizing enzyme explains interactions of cyclosporine with other drugs. Clin Pharmacol Ther 1988;43:630–5.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne N. Nafziger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Nafziger, A.N., Bertino, J.S., Bertino, J.S. (2011). Probe Cocktail Studies. In: Piscitelli, S., Rodvold, K., Pai, M. (eds) Drug Interactions in Infectious Diseases. Infectious Disease. Humana Press. https://doi.org/10.1007/978-1-61779-213-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-213-7_19

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-212-0

  • Online ISBN: 978-1-61779-213-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics