Skip to main content

Oxidative Stress in the Spinal Cord of Dogs and Cats

  • Chapter
  • First Online:
Studies on Veterinary Medicine
  • 1439 Accesses

Abstract

Oxidative stress in spinal cord disease is considered a secondary mechanism of injury following a primary traumatic event such as vertebral fracture or intervertebral disk protrusion (intervertebral disk disease). The primary spinal cord injury often results in decreased perfusion of the spinal cord due to compression from bone, disk, hematoma, or granuloma. This decreased blood flow to the cord, or ischemia, causes neutrophils, macrophages, and eosinophils to release reactive oxygen species among other inflammatory mediators. Oxidative enzymes are upregulated in the spinal cord following any injury and are a major source of oxidative damage for weeks by stimulating inflammatory cells to release more reactive oxygen species, perpetuating the cycle of oxidative damage. A multiarmed therapeutic approach may be needed in the treatment of spinal cord injury that encompasses all or at least several of the major mechanisms of injury, namely, glutamate-mediated excitotoxicity, increased intracellular Ca2+, and oxidative stress. These mechanisms lead to cell death through a loss of energy production, damage to nucleic acids and proteins, and apoptosis. Experimentally and in clinical trials, corticosteroids and N-acetyl-cysteine (NAC) have had limited success. Other free radical scavengers such as derivatives of acetylsalicylic acid and sulfasalazine, or aldehyde free radical scavengers are currently being investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Juurlink BH, Paterson PG: Review of oxidative stress in brain and spinal cord injury: suggestions for pharmacological and nutritional management strategies. J Spinal Cord Med 21:309–334, 1998.

    CAS  PubMed  Google Scholar 

  2. Bianca VD, Dusi S, Bianchini E, et al: beta-amyloid activates the O-2 forming NADPH oxidase in microglia, monocytes, and neutrophils. A possible inflammatory mechanism of neuronal damage in Alzheimer’s disease. J Biol Chem 274:15493–15499, 1999.

    Article  CAS  PubMed  Google Scholar 

  3. Gao HM, Jiang J, Wilson B, et al: Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson’s disease.J Neurochem 81:1285–1297, 2002.

    Article  CAS  PubMed  Google Scholar 

  4. Vaziri ND, Lee YS, Lin CY, et al: NAD(P)H oxidase, superoxide dismutase, catalase, glutathione peroxidase and nitric oxide synthase expression in subacute spinal cord injury. Brain Res 995:76–83, 2004.

    Article  CAS  PubMed  Google Scholar 

  5. Schnell L, Fearn S, Klassen H, et al: Acute inflammatory responses to mechanical lesions in the CNS: differences between brain and spinal cord. Eur J Neurosci 11:3648–3658, 1999.

    Article  CAS  PubMed  Google Scholar 

  6. Braughler JM, Hall ED: Central nervous system trauma and stroke. I. Biochemical considerations for oxygen radical formation and lipid peroxidation. Free Radic Biol Med 6:289–301, 1989.

    Article  CAS  PubMed  Google Scholar 

  7. Hall ED: Lipid peroxidation. Adv Neurol 71:247–257; discussion 257–248, 1996.

    Google Scholar 

  8. Hamann K, Shi R: Acrolein scavenging: a potential novel mechanism of attenuating oxidative stress following spinal cord injury. J Neurochem 111(6):1348–1356, 2009.

    Article  CAS  PubMed  Google Scholar 

  9. Uchida K: Current status of acrolein as a lipid peroxidation product. Trends Cardiovasc Med 9:109–113, 1999.

    Article  CAS  PubMed  Google Scholar 

  10. Uchida K, Kanematsu M, Morimitsu Y, et al: Acrolein is a product of lipid peroxidation reaction. Formation of free acrolein and its conjugate with lysine residues in oxidized low density lipoproteins. J Biol Chem 273:16058–16066, 1998.

    Article  CAS  PubMed  Google Scholar 

  11. Esterbauer H, Schaur RJ, Zollner H: Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 11:81–128, 1991.

    Article  CAS  PubMed  Google Scholar 

  12. O’Brien PJ, Siraki AG, Shangari N: Aldehyde sources, metabolism, molecular toxicity mechanisms, and possible effects on human health. Crit Rev Toxicol 35:609–662, 2005.

    Article  PubMed  Google Scholar 

  13. Radi R, Beckman JS, Bush KM, et al: Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch Biochem Biophys 288:481–487, 1991.

    Article  CAS  PubMed  Google Scholar 

  14. Montucschi P, Barnes P, Roberts LJ: Insights into oxidative stress: the isoprostanes. Curr Med Chem 14:703–717, 2007.

    Article  Google Scholar 

  15. Moore K: Isoprostanes and the liver. Chem Phys Lipids 128:125–133, 2004.

    Article  CAS  PubMed  Google Scholar 

  16. McMichael MA, Ruaux CG, Baltzer WI, et al: Concentrations of 15F2t isoprostane in urine of dogs with intervertebral disk disease. Am J Vet Res 67:1226–1231, 2006.

    Article  CAS  PubMed  Google Scholar 

  17. Xu J, Kim GM, Chen S, et al: iNOS and nitrotyrosine expression after spinal cord injury.J Neurotrauma 18:523–532, 2001.

    Article  CAS  PubMed  Google Scholar 

  18. Dawson TM, Dawson VL, Snyder SH: Molecular mechanisms of nitric oxide actions in the brain. Ann N Y Acad Sci 738:76–85, 1994.

    Article  CAS  PubMed  Google Scholar 

  19. Mackey ME, Wu Y, Hu R, et al: Cell death suggestive of apoptosis after spinal cord ischemia in rabbits. Stroke 28:2012–2017, 1997.

    Article  CAS  PubMed  Google Scholar 

  20. Moore WM, Jr., Hollier LH: The influence of severity of spinal cord ischemia in the etiology of delayed-onset paraplegia. Ann Surg 213:427–431; discussion 431–422, 1991.

    Google Scholar 

  21. Chronidou F, Apostolakis E, Papapostolou I, et al: Beneficial effect of the oxygen free radical scavenger amifostine (WR-2721) on spinal cord ischemia/reperfusion injury in rabbits.J Cardiothorac Surg 4:50, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Olby N: Current concepts in the management of acute spinal cord injury. J Vet Intern Med 13:399–407, 1999.

    Article  CAS  PubMed  Google Scholar 

  23. Braughler JM, Hall ED: Involvement of lipid peroxidation in CNS injury. J Neurotrauma 9(Suppl 1):S1–S7, 1992.

    PubMed  Google Scholar 

  24. Lucas JH, Wheeler DG, Guan Z, et al: Effect of glutathione augmentation on lipid peroxidation after spinal cord injury. J Neurotrauma 19:763–775, 2002.

    Article  PubMed  Google Scholar 

  25. Slatter D, Jerran RM, Dewey CW: Acute thoracolumbar disc extrusion in dogs-Part 1. Compend Contin Educ Prac Vet 21:922, 1999.

    Google Scholar 

  26. Karihtala P, Soini Y: Reactive oxygen species and antioxidant mechanisms in human tissues and their relation to malignancies. APMIS 115:81–103, 2007.

    Article  CAS  PubMed  Google Scholar 

  27. Tan SV, Guiloff RJ: Hypothesis on the pathogenesis of vacuolar myelopathy, dementia, and peripheral neuropathy in AIDS. J Neurol Neurosurg Psychiatry 65:23–28, 1998.

    Article  CAS  PubMed  Google Scholar 

  28. Ischiropoulos H, Beckman JS: Oxidative stress and nitration in neurodegeneration: Cause, effect, and association. J Clin Invest 111:163–169, 2003.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Coates JR, March PA, Oglesbee M, et al: Clinical characterization of a familial degenerative myelopathy in Pembroke Welsh Corgi dogs. J Vet Intern Med 21:1323–1331, 2007.

    Article  PubMed  Google Scholar 

  30. March P, Coates J, Abyad R, et al: Degenerative Myelopathy in 18 Pembroke Welsh Corgi Dogs. Vet Pathol, 2009.

    Google Scholar 

  31. Fechner H, Johnston PE, Sharp NJ, et al: Molecular genetic and expression analysis of alpha-tocopherol transfer protein mRNA in German shepherd dogs with degenerative myelopathy. Berl Munch Tierarztl Wochenschr 116:31–36, 2003.

    CAS  PubMed  Google Scholar 

  32. Johnston PEJ: Chronic degenerative radiculomyelopathy: a study of the pathology and pathogenesis. Ph.D.: University of Glasgow, 1998.

    Google Scholar 

  33. Hermans N, Cos P, Maes L, et al: Challenges and pitfalls in antioxidant research. Curr Med Chem 14:417–430, 2007.

    Article  CAS  PubMed  Google Scholar 

  34. Romero FJ, Monsalve E, Hermenegildo C, et al: Oxygen toxicity in the nervous tissue: comparison of the antioxidant defense of rat brain and sciatic nerve. Neurochem Res 16:157–161, 1991.

    Article  CAS  PubMed  Google Scholar 

  35. Ohta S, Iwashita Y, Takada H, et al: Neuroprotection and enhanced recovery with edaravone after acute spinal cord injury in rats. Spine (Phila Pa 1976) 30:1154–1158, 2005.

    Article  Google Scholar 

  36. Tator CH: Review of treatment trials in human spinal cord injury: issues, difficulties, and recommendations. Neurosurgery 59:957–982; discussion 982–957, 2006.

    Google Scholar 

  37. Baltzer WI, McMichael MA, Hosgood GL, et al: Randomized, blinded, placebo-controlled clinical trial of N-acetylcysteine in dogs with spinal cord trauma from acute intervertebral disc disease. Spine (Phila Pa 1976) 33:1397–1402, 2008.

    Article  Google Scholar 

  38. Bracken MB, Shepard MJ, Holford TR, et al: Administration of methylprednisolone for 24 or 48 hours or tirilazad mesylate for 48 hours in the treatment of acute spinal cord injury. Results of the Third National Acute Spinal Cord Injury Randomized Controlled Trial. National Acute Spinal Cord Injury Study. JAMA 277:1597–1604, 1997.

    Article  CAS  PubMed  Google Scholar 

  39. Bracken MB, Shepard MJ, Holford TR, et al: Methylprednisolone or tirilazad mesylate administration after acute spinal cord injury: 1-year follow up. Results of the third National Acute Spinal Cord Injury randomized controlled trial. J Neurosurg 89:699–706, 1998.

    Article  CAS  PubMed  Google Scholar 

  40. Bracken MB: Methylprednisolone and spinal cord injury. J Neurosurg 96:140–141; author reply 142, 2002.

    Google Scholar 

  41. Amar AP, Levy ML: Pathogenesis and pharmacological strategies for mitigating secondary damage in acute spinal cord injury. Neurosurgery 44:1027–1039; discussion 1039–1040, 1999.

    Google Scholar 

  42. Hanson SM, Bostwick DR, Twedt DC, et al: Clinical evaluation of cimetidine, sucralfate, and misoprostol for prevention of gastrointestinal tract bleeding in dogs undergoing spinal surgery. Am J Vet Res 58:1320–1323, 1997.

    CAS  PubMed  Google Scholar 

  43. Blight AR, Zimber MP: Acute spinal cord injury: pharmacotherapy and drug development perspectives. Curr Opin Investig Drugs 2:801–808, 2001.

    CAS  PubMed  Google Scholar 

  44. Bracken MB, Shepard MJ, Collins WF, Jr., et al: Methylprednisolone or naloxone treatment after acute spinal cord injury: 1-year follow-up data. Results of the second National Acute Spinal Cord Injury Study. J Neurosurg 76:23–31, 1992.

    Article  CAS  PubMed  Google Scholar 

  45. Bracken MB, Shepard MJ, Collins WF, et al: A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury. Results of the Second National Acute Spinal Cord Injury Study. N Engl J Med 322:1405–1411, 1990.

    Article  CAS  PubMed  Google Scholar 

  46. Levine JM, Levine GJ, Boozer L, et al: Adverse effects and outcome associated with dexamethasone administration in dogs with acute thoracolumbar intervertebral disk herniation: 161 cases (2000-2006). J Am Vet Med Assoc 232:411–417, 2008.

    Article  CAS  PubMed  Google Scholar 

  47. Meister A: Glutathione, ascorbate and cellular protection. Cancer Res 54:1969s–1975s, 1994.

    CAS  PubMed  Google Scholar 

  48. Sochman J: N-acetylcysteine in acute cardiology: 10 years later: what do we know and what would we like to know?! J Am Coll Cardiol 39:1422–1428, 2002.

    Article  CAS  PubMed  Google Scholar 

  49. Sevillano S, de Dios I, de la Mano AM, et al: N-acetylcysteine induces beneficial changes in the acinar cell cycle progression in the course of acute pancreatitis. Cell Prolif 36:279–289, 2003.

    Article  CAS  PubMed  Google Scholar 

  50. Tepel M, van der Giet M, Statz M, et al: The antioxidant acetylcysteine reduces cardiovascular events in patients with end-stage renal failure: a randomized, controlled trial. Circulation 107:992–995, 2003.

    Article  CAS  PubMed  Google Scholar 

  51. Birck R, Krzossok S, Markowetz F, et al: Acetylcysteine for prevention of contrast nephropathy: meta-analysis. Lancet 362:598–603, 2003.

    Article  CAS  PubMed  Google Scholar 

  52. Arakawa M, Ishimura A, Arai Y, et al: N-Acetylcysteine and ebselen but not nifedipine protected cerebellar granule neurons against 4-hydroxynonenal-induced neuronal death. Neurosci Res 57:220–229, 2007.

    Article  CAS  PubMed  Google Scholar 

  53. Sury MD, Frese-Schaper M, Muhlemann MK, et al: Evidence that N-acetylcysteine inhibits TNF-alpha-induced cerebrovascular endothelin-1 upregulation via inhibition of mitogen- and stress-activated protein kinase. Free Radic Biol Med 41:1372–1383, 2006.

    Article  CAS  PubMed  Google Scholar 

  54. Boga M, Discigil B, Ozkisacik EA, et al: The combined effect of iloprost and N-acetylcysteine in preventing spinal cord ischemia in rabbits. Eur J Vasc Endovasc Surg 31:366–372, 2006.

    Article  CAS  PubMed  Google Scholar 

  55. Hicdonmez T, Kanter M, Tiryaki M, et al: Neuroprotective effects of N-acetylcysteine on experimental closed head trauma in rats. Neurochem Res 31:473–481, 2006.

    Article  CAS  PubMed  Google Scholar 

  56. Thomale UW, Griebenow M, Kroppenstedt SN, et al: The effect of N-acetylcysteine on posttraumatic changes after controlled cortical impact in rats. Intensive Care Med 32:149–155, 2006.

    Article  CAS  PubMed  Google Scholar 

  57. Springer JE, Rao RR, Lim HR, et al: The functional and neuroprotective actions of Neu2000, a dual acting pharmacological agent, in the treatment of acute spinal cord injury. J Neurotrauma 22:1–40, 2009.

    Google Scholar 

  58. Baines CP, Kaiser RA, Purcell NH, et al: Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434:658–662, 2005.

    Article  CAS  PubMed  Google Scholar 

  59. Basso E, Fante L, Fowlkes J, et al: Properties of the permeability transition pore in mitochondria devoid of Cyclophilin D. J Biol Chem 280:18558–18561, 2005.

    Article  CAS  PubMed  Google Scholar 

  60. Schinzel AC, Takeuchi O, Huang Z, et al: Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. Proc Natl Acad Sci U S A 102:12005–12010, 2005.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Nakagawa T, Shimizu S, Watanabe T, et al: Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 434:652–658, 2005.

    Article  CAS  PubMed  Google Scholar 

  62. Brustovetsky N, Brustovetsky T, Purl KJ, et al: Increased susceptibility of striatal mitochondria to calcium-induced permeability transition. J Neurosci 23:4858–4867, 2003.

    CAS  PubMed  Google Scholar 

  63. Cande C, Cohen I, Daugas E, et al: Apoptosis-inducing factor (AIF): a novel caspase-independent death effector released from mitochondria. Biochimie 84:215–222, 2002.

    Article  CAS  PubMed  Google Scholar 

  64. Chai J, Du C, Wu JW, et al: Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature 406:855–862, 2000.

    Article  CAS  PubMed  Google Scholar 

  65. Petronilli V, Penzo D, Scorrano L, et al: The mitochondrial permeability transition, release of cytochrome c and cell death. Correlation with the duration of pore openings in situ. J Biol Chem 276:12030–12034, 2001.

    Article  CAS  PubMed  Google Scholar 

  66. Hamann K, Durkes A, Ouyang H, et al: Critical role of acrolein in secondary injury following ex vivo spinal cord trauma. J Neurochem 107:712–721, 2008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Hamann K, Nehrt G, Ouyang H, et al: Hydralazine inhibits compression and acrolein-mediated injuries in ex vivo spinal cord. J Neurochem 104:708–718, 2008.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wendy Baltzer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Baltzer, W. (2011). Oxidative Stress in the Spinal Cord of Dogs and Cats. In: Mandelker, L., Vajdovich, P. (eds) Studies on Veterinary Medicine. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-071-3_6

Download citation

Publish with us

Policies and ethics