Skip to main content

Oxidative Stress and Calcium Metabolism

  • Chapter
  • First Online:
Book cover Studies on Veterinary Medicine
  • 1440 Accesses

Abstract

Reactive oxygen species (ROS) are a causal factor in aging, atherosclerosis,carcinogenesis, and infarction (Sheweita and Khoshhal, Curr Drug Metab 8:519–525, 2007). In bone metabolism, ROS play a dual role, with different actions under physiological and pathological conditions (Sontakke and Tare, Clin Chim Acta 318:145–148, 2002). Reactive oxygen species include hydroxyl radicals, superoxide anion radicals, hydrogen peroxide, and nitric oxide; ROS lead to oxidation of enzymes and protein oxidation and degradation. The effects of ROS are eliminated by antioxidant enzymes such as superoxide dismutase (SOD), glutathione peroxidase, and catalase. Oxidative stress occurs when the effects of ROS are greater than the antioxidant mechanisms in biological systems, and cellular damage occurs. The full effect of oxidative stress on bone remodeling is unknown, but there is evidence that both pro-oxidants and antioxidants play a role in skeletal integrity in health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schenck PA, Chew DJ, Nagode LA, et al. Disorders of calcium: hypercalcemia and hypocalcemia. In: DiBartola SP, ed. Fluid Therapy in Small Animal Practice. 3rd ed. St. Louis: Elsevier, 2005;122–194.

    Google Scholar 

  2. Schenck PA, Chew DJ, Brooks CL. Fractionation of canine serum calcium, using a micropartition system. Am J Vet Res 1996;57:268–271.

    CAS  PubMed  Google Scholar 

  3. Brown EM, Hebert SC. Calcium-receptor-regulated parathyroid and renal function. Bone 1997;20:303–309.

    Article  CAS  PubMed  Google Scholar 

  4. Morris SA, Bilezikian JP. Signal transduction in bone physiology: messenger systems for parathyroid hormone. In: Bilezikian JP, Raisz LG, Rodan GA, eds. Principles of Bone Biology. New York: Academic, 1996;1203–1215.

    Google Scholar 

  5. Canalis E, Hock JM, Raisz LG. Anabolic and catabolic effects of parathyroid hormone on bone and interactions with growth factors. In: Bilezikian JP, Marcus R, Levine MA, eds. The Parathyroids. New York: Raven Press, 1994;65–82.

    Google Scholar 

  6. Aubin JE, Heersche JN. Vitamin D and osteoblasts. In: Feldman D, ed. Vitamin D. New York: Academic, 1997;313–328.

    Google Scholar 

  7. St. Arnaud R, Glorieux FH. Vitamin D and bone development. In: Feldman D, ed. Vitamin D. San Diego: Academic, 1997;293–303.

    Google Scholar 

  8. Suda T, Takahashi N. Vitamin D and osteoclastogenesis. In: Feldman D, ed. Vitamin D. San Diego: Academic, 1997;329–340.

    Google Scholar 

  9. Raisz LG. Pathogenesis of osteoporosis: concepts, conflicts, and prospects. J Clin Invest 2005;115:3318–3325.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Seeman E. Bone modeling and remodeling. Crit Rev Eukaryot Gene Expr 2009;19:219–233.

    Article  CAS  PubMed  Google Scholar 

  11. Deschaseaux F, Sensebe L, Heymann D. Mechanisms of bone repair and regeneration. Trends Mol Med 2009;15:417–429.

    Article  CAS  PubMed  Google Scholar 

  12. Sheweita SA, Khoshhal KI. Calcium metabolism and oxidative stress in bone fractures: role of antioxidants. Curr Drug Metab 2007;8:519–525.

    Article  CAS  PubMed  Google Scholar 

  13. Banfi G, Iorio EL, Corsi MM. Oxidative stress, free radicals and bone remodeling. Clin Chem Lab Med 2008;46:1550–1555.

    CAS  PubMed  Google Scholar 

  14. Sontakke AN, Tare RS. A duality in the roles of reactive oxygen species with respect to bone metabolism. Clin Chim Acta 2002;318:145–148.

    Article  CAS  PubMed  Google Scholar 

  15. Kuro-o M. Klotho as a regulator of oxidative stress and senescence. Biol Chem 2008;389:233–241.

    Article  CAS  PubMed  Google Scholar 

  16. Brunet A, Bonni A, Zigmond MJ, et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 1999;96:857–868.

    Article  CAS  PubMed  Google Scholar 

  17. Kops GJ, Dansen TB, Polderman PE, et al. Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature 2002;419:316–321.

    Article  CAS  PubMed  Google Scholar 

  18. Armbrecht HJ, Boltz MA, Ritter CS, et al. Parathyroid hormone stimulation of the renal 25-hydroxyvitamin D-1alpha-hydroxylase – effect of age and free radicals. J Steroid Biochem Mol Biol 2007;103:330–333.

    Article  CAS  PubMed  Google Scholar 

  19. Kinyamu HK, Gallagher JC, Petranick KM, et al. Effect of parathyroid hormone (hPTH-[1-34]) infusion on serum 1,25-dihydroxyvitamin D and parathyroid hormone in normal women. J Bone Miner Res 1996;11:1400–1405.

    Article  CAS  PubMed  Google Scholar 

  20. Friedlander J, Janulis M, Tembe V, et al. Loss of parathyroid hormone-stimulated 1,25-dihydroxyvitamin D3 production in aging does not involve protein kinase A or C pathways. J Bone Miner Res 1994;9:339–345.

    Article  CAS  PubMed  Google Scholar 

  21. Shen CL, Yeh JK, Cao JJ, et al. Green tea and bone metabolism. Nutr Res 2009;29:437–456.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Sanchez-Rodriguez MA, Ruiz-Ramos M, Correa-Munoz E, et al. Oxidative stress as a risk factor for osteoporosis in elderly Mexicans as characterized by antioxidant enzymes. BMC Musculoskelet Disord 2007;8:124.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Polidori MC, Stahl W, Eichler O, et al. Profiles of antioxidants in human plasma. Free Radic Biol Med 2001;30:456–462.

    Article  CAS  PubMed  Google Scholar 

  24. Basu S, Michaelsson K, Olofsson H, et al. Association between oxidative stress and bone mineral density. Biochem Biophys Res Commun 2001;288:275–279.

    Article  CAS  PubMed  Google Scholar 

  25. Maggio D, Barabani M, Pierandrei M, et al. Marked decrease in plasma antioxidants in aged osteoporotic women: results of a cross-sectional study. J Clin Endocrinol Metab 2003;88:1523–1527.

    Article  CAS  PubMed  Google Scholar 

  26. Parhami F. Possible role of oxidized lipids in osteoporosis: could hyperlipidemia be a risk factor? Prostaglandins Leukot Essent Fatty Acids 2003;68:373–378.

    Article  CAS  PubMed  Google Scholar 

  27. Baggio B. Fatty acids, calcium and bone metabolism. J Nephrol 2002;15:601–604.

    CAS  PubMed  Google Scholar 

  28. Buck AC, Davies RL, Harrison T. The protective role of eicosapentaenoic acid [EPA] in the pathogenesis of nephrolithiasis. J Urol 1991;146:188–194.

    CAS  PubMed  Google Scholar 

  29. Watkins BA, Li Y, Lippman HE, et al. Omega-3 polyunsaturated fatty acids and skeletal health. Exp Biol Med (Maywood) 2001;226:485–497.

    CAS  Google Scholar 

  30. Hogstrom M, Nordstrom P, Nordstrom A. n-3 Fatty acids are positively associated with peak bone mineral density and bone accrual in healthy men: the NO2 Study. Am J Clin Nutr 2007;85:803–807.

    PubMed  Google Scholar 

  31. Shen CL, Yeh JK, Rasty J, et al. Protective effect of dietary long-chain n-3 polyunsaturated fatty acids on bone loss in gonad-intact middle-aged male rats. Br J Nutr 2006;95:462–468.

    Article  CAS  PubMed  Google Scholar 

  32. Iwami-Morimoto Y, Yamaguchi K, Tanne K. Influence of dietary n-3 polyunsaturated fatty acid on experimental tooth movement in rats. Angle Orthod 1999;69:365–371.

    CAS  PubMed  Google Scholar 

  33. Sakaguchi K, Morita I, Murota S. Eicosapentaenoic acid inhibits bone loss due to ovariectomy in rats. Prostaglandins Leukot Essent Fatty Acids 1994;50:81–84.

    Article  CAS  PubMed  Google Scholar 

  34. Li Y, Greiner RS, Salem N, Jr., et al. Impact of dietary n-3 FA deficiency on rat bone tissue FA composition. Lipids 2003;38:683–686.

    Article  CAS  PubMed  Google Scholar 

  35. Watkins BA, Li Y, Seifert MF. Dietary ratio of n-6/n-3 PUFAs and docosahexaenoic acid: actions on bone mineral and serum biomarkers in ovariectomized rats. J Nutr Biochem 2006;17:282–289.

    Article  CAS  PubMed  Google Scholar 

  36. Watkins BA, Li Y, Lippman HE, et al. Modulatory effect of omega-3 polyunsaturated fatty acids on osteoblast function and bone metabolism. Prostaglandins Leukot Essent Fatty Acids 2003;68:387–398.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia A. Schenck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Schenck, P.A. (2011). Oxidative Stress and Calcium Metabolism. In: Mandelker, L., Vajdovich, P. (eds) Studies on Veterinary Medicine. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-071-3_3

Download citation

Publish with us

Policies and ethics