Skip to main content

Oxidative Stress, Free Radicals, and Cellular Damage

  • Chapter
  • First Online:
Studies on Veterinary Medicine

Abstract

Oxidative stress is a term relative to the elevated levels of reactive free radicals in an organism. Oxidative stress can occur from diminished antioxidants and/or increased production of reactive free radicals such as reactive oxygen species and/or reactive nitrogen species (ROS/RSN). The increased production of free radicals is more relevant to disease and frequently the attempted target of supplementation intervention. In many instances the body can adapt to an increase in oxidative stress by upregulation of antioxidant defense systems. If the oxidative stress can be neutralized, there is often no adverse contribution to disease pathology. If the antioxidant defense induction is inadequate or nonexistent then accompanying cellular and tissue damage often occurs. Some diseases can be caused directly by oxidative stress, however, in most diseases oxidative stress is a consequence and may often only be a secondary event. It does, however, play an important role in promoting additional tissue injury in most diseases. On the other hand, oxidative stress may have beneficial effects in activating biological pathways that alter antioxidant defenses and allow an organism to adapt. Oxidative stress is also considered necessary to promote healing and repair of tissues. Therefore, not all cases of oxidative stress are damaging. It is only when oxidative stress is excessive and inappropriate should we address it with supplementation and antioxidant therapy that reduces oxidative damage to cells, tissues, proteins, cellular membranes, and mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miwa S, Beckman KB, Muller FL. Oxidative stress in aging. Totowa: Humana Press; 2008: pp. 4–9

    Book  Google Scholar 

  2. Halliwell B, Gutterridge JMC. Free radicals in biology and medicine. Oxford: Oxford University Press; 2003: pp. 62–66

    Google Scholar 

  3. Southern PA, Powis G. Free radicals in medicine. 1. Clinical nature and biological reactions. Mayo Clin Proc 1988;63(4): 381–389

    Article  Google Scholar 

  4. Riley PA. Free radicals in biology: Oxidative stress and the effects of ionizing radiation. Int J Radiat Biol 1994;665(1): 27–33

    Article  Google Scholar 

  5. Vajdovich P. Oxidative stress: The role of mitochondria, free radicals and antioxidants. Vet Clin North Am 2008;1(1): 50–54

    Google Scholar 

  6. Dröge W. Free radical in the physiological control of cell function. Physiol Rev 2002;82(1): 57–89

    Google Scholar 

  7. Mates JM, Segura JA, Alonso J et al. Intracellular redox status and oxidative stress: Implications for cell proliferation, apoptosis and carcinogenesis. Arch Toxicol 2008;82(5): 273–299

    Article  CAS  PubMed  Google Scholar 

  8. Haddad JJ. Antioxidant and prooxidant mechanism in the regulation of redox(y)-sensitive transcription factors. Cell Signal 2002;14(11): 879–897

    Article  CAS  PubMed  Google Scholar 

  9. Chen F, Castranova V, Shi X. New Insights into the role of nuclear factor-kappa B in cell growth regulation. Am J Pathol 2001;159(2): 387–397

    Article  CAS  PubMed  Google Scholar 

  10. Klaunig JE, Kamendulus LM. The role of oxidative stress in carcinogenesis. Annu Rev Pharmacol Toxicol 2004;44: 239–267

    Article  CAS  PubMed  Google Scholar 

  11. Breithaupt TB, Vazquez A, Baez I et al. The suppression of T-cell function and NF (kappa) B expression by serine protease inhibitors is blocked by N-acetycysteine. Cell Immunol 1996;173(1): 124–130

    Article  CAS  PubMed  Google Scholar 

  12. Conner EM, Grisham MB. Inflammation, free radicals and antioxidants. Nutrition 1996;12(4): 274–714

    Article  CAS  PubMed  Google Scholar 

  13. Center SA. Metabolic, antioxidant, nutraceutical, probiotic and herbal therapies relating to the management of hepatobiliary disorders. Vet Clin North Am Small Anim Pract 2004;34(1): 67–132

    Article  PubMed  Google Scholar 

  14. Sasaki K, Ma Z, Khatlani TS et al. Evaluation of Serum Amyloid A (SAA) as an inflammatory marker. J Vet Med Sci 2003 Apr;65(4): 545–548

    Article  Google Scholar 

  15. Milesi MA. Oxidative, diseases and antioxidants. Agro Food Ind Hi Tech 2006;25(7): 4–9

    Google Scholar 

  16. Halliwell B, Gutterridge JMC. Free radicals in biology and medicine. Oxford: Oxford University Press; 2003: pp. 247–251

    Google Scholar 

  17. Zimmerman KC, Gree DR. How cell die: Apoptosis pathways. J Allergy Clin Immunol 2001;108(4 suppl): S99–S103

    Article  Google Scholar 

  18. Tsudo M. Cytokines and disease. Rinsho Byori 1994;42(8): 821–824

    CAS  Google Scholar 

  19. Lovschall H, Mosekilde L. Apoptosis: Cellular and clinical aspects. Nord Med 1997;112(4): 133–137

    CAS  PubMed  Google Scholar 

  20. Susin SA, Zamzami N, Kroemer G. Mitochondria as regulators of apoptosis: Doubt no more. Biochem Biophys Acta 1998;1366(1–2): 151–165

    CAS  PubMed  Google Scholar 

  21. Klaunig JE, Kamendulus LM. The role of oxidative stress in carcinogenesis. Annu Rev Pharmacol Toxicol 2004;44: 239–267

    Article  CAS  Google Scholar 

  22. Lopez-Torres M, Barja G. Oxidative stress in aging. Totowa: Humana Press; 2008:pp. 149–158

    Book  Google Scholar 

  23. Vierra HL, Kroemer G. Pathophysiology of mitochondrial cell death. Cell Mol Life Sci 1999;56(11–12): 971–976

    Article  Google Scholar 

  24. Blackwell TS, Christina JW. The role of nuclear factor-kappa B in cytokine gene regulation. Am J Respir Cell Mol Biol 1997;17(1): 3–9

    Article  CAS  PubMed  Google Scholar 

  25. Lo CW. Genes, gene knockout, and mutations in the analysis of gap junction. Dev Genet 1999;24(1–2): 1–4

    Article  CAS  PubMed  Google Scholar 

  26. Yamaski H, Krutovshikh V, Mesnil M et al. Role of connexin (gap junction) genes in cell growth and carcinogenesis. CR Acad Sci III 1999;322(2–3): 151–159

    Article  Google Scholar 

  27. Trosk JE, Ruch RJ. Gap junctions as targets for cancer chemoprevention and chemotherapy. Curr Drug Targets 2002;3(6): 465–482

    Article  Google Scholar 

  28. Stahl W, Sies H. The role of carotenoids and retinoids in gap junctional communication. Int J Vitam Nutr Res 1998;68(6): 354–359

    CAS  PubMed  Google Scholar 

  29. Halliwell B, Gutterridge JMC. Free radicals in biology and medicine. Oxford: Oxford University Press; 2003: pp. 140–151

    Google Scholar 

  30. Poitout V, Robertson RP. Minireview: Secondary beta cell failure in type 2 diabetes – a convergence of glucotoxicity and lipotoxicity. Endocrinology. 2002 Feb;143(2): 339–342

    CAS  PubMed  Google Scholar 

  31. Martino L, Novelli M, Masini M et al. Dehydroascorbate protection against dioxin-induced toxicity in the beta-cell line INS-1E. Toxicol Lett 2009;189(1): 27–34

    Article  CAS  PubMed  Google Scholar 

  32. Osawa T, Kato Y. Protective role of antioxidative food factors in oxidative stress caused by hyperglycemia. Ann N Y Acad Sci 2005 Jun;1043: 440–451

    Article  CAS  PubMed  Google Scholar 

  33. Du X, Edelstein D, Du XL et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycemic damage. Nature 2000;404: 787–790

    Google Scholar 

  34. Wei EP, Komtos HA, Christman CW et al. Superoxide generation and reversal of acetylcholine-induced cerebral arteriolar dilation after acute hypertension. Circ Res 1985;57: 781–787

    Article  CAS  PubMed  Google Scholar 

  35. Laursen JB, Rajagopalan S, Galis Z et al. Role of superoxide in angiotensin II induced but not catocholamine induced hypertension. Circulation 1997;95: 588–593

    Article  CAS  PubMed  Google Scholar 

  36. Vaziri ND, Wang XQ, Oveisi F et al. Induction of oxidative stress by glutathione depletion causes severe hypertension in normal rats. Hypertension 2000;36: 142–146

    Article  CAS  PubMed  Google Scholar 

  37. Halliwell B, Gutterridge JMC. Free Radicals in biology and medicine. Oxford: Oxford University Press; 2003: pp. 129–140

    Google Scholar 

  38. Mandelker L. The natural activities of cells, the role of reaction oxygen species and their relation to antioxidants, nutraceuticals, botanicals and other biological therapies. Vet Clin North Am Small Anim Pract 2004;34(1): 39–60

    Article  PubMed  Google Scholar 

  39. Heller, Koch T, Schmeck J et al. Lipid mediators in inflammatory disorders. Drugs 1998;55(4): 487–496

    Article  CAS  PubMed  Google Scholar 

  40. Halliwell B, Gutterridge JMC. Free Radicals in biology and medicine. Oxford: Oxford University Press; 2003: pp. 217, 307, 411

    Google Scholar 

  41. Macdonald J, Galley HF. Oxidative stress and gene expression in sepsis. N.R. Webster Academic Unit of Anesthesia and Intensive Care, Institute of Medical Sciences; Abstract: Medline Br J Anaest 2003;90(2): 221–232

    CAS  Google Scholar 

  42. Dare AJ, Phillips AR, Hickey AJ et al. A systematic review of experimental treatments for mitochondrial dysfunction in sepsis and multiple organ dysfunction syndrome. Free Radic Biol Med. 2009;47(11): 1517–1525

    Article  CAS  PubMed  Google Scholar 

  43. Rinaldi S, Landucci F, De Gaudio AR. Antioxidant therapy in critically septic patients. Curr Drug Targets 2009;10(9): 872–880

    Article  CAS  PubMed  Google Scholar 

  44. Passos J, Von Zglinicki T. Oxidative stress in aging. Totowa: Humana Press; 2008: pp. 39–50

    Book  Google Scholar 

  45. Jones DR. Extracellular redox state: Refining the definition of oxidative stress in aging. Rejuvenation Res 2006 Summer;9(2): 169–181

    Article  CAS  PubMed  Google Scholar 

  46. Miwa S, Muller FL, Beckman KB. Oxidative stress in aging, Introduction. Totowa: Humana Press; 2008: p. 7

    Book  Google Scholar 

  47. Halliwell B, Gutterridge JMC. Free radicals in biology and medicine. Oxford: Oxford University Press; 2003: pp. 619–624

    Google Scholar 

  48. Dröge W. Free radical in the physiological control of cell function. Physiol Rev 2002;82(1): 45–97

    Google Scholar 

  49. Hakim J. Pharmacologic control of intracellular signaling pathways: From research to therapy. J Cardiovasc Pharmacol 1995;25 (suppl 2): S106–S113

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lester Mandelker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mandelker, L. (2011). Oxidative Stress, Free Radicals, and Cellular Damage. In: Mandelker, L., Vajdovich, P. (eds) Studies on Veterinary Medicine. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-071-3_1

Download citation

Publish with us

Policies and ethics