Skip to main content

Neuroprotection in Spinal Cord Injury

  • Chapter
  • First Online:

Abstract

Spinal cord injury (SCI) can lead to serious neurological disability and the most serious form of it is paraplegia or quadriplegia. The effects of SCI are extensive and adversely affect multiple organ systems including the sensorimotor, respiratory, gastrointestinal, urinary, and reproductive systems. The psycho-social effects are devastating and the financial burden associated with SCI is staggering. As a result of advances in critical care and rehabilitation, the life span of patients with SCI has been extended to as much as 40 years post-injury. However, currently no therapeutic measure is available that enhances functional recovery significantly.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abematsu M, Tsujimura K, Yamano M, et al. Neurons derived from transplanted neural stem cells restore disrupted neuronal circuitry in a mouse model of spinal cord injury. J Clin Invest 2010;120:3255–66.

    Article  PubMed  CAS  Google Scholar 

  • Bilginer B, Onal MB, Narin F, et al. Antiapoptotic and neuroprotective effects of mycophenolate mofetil after acute spinal cord injury in young rats. Childs Nerv Syst 2009;25:1555–61.

    Article  PubMed  Google Scholar 

  • Bradbury EJ, Carter LM. Manipulating the glial scar: chondroitinase ABC as a therapy for spinal cord injury. Brain Res Bull 2010 Jul 8; DOI: 10.1016/j.brainresbull.2010.06.015.

  • Buchli AD, Rouiller E, Mueller R, et al. Repair of the injured spinal cord. A joint approach of basic and clinical research. Neurodegener Dis 2007;4:51–6.

    Article  PubMed  Google Scholar 

  • Buss A, Pech K, Kakulas BA, et al. Matrix metalloproteinases and their inhibitors in human traumatic spinal cord injury. BMC Neurol 2007;7:17.

    Article  PubMed  Google Scholar 

  • Cao Q, Xu XM, Devries WH, et al. Functional recovery in traumatic spinal cord injury after transplantation of multineurotrophin-expressing glial-restricted precursor cells. J Neurosci 2005;25:6947–57.

    Article  PubMed  CAS  Google Scholar 

  • Chen HY, Lin JM, Chuang HY, Chiu WT. Raffinee in the treatment of spinal cord injury: an open-labeled clinical trial. Ann N Y Acad Sci 2005;1042:396–402.

    Article  PubMed  CAS  Google Scholar 

  • Colak A, Soy O, Uzun H, et al. Neuroprotective effects of GYKI 52466 on experimental spinal cord injury in rats. J Neurosurg 2003;98(3 Suppl):275–81.

    PubMed  CAS  Google Scholar 

  • Collazos-Castro J, Muneton-Gomez V, Nieto-Sampedro M. Olfactory glia transplantation into cervical spinal cord contusion injuries. J Neurosurg Spine 2005;3:308–17.

    Article  PubMed  Google Scholar 

  • Davies JE, Huang C, Proschel C, et al. Astrocytes derived from glial-restricted precursors promote spinal cord repair. J Biol 2006;5:7.

    Article  PubMed  Google Scholar 

  • Deda H, Inci M, Kurekci A, et al. Treatment of chronic spinal cord injured patients with autologous bone marrow-derived hematopoietic stem cell transplantation: 1-year follow-up. Cytotherapy 2008;10:565–74.

    Article  PubMed  CAS  Google Scholar 

  • Dergham P, Ellezam B, Essagian C, et al. Rho signaling pathway targeted to promote spinal cord repair. Neuroscience 2003;22:6570–7.

    Google Scholar 

  • Dubreuil CI, Winton MJ, McKerracher L. Rho activation patterns after spinal cord injury and the role of activated Rho in apoptosis in the central nervous system. J Cell Biol 2003;162:233–43.

    Article  PubMed  CAS  Google Scholar 

  • Gorio A, Madaschi L, Di Stefano B, et al. Methylprednisolone neutralizes the beneficial effects of erythropoietin in experimental spinal cord injury. Proc Natl Acad Sci U S A 2005;102:16379–84.

    Article  PubMed  CAS  Google Scholar 

  • Huang WL, King VR, Curran OE, et al. A combination of intravenous and dietary docosahexaenoic acid significantly improves outcome after spinal cord injury. Brain 2007;130:3004–19.

    Article  PubMed  CAS  Google Scholar 

  • Ibarra A, Correa D, Willms K, et al. Effects of cyclosporin-A on immune response, tissue protection and motor function of rats subjected to spinal cord injury. Brain Res 2003;979:165–78.

    Article  PubMed  CAS  Google Scholar 

  • Jain KK. Scientific and Commercial Aspects of Neuroprotection. Jain PharmaBiotech Publications, Basel, 2010.

    Google Scholar 

  • Kalayci M, Coskun O, Cagavi F, et al. Neuroprotective effects of ebselen on experimental spinal cord injury in rats. Neurochem Res 2005;30:403–10.

    Article  PubMed  CAS  Google Scholar 

  • Kang SK, Shin MJ, Jung JS, et al. Autologous adipose tissue-derived stromal cells for treatment of spinal cord injury. Stem Cells Dev 2006;15:583–94.

    Article  PubMed  CAS  Google Scholar 

  • Keirstead HS, Nistor G, Berna G, et al. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J Neurosci 2005;25:4694–705.

    Article  PubMed  CAS  Google Scholar 

  • Luo J, Uchida K, Shi R. Accumulation of acrolein-protein adducts after traumatic spinal cord injury. Neurochem Res 2005;30:291–5.

    Article  PubMed  CAS  Google Scholar 

  • Ma YH, Zhang Y, Cao L, et al. Effect of neurotrophin-3 genetically modified olfactory ensheathing cells transplantation on spinal cord injury. Cell Transplant 2010;19:167–77.

    Article  PubMed  Google Scholar 

  • Mackay-Sim A, Féron F, Cochrane J, et al. Autologous olfactory ensheathing cell transplantation in human paraplegia: a 3-year clinical trial. Brain 2008;131:2376–86.

    Article  PubMed  CAS  Google Scholar 

  • Meletis K, Barnabé-Heider F, Carlén M, et al. Spinal cord injury reveals multilineage differentiation of ependymal cells. PLoS Biol 2008;6(7):e182.

    Article  PubMed  Google Scholar 

  • Morino T, Ogata T, Takeba J, Yamamoto H. Microglia inhibition is a target of mild hypothermic treatment after the spinal cord injury. Spinal Cord 2008;46:425–31.

    Article  PubMed  CAS  Google Scholar 

  • Mountney A, Zahner MR, Lorenzini I, et al. Sialidase enhances recovery from spinal cord contusion injury. Proc Natl Acad Sci U S A 2010;107:11561–6.

    Article  PubMed  CAS  Google Scholar 

  • Naghdi M, Tiraihi T, Namin SA, et al. Transdifferentiation of bone marrow stromal cells into cholinergic neuronal phenotype: a potential source for cell therapy in spinal cord injury. Cytotherapy 2009;11:137–52.

    Article  PubMed  CAS  Google Scholar 

  • Ohta S, Iwashita Y, Takada H, et al. Neuroprotection and enhanced recovery with edaravone after acute spinal cord injury in rats. Spine 2005;30:1154–8.

    Article  PubMed  Google Scholar 

  • Ronsyn MW, Daans J, Spaepen G, et al. Plasmid-based genetic modification of human bone marrow-derived stromal cells: analysis of cell survival and transgene expression after transplantation in rat spinal cord. BMC Biotechnol 2007;7:90.

    Article  PubMed  Google Scholar 

  • Scott GS, Cuzzocrea S, Genovese T, et al. Uric acid protects against secondary damage after spinal cord injury. Proc Natl Acad Sci U S A 2005;102:3483–8.

    Article  PubMed  CAS  Google Scholar 

  • Shao Z, Browning JL, Lee X, et al. TAJ/TROY, an orphan TNF receptor family member, binds Nogo-66 receptor 1 and regulates axonal regeneration. Neuron 2005;45:353–9.

    Article  PubMed  CAS  Google Scholar 

  • Sharp J, Frame J, Siegenthaler M, et al. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants improve recovery after cervical spinal cord injury. Stem Cells 2010;28:152–63.

    PubMed  CAS  Google Scholar 

  • Sukoff MH, Jain KK. Hyperbaric oxygen therapy in neurosurgery. In Jain KK (ed) Textbook of Hyperbaric Medicine, 5th ed. Hogrefe & Huber, Seattle/Göttingen, 2009.

    Google Scholar 

  • Tsuji O, Miura K, Okada Y, et al. Therapeutic potential of appropriately evaluated safe-induced pluripotent stem cells for spinal cord injury. Proc Natl Acad Sci U S A 2010;107:12704–9.

    Article  PubMed  CAS  Google Scholar 

  • Wells JE, Hurlbert RJ, Fehlings MG, Yong VW. Neuroprotection by minocycline facilitates significant recovery from spinal cord injury in mice. Brain 2003;126(Pt 7):1628–37.

    Article  PubMed  Google Scholar 

  • Wu JC, Huang WC, Tsai YA, et al. Nerve repair using acidic fibroblast growth factor in human cervical spinal cord injury: a preliminary phase I clinical study. J Neurosurg Spine 2008;8:208–14.

    Article  PubMed  Google Scholar 

  • Yan J, Xu L, Welsh AM, et al. Extensive neuronal differentiation of human neural stem cell grafts in adult rat spinal cord. PLoS Med 2007;4:e39.

    Article  PubMed  Google Scholar 

  • Yeo JE, Kim JH, Kang SK. Selenium attenuates ROS-mediated apoptotic cell death of injured spinal cord through prevention of mitochondria dysfunction; in vitro and in vivo study. Cell Physiol Biochem 2008;21(1–3):225–38.

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Zhang A, Sun Y, et al. Treatment with immunosuppressants FTY720 and tacrolimus promotes functional recovery after spinal cord injury in rats. Tohoku J Exp Med 2009;219:295–302.

    Article  PubMed  CAS  Google Scholar 

  • Zhou Z, Peng X, Insolera R, et al. IL-10 promotes neuronal survival following spinal cord injury. Exp Neurol 2009;220:183–90.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kewal K. Jain .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jain, K.K. (2011). Neuroprotection in Spinal Cord Injury. In: The Handbook of Neuroprotection. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-049-2_5

Download citation

Publish with us

Policies and ethics