Skip to main content

Evidence for the Existence of Resident Cardiac Stem Cells

  • Chapter
  • First Online:
  • 1021 Accesses

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

The heart has traditionally been considered a terminally differentiated organ. In the past 10 years, though, this paradigm has been challenged and proved questionable, starting from the evidence of cycling myocytes in the adult heart, both in physiological and in pathological conditions. In addition, the discovery and isolation of cells from the adult heart with progenitor-like and stem-like features has started a new field of research. These topics are reviewed in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gruenwald, P. and Minh, H.N., Evaluation of body and organ weights in perinatal pathology. II. Weight of body and placenta of surviving and of autopsied infants. Am J Obstet Gynecol, 1961. 82: p. 312–9.

    PubMed  CAS  Google Scholar 

  2. Adler, C.P. and Friedburg, H., Myocardial DNA content, ploidy level and cell number in geriatric hearts: post-mortem examinations of human myocardium in old age. J Mol Cell Cardiol, 1986. 18(1): p. 39–53.

    Article  PubMed  CAS  Google Scholar 

  3. Claycomb, W.C. and Bradshaw, H.D., Jr., Acquisition of multiple nuclei and the activity of DNA polymerase alpha and reinitiation of DNA replication in terminally differentiated adult cardiac muscle cells in culture. Dev Biol, 1983. 99(2): p. 331–7.

    Article  PubMed  CAS  Google Scholar 

  4. Nag, A.C. and Cheng, M., DNA synthesis of adult mammalian cardiac muscle cells in long-term culture. Tissue Cell, 1986. 18(4): p. 491–7.

    Article  PubMed  CAS  Google Scholar 

  5. Anversa, P. and Kajstura, J., Ventricular myocytes are not terminally differentiated in the adult mammalian heart. Circ Res, 1998. 83(1): p. 1–14.

    PubMed  CAS  Google Scholar 

  6. Kajstura, J., et al., Myocyte proliferation in end-stage cardiac failure in humans. Proc Natl Acad Sci U S A, 1998. 95(15): p. 8801–5.

    Article  PubMed  CAS  Google Scholar 

  7. Beltrami, A.P., et al., Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med, 2001. 344(23): p. 1750–7.

    Article  PubMed  CAS  Google Scholar 

  8. Nadal-Ginard, B., et al., Myocyte death, growth, and regeneration in cardiac hypertrophy and failure. Circ Res, 2003. 92(2): p. 139–50.

    Article  PubMed  CAS  Google Scholar 

  9. Gaetani, R., et al., New perspectives to repair a broken heart. Cardiovasc Hematol Agents Med Chem, 2009. 7(2): p. 91–107.

    Article  PubMed  CAS  Google Scholar 

  10. Hsieh, P.C., et al., Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nat Med, 2007. 13(8): p. 970–4.

    Article  PubMed  CAS  Google Scholar 

  11. Bergmann, O., et al., Evidence for cardiomyocyte renewal in humans. Science, 2009. 324(5923): p. 98–102.

    Google Scholar 

  12. Buja, L.M. and Vela, D., Cardiomyocyte death and renewal in the normal and diseased heart. Cardiovasc Pathol, 2008. 17(6): p. 349–74.

    Article  PubMed  Google Scholar 

  13. Ausoni, S. and Sartore, S., From fish to amphibians to mammals: in search of novel strategies to optimize cardiac regeneration. J Cell Biol, 2009. 184(3): p. 357–64.

    Article  PubMed  CAS  Google Scholar 

  14. Pasumarthi, K.B. and Field, L.J., Cardiomyocyte cell cycle regulation. Circ Res, 2002. 90(10): p. 1044–54.

    Article  PubMed  CAS  Google Scholar 

  15. Sherr, C.J. and Roberts, J.M., CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev, 1999. 13(12): p. 1501–12.

    Article  PubMed  CAS  Google Scholar 

  16. Tamamori-Adachi, M., et al., Differential regulation of cyclin D1 and D2 in protecting against cardiomyocyte proliferation. Cell Cycle, 2008. 7(23): p. 3768–774.

    Article  PubMed  CAS  Google Scholar 

  17. Tamamori-Adachi, M., et al., Critical role of cyclin D1 nuclear import in cardiomyocyte proliferation. Circ Res, 2003. 92(1): p. e12–9.

    Article  PubMed  CAS  Google Scholar 

  18. Steinhelper, M.E., et al., Proliferation in vivo and in culture of differentiated adult atrial cardiomyocytes from transgenic mice. Am J Physiol, 1990. 259(6 Pt 2): p. H1826–34.

    PubMed  CAS  Google Scholar 

  19. Daud, A.I., et al., Identification of SV40 large T-antigen-associated proteins in cardiomyocytes from transgenic mice. Am J Physiol, 1993. 264(5 Pt 2): p. H1693–700.

    PubMed  CAS  Google Scholar 

  20. Tsai, S.C., et al., Simian virus 40 large T antigen binds a novel Bcl-2 homology domain 3-containing proapoptosis protein in the cytoplasm. J Biol Chem, 2000. 275(5): p. 3239–46.

    Article  PubMed  CAS  Google Scholar 

  21. Borges, A. and Liew, C.C., Telomerase activity during cardiac development. J Mol Cell Cardiol, 1997. 29(10): p. 2717–24.

    Article  PubMed  CAS  Google Scholar 

  22. Kajstura, J., et al., Telomere shortening is an in vivo marker of myocyte replication and aging. Am J Pathol, 2000. 156(3): p. 813–9.

    Article  PubMed  CAS  Google Scholar 

  23. Beltrami, A.P., et al., Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell, 2003. 114(6): p. 763–76.

    Article  PubMed  CAS  Google Scholar 

  24. Laugwitz, K.L., et al., Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature, 2005. 433(7026): p. 647–53.

    Article  PubMed  CAS  Google Scholar 

  25. Messina, E., et al., Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res, 2004. 95(9): p. 911–21.

    Article  PubMed  CAS  Google Scholar 

  26. Oh, H., et al., Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci U S A, 2003. 100(21): p. 12313–8.

    Article  PubMed  CAS  Google Scholar 

  27. Pfister, O., et al., CD31- but Not CD31+ cardiac side population cells exhibit functional cardiomyogenic differentiation. Circ Res, 2005. 97(1): p. 52–61.

    Article  PubMed  CAS  Google Scholar 

  28. Ott, H.C., The adult human heart as a source for stem cells: repair strategies with embryonic-like progenitor cells. Nat Clin Pract Cardiovasc Med, 2006. 4(Suppl 1): p. S27–39.

    Google Scholar 

  29. Cai, J., Weiss, M.L., and Rao, M.S., In search of “stemness”. Exp Hematol, 2004. 32(7): p. 585–98.

    Article  PubMed  Google Scholar 

  30. Rota, M., et al., Local activation or implantation of cardiac progenitor cells rescues scarred infarcted myocardium improving cardiac function. Circ Res, 2008. 103(1): p. 107–16.

    Article  PubMed  CAS  Google Scholar 

  31. Bearzi, C., et al., Human cardiac stem cells. Proc Natl Acad Sci U S A, 2007. 104(35): p. 14068–73.

    Article  PubMed  CAS  Google Scholar 

  32. Massberg, S., et al., Immunosurveillance by hematopoietic progenitor cells trafficking through blood, lymph, and peripheral tissues. Cell, 2007. 131(5): p. 994–1008.

    Article  PubMed  CAS  Google Scholar 

  33. Pouly, J., et al., Cardiac stem cells in the real world. J Thorac Cardiovasc Surg, 2008. 135(3): p. 673–8.

    Article  PubMed  Google Scholar 

  34. Koninckx, R., et al., Cardiac stem cells in the real world. J Thorac Cardiovasc Surg, 2008. 136(3): p. 797–8; author reply 798.

    Article  PubMed  Google Scholar 

  35. Tallini, Y.N., et al., c-Kit expression identifies cardiovascular precursors in the neonatal heart. Proc Natl Acad Sci U S A, 2009. 106(6): p. 1808–13.

    Article  PubMed  CAS  Google Scholar 

  36. Barile, L., et al., Bone marrow-derived cells can acquire cardiac stem cells properties in damaged heart. J Cell Mol Med, 2009. In press

    Google Scholar 

  37. Chimenti, I., et al., c-Kit cardiac progenitor cells: what is their potential? Proc Natl Acad Sci U S A, 2009. 106(28): p. E78; author reply E79.

    Article  PubMed  CAS  Google Scholar 

  38. Matsuura, K., et al., Adult cardiac Sca-1-positive cells differentiate into beating cardiomyocytes. J Biol Chem, 2004. 279(12): p. 11384–91.

    Article  PubMed  CAS  Google Scholar 

  39. Matsuura, K., et al., Transplantation of cardiac progenitor cells ameliorates cardiac dysfunction after myocardial infarction in mice. J Clin Invest, 2009. 119(8): p. 2204–17.

    PubMed  CAS  Google Scholar 

  40. van Vliet, P., et al., Progenitor cells isolated from the human heart: a potential cell source for regenerative therapy. Neth Heart J, 2008. 16(5): p. 163–9.

    Article  PubMed  Google Scholar 

  41. Smits, A.M., et al., Human cardiomyocyte progenitor cell transplantation preserves long-term function of the infarcted mouse myocardium. Cardiovasc Res, 2009. 83(3): p. 527–35.

    Article  PubMed  CAS  Google Scholar 

  42. Chien, K.R., Domian, I.J., and Parker, K.K., Cardiogenesis and the complex biology of regenerative cardiovascular medicine. Science, 2008. 322(5907): p. 1494–7.

    Article  PubMed  CAS  Google Scholar 

  43. Wu, S.M., Chien, K.R., and Mummery, C., Origins and fates of cardiovascular progenitor cells. Cell, 2008. 132(4): p. 537–43.

    Article  PubMed  CAS  Google Scholar 

  44. Martin, C.M., et al., Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Dev Biol, 2004. 265(1): p. 262–75.

    Article  PubMed  CAS  Google Scholar 

  45. Davis D.R., Zhang, Y., Smith, R.R., Cheng, K., Terrovitis, J., Malliaras, K., Li, T., White, A., Makkar, R., and Marban, E., Validation of the cardiosphere method to culture cardiac progenitor cells from myocardial tissue. PLoS One, 2009. 4(9): p. e7195.

    Article  PubMed  Google Scholar 

  46. Smith, R.R., et al., Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation, 2007. 115(7): p. 896–908.

    Article  PubMed  Google Scholar 

  47. Smith, R.R., Chimenti, I., and Marban, E., Unselected human cardiosphere-derived cells are functionally superior to c-Kit- or CD90-purified cardiosphere-derived cells. in AHA scientific session 2008, Orlando, FL, USA. Circulation, 2008. 118:p. S_420.

    Google Scholar 

  48. Tang, Y.L., et al., Hypoxic preconditioning enhances the benefit of cardiac progenitor cell therapy for treatment of myocardial infarction by inducing CXCR4 expression. Circ Res, 2009. 104(10): p. 1209–16.

    Article  PubMed  CAS  Google Scholar 

  49. Galvez, B.G., et al., Cardiac mesoangioblasts are committed, self-renewable progenitors, associated with small vessels of juvenile mouse ventricle. Cell Death Differ, 2008. 15(9): p. 1417–28.

    Article  PubMed  CAS  Google Scholar 

  50. Parmacek, M.S. and Epstein, J.A., Cardiomyocyte renewal. N Engl J Med, 2009. 361(1): p. 86–8.

    Article  PubMed  CAS  Google Scholar 

  51. Katz, E.B., et al., Cardiomyocyte proliferation in mice expressing alpha-cardiac myosin heavy chain-SV40 T-antigen transgenes. Am J Physiol, 1992. 262(6 Pt 2): p. H1867–76.

    PubMed  CAS  Google Scholar 

  52. Chaudhry, H.W., et al., Cyclin A2 mediates cardiomyocyte mitosis in the postmitotic myocardium. J Biol Chem, 2004. 279(34): p. 35858–66.

    Article  PubMed  CAS  Google Scholar 

  53. Pasumarthi, K.B., et al., Targeted expression of cyclin D2 results in cardiomyocyte DNA synthesis and infarct regression in transgenic mice. Circ Res, 2005. 96(1): p. 110–8.

    Article  PubMed  CAS  Google Scholar 

  54. Bersell, K., et al., Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell, 2009. 138(2): p. 257–70.

    Article  PubMed  CAS  Google Scholar 

  55. Wang, Z., et al., Neuregulin-1 enhances differentiation of cardiomyocytes from embryonic stem cells. Med Biol Eng Comput, 2009. 47(1): p. 41–8.

    Article  PubMed  Google Scholar 

  56. Gassmann, M., et al., Aberrant neural and cardiac development in mice lacking the ErbB4 neuregulin receptor. Nature, 1995. 378(6555): p. 390–4.

    Article  PubMed  CAS  Google Scholar 

  57. Cai, C.L., et al., A myocardial lineage derives from Tbx18 epicardial cells. Nature, 2008. 454(7200): p. 104–8.

    Article  PubMed  CAS  Google Scholar 

  58. Zhou, B., et al., Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature, 2008. 454(7200): p. 109–13.

    Article  PubMed  CAS  Google Scholar 

  59. Zhou, B., et al., Nkx2-5- and Isl1-expressing cardiac progenitors contribute to proepicardium. Biochem Biophys Res Commun, 2008. 375(3): p. 450–3.

    Article  PubMed  CAS  Google Scholar 

  60. Limana, F., et al., Identification of myocardial and vascular precursor cells in human and mouse epicardium. Circ Res, 2007. 101(12): p. 1255–65.

    Article  PubMed  CAS  Google Scholar 

  61. Quaini, F., et al., Chimerism of the transplanted heart. N Engl J Med, 2002. 346(1): p. 5–15.

    Article  PubMed  Google Scholar 

  62. Thiele, J., et al., Mixed chimerism of cardiomyocytes and vessels after allogeneic bone marrow and stem-cell transplantation in comparison with cardiac allografts. Transplantation, 2004. 77(12): p. 1902–5.

    Article  PubMed  Google Scholar 

  63. Brockes, J.P., Amphibian limb regeneration: rebuilding a complex structure. Science, 1997. 276(5309): p. 81–7.

    Article  PubMed  CAS  Google Scholar 

  64. Odelberg, S.J., Kollhoff, A., and Keating, M.T., Dedifferentiation of mammalian myotubes induced by msx1. Cell, 2000. 103(7): p. 1099–109.

    Article  PubMed  CAS  Google Scholar 

  65. Chen, S., et al., Dedifferentiation of lineage-committed cells by a small molecule. J Am Chem Soc, 2004. 126(2): p. 410–1.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Giacomello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Chimenti, I. et al. (2011). Evidence for the Existence of Resident Cardiac Stem Cells. In: Cohen, I., Gaudette, G. (eds) Regenerating the Heart. Stem Cell Biology and Regenerative Medicine. Humana Press. https://doi.org/10.1007/978-1-61779-021-8_9

Download citation

Publish with us

Policies and ethics