Skip to main content

Homing, Survival, and Paracrine Effects of Human Mesenchymal Stem Cells

  • Chapter
  • First Online:
Regenerating the Heart

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 1056 Accesses

Abstract

In this chapter we describe a snapshot of the ever-changing landscape for the use of mesenchymal stem cells (MSCs) as a therapeutic agent. To be used for cell therapy, they must reach their target and have a therapeutic effect. Determinants of MSC homing are considered in the first part of the chapter, with special emphasis on the dynamic nature of these cells reflected in changes of their chemokine receptor profile with the associated implication of these changes for homing to sites of injury. In the second part of the chapter we consider therapeutic effects of MSCs at their target sites mediated by the paracrine factors they produce.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Friedenstein, A. J., Gorskaja, J. F. & Kulagina, N. N. (1976) Fibroblast precursors in normal and irradiated mouse hematopoietic organs, Exp Hematol. 4, 267–74.

    PubMed  CAS  Google Scholar 

  2. Friedenstein, A. J., Chailakhyan, R. K. & Gerasimov, U. V. (1987) Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers, Cell Tissue Kinet. 20, 263–72.

    PubMed  CAS  Google Scholar 

  3. Caplan, A. I. (1991) Mesenchymal stem cells, J Orthop Res. 9, 641–50.

    PubMed  CAS  Google Scholar 

  4. Prockop, D. J. (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues, Science. 276, 71–4.

    PubMed  CAS  Google Scholar 

  5. Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., Moorman, M. A., Simonetti, D. W., Craig, S. & Marshak, D. R. (1999) Multilineage potential of adult human mesenchymal stem cells, Science. 284, 143–7.

    PubMed  CAS  Google Scholar 

  6. Horwitz, E. M., Gordon, P. L., Koo, W. K., Marx, J. C., Neel, M. D., McNall, R. Y., Muul, L. & Hofmann, T. (2002) Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone, Proc Natl Acad Sci U S A. 99, 8932–7.

    PubMed  CAS  Google Scholar 

  7. Le Blanc, K., Gotherstrom, C., Ringden, O., Hassan, M., McMahon, R., Horwitz, E., Anneren, G., Axelsson, O., Nunn, J., Ewald, U., Norden-Lindeberg, S., Jansson, M., Dalton, A., Astrom, E. & Westgren, M. (2005) Fetal mesenchymal stem-cell engraftment in bone after in utero transplantation in a patient with severe osteogenesis imperfecta, Transplantation. 79, 1607–14.

    PubMed  Google Scholar 

  8. Wakitani, S., Nawata, M., Tensho, K., Okabe, T., Machida, H. & Ohgushi, H. (2007) Repair of articular cartilage defects in the patello-femoral joint with autologous bone marrow mesenchymal cell transplantation: three case reports involving nine defects in five knees,J Tissue Eng Regen Med. 1, 74–9.

    PubMed  Google Scholar 

  9. Lazarus, H. M., Koc, O. N., Devine, S. M., Curtin, P., Maziarz, R. T., Holland, H. K., Shpall, E. J., McCarthy, P., Atkinson, K., Cooper, B. W., Gerson, S. L., Laughlin, M. J., Loberiza, F. R., Jr., Moseley, A. B. & Bacigalupo, A. (2005) Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients, Biol Blood Marrow Transplant. 11, 389–98.

    PubMed  Google Scholar 

  10. Koc, O. N., Gerson, S. L., Cooper, B. W., Dyhouse, S. M., Haynesworth, S. E., Caplan, A. I. & Lazarus, H. M. (2000) Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy, J Clin Oncol. 18, 307–16.

    PubMed  CAS  Google Scholar 

  11. Le Blanc, K. & Ringden, O. (2005) Immunobiology of human mesenchymal stem cells and future use in hematopoietic stem cell transplantation, Biol Blood Marrow Transplant. 11, 321–34.

    PubMed  Google Scholar 

  12. Ball, L. M., Bernardo, M. E., Roelofs, H., Lankester, A., Cometa, A., Egeler, R. M., Locatelli, F. & Fibbe, W. E. (2007) Cotransplantation of ex vivo expanded mesenchymal stem cells accelerates lymphocyte recovery and may reduce the risk of graft failure in haploidentical hematopoietic stem-cell transplantation, Blood. 110, 2764–7.

    PubMed  CAS  Google Scholar 

  13. Le Blanc, K., Samuelsson, H., Gustafsson, B., Remberger, M., Sundberg, B., Arvidson, J., Ljungman, P., Lonnies, H., Nava, S. & Ringden, O. (2007) Transplantation of mesenchymal stem cells to enhance engraftment of hematopoietic stem cells, Leukemia. 21, 1733–8.

    PubMed  Google Scholar 

  14. Chen, J., Li, Y., Katakowski, M., Chen, X., Wang, L., Lu, D., Lu, M., Gautam, S. C. & Chopp, M. (2003) Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat, J Neurosci Res. 73, 778–86.

    PubMed  CAS  Google Scholar 

  15. Chen, J., Li, Y., Wang, L., Zhang, Z., Lu, D., Lu, M. & Chopp, M. (2001) Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats, Stroke. 32, 1005–11.

    PubMed  CAS  Google Scholar 

  16. Chen, J., Zhang, Z. G., Li, Y., Wang, L., Xu, Y. X., Gautam, S. C., Lu, M., Zhu, Z. & Chopp, M. (2003) Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats, Circ Res. 92, 692–9.

    PubMed  CAS  Google Scholar 

  17. Mahmood, A., Lu, D., Lu, M. & Chopp, M. (2003) Treatment of traumatic brain injury in adult rats with intravenous administration of human bone marrow stromal cells, Neurosurgery. 53, 697–702; discussion 702–3.

    PubMed  Google Scholar 

  18. Mahmood, A., Lu, D., Wang, L., Li, Y., Lu, M. & Chopp, M. (2001) Treatment of traumatic brain injury in female rats with intravenous administration of bone marrow stromal cells, Neurosurgery. 49, 1196–203; discussion 1203–4.

    PubMed  CAS  Google Scholar 

  19. Seyfried, D., Ding, J., Han, Y., Li, Y., Chen, J. & Chopp, M. (2006) Effects of intravenous administration of human bone marrow stromal cells after intracerebral hemorrhage in rats,J Neurosurg. 104, 313–8.

    PubMed  Google Scholar 

  20. Orlic, D., Kajstura, J., Chimenti, S., Bodine, D. M., Leri, A. & Anversa, P. (2003) Bone marrow stem cells regenerate infarcted myocardium, Pediatr Transplant. 7 Suppl 3, 86–8.

    PubMed  Google Scholar 

  21. Dai, W., Hale, S. L., Martin, B. J., Kuang, J. Q., Dow, J. S., Wold, L. E. & Kloner, R. A. (2005) Allogeneic mesenchymal stem cell transplantation in postinfarcted rat myocardium: short- and long-term effects, Circulation. 112, 214–23.

    PubMed  Google Scholar 

  22. Gnecchi, M., He, H., Liang, O. D., Melo, L. G., Morello, F., Mu, H., Noiseux, N., Zhang, L., Pratt, R. E., Ingwall, J. S. & Dzau, V. J. (2005) Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells, Nat Med. 11, 367–8.

    PubMed  CAS  Google Scholar 

  23. Assmus, B., Honold, J., Schachinger, V., Britten, M. B., Fischer-Rasokat, U., Lehmann, R., Teupe, C., Pistorius, K., Martin, H., Abolmaali, N. D., Tonn, T., Dimmeler, S. & Zeiher, A. M. (2006) Transcoronary transplantation of progenitor cells after myocardial infarction, N Engl J Med. 355, 1222–32.

    PubMed  CAS  Google Scholar 

  24. Mosca, J. D., Hendricks, J. K., Buyaner, D., Davis-Sproul, J., Chuang, L. C., Majumdar, M. K., Chopra, R., Barry, F., Murphy, M., Thiede, M. A., Junker, U., Rigg, R. J., Forestell, S. P., Bohnlein, E., Storb, R. & Sandmaier, B. M. (2000) Mesenchymal stem cells as vehicles for gene delivery, Clin Orthop Relat Res, 379 Suppl, S71–90.

    PubMed  Google Scholar 

  25. Devine, M. J., Mierisch, C. M., Jang, E., Anderson, P. C. & Balian, G. (2002) Transplanted bone marrow cells localize to fracture callus in a mouse model, J Orthop Res. 20, 1232–9.

    PubMed  Google Scholar 

  26. Ramirez, M., Lucia, A., Gomez-Gallego, F., Esteve-Lanao, J., Perez-Martinez, A., Foster, C., Andreu, A. L., Martin, M. A., Madero, L., Arenas, J. & Garcia-Castro, J. (2006) Mobilisation of mesenchymal cells into blood in response to skeletal muscle injury, Br J Sports Med. 40, 719–22.

    PubMed  CAS  Google Scholar 

  27. Mansilla, E., MarIn, G. H., Drago, H., Sturla, F., Salas, E., Gardiner, C., Bossi, S., Lamonega, R., Guzmбn, A., Nucez, A., Gil, M. A., Piccinelli, G., Ibar, R. & Soratti, C. (2006) Bloodstream cells phenotypically identical to human mesenchymal bone marrow stem cells circulate in large amounts under the influence of acute large skin damage: new evidence for their use in regenerative medicine, Transplant Proc. 38, 967–9.

    PubMed  CAS  Google Scholar 

  28. Wang, L., Li, Y., Chen, J., Gautam, S. C., Zhang, Z., Lu, M. & Chopp, M. (2002) Ischemic cerebral tissue and MCP-1 enhance rat bone marrow stromal cell migration in interface culture, Experimental Hematology. 30, 831–6.

    PubMed  CAS  Google Scholar 

  29. Barbash, I. M., Chouraqui, P., Baron, J., Feinberg, M. S., Etzion, S., Tessone, A., Miller, L., Guetta, E., Zipori, D., Kedes, L. H., Kloner, R. A. & Leor, J. (2003) Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: feasibility, cell migration, and body distribution, Circulation. 108, 863–8.

    PubMed  Google Scholar 

  30. Bittira, B., Shum-Tim, D., Al-Khaldi, A. & Chiu, R. C. J. (2003) Mobilization and homing of bone marrow stromal cells in myocardial infarction, Eur J Cardiothorac Surg. 24, 393–8.

    PubMed  Google Scholar 

  31. Chapel, A., Bertho, J. M., Bensidhoum, M., Fouillard, L., Young, R. G., Frick, J., Demarquay, C., Cuvelier, F., Mathieu, E., Trompier, F., Dudoignon, N., Germain, C., Mazurier, C., Aigueperse, J., Borneman, J., Gorin, N. C., Gourmelon, P. & Thierry, D. (2003) Mesenchymal stem cells home to injured tissues when co-infused with hematopoietic cells to treat a radiation-induced multi-organ failure syndrome, J Gene Med. 5, 1028–38.

    PubMed  Google Scholar 

  32. Rombouts, W. J. C. & Ploemacher, R. E. (2003) Primary murine MSC show highly efficient homing to the bone marrow but lose homing ability following culture, Leukemia. 17, 160–70.

    PubMed  CAS  Google Scholar 

  33. Ji, J. F., He, B. P., Dheen, S. T. & Tay, S. S. W. (2004) Interactions of chemokines and chemokine receptors mediate the migration of mesenchymal stem cells to the impaired site in the brain after hypoglossal nerve injury, Stem Cells. 22, 415–27.

    PubMed  CAS  Google Scholar 

  34. Kraitchman, D. L., Tatsumi, M., Gilson, W. D., Ishimori, T., Kedziorek, D., Walczak, P., Segars, W. P., H. Chen, H., Fritzges, D., Izbudak, I., Young, R. G., Marcelino, M., Pittenger, M. F., Solaiyappan, M., Boston, R. C., Tsui, B. M. W., Wahl, R. L. & Bulte, J. W. M. (2005) Dynamic imaging of allogeneic mesenchymal stem cells trafficking to myocardial infarction, Circulation. 112, 1451–61.

    PubMed  Google Scholar 

  35. Mouiseddine, M., Francois, S., Semont, A., Sache, A., Allenet, B., Mathieu, N., Frick,J., Thierry, D. & Chapel, A. (2007) Human mesenchymal stem cells home specifically to radiation-injured tissues in a non-obese diabetes/severe combined immunodeficiency mouse model, Br J Radiol. 80, S49–55.

    PubMed  CAS  Google Scholar 

  36. Allers, C., Sierralta, W. D., Neubauer, S., Rivera, F., Minguell, J. J. & Conget, P. A. (2004) Dynamic of distribution of human bone marrow-derived mesenchymal stem cells after transplantation into adult unconditioned mice, Transplantation. 78, 503–8.

    PubMed  Google Scholar 

  37. Devine, S. M., Cobbs, C., Jennings, M., Bartholomew, A. & Hoffman, R. (2003) Mesenchymal stem cells distribute to a wide range of tissues following systemic infusion into nonhuman primates, Blood. 101, 2999–3001.

    PubMed  CAS  Google Scholar 

  38. Gao, J., Dennis, J. E., Muzic, R. F., Lundberg, M. & Caplan, A. I. (2001) The dynamic in vivo distribution of bone marrow-derived mesenchymal stem cells after infusion, Cells Tissues Organs. 169, 12–20.

    PubMed  CAS  Google Scholar 

  39. Potapova, I. A., Gaudette, G. R., Brink, P. R., Robinson, R. B., Rosen, M. R., Cohen, I. S. & Doronin, S. V. (2007) Mesenchymal stem cells support migration, extracellular matrix invasion, proliferation, and survival of endothelial cells in vitro, Stem Cells. 25, 1761–8.

    PubMed  CAS  Google Scholar 

  40. Gnecchi, M., Zhang, Z., Ni, A. & Dzau, V. J. (2008) Paracrine mechanisms in adult stem cell signaling and therapy, Circ Res. 103, 1204–19.

    PubMed  CAS  Google Scholar 

  41. Caplan, A. I. & Dennis, J. E. (2006) Mesenchymal stem cells as trophic mediators, J Cell Biochem. 98, 1076–84.

    PubMed  CAS  Google Scholar 

  42. Springer, T. A. (1994) Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm, Cell. 76, 301–14.

    PubMed  CAS  Google Scholar 

  43. Barreiro, O. & Sanchez-Madrid, F. (2009) Molecular basis of leukocyte-endothelium interactions during the inflammatory response, Rev Esp Cardiol. 62, 552–62.

    PubMed  Google Scholar 

  44. Eriksson, E. E., Xie, X., Werr, J., Thoren, P. & Lindbom, L. (2001) Importance of primary capture and L-selectin-dependent secondary capture in leukocyte accumulation in inflammation and atherosclerosis in vivo, J Exp Med. 194, 205–18.

    PubMed  CAS  Google Scholar 

  45. Hidalgo, A., Peired, A. J., Wild, M. K., Vestweber, D. & Frenette, P. S. (2007) Complete identification of E-selectin ligands on neutrophils reveals distinct functions of PSGL-1, ESL-1, and CD44, Immunity. 26, 477–89.

    PubMed  CAS  Google Scholar 

  46. Berlin, C., Berg, E. L., Briskin, M. J., Andrew, D. P., Kilshaw, P. J., Holzmann, B., Weissman, I. L., Hamann, A. & Butcher, E. C. (1993) Alpha 4 beta 7 integrin mediates lymphocyte binding to the mucosal vascular addressin MAdCAM-1, Cell. 74, 185–95.

    PubMed  CAS  Google Scholar 

  47. Alon, R., Kassner, P. D., Carr, M. W., Finger, E. B., Hemler, M. E. & Springer, T. A. (1995) The integrin VLA-4 supports tethering and rolling in flow on VCAM-1, J Cell Biol. 128, 1243–53.

    PubMed  CAS  Google Scholar 

  48. Berlin, C., Bargatze, R. F., Campbell, J. J., von Andrian, U. H., Szabo, M. C., Hasslen, S. R., Nelson, R. D., Berg, E. L., Erlandsen, S. L. & Butcher, E. C. (1995) Alpha 4 integrins mediate lymphocyte attachment and rolling under physiologic flow, Cell. 80, 413–22.

    PubMed  CAS  Google Scholar 

  49. Rao, R. M., Yang, L., Garcia-Cardena, G. & Luscinskas, F. W. (2007) Endothelial-dependent mechanisms of leukocyte recruitment to the vascular wall, Circ Res. 101, 234–47.

    PubMed  CAS  Google Scholar 

  50. Potapova, I. A., Cohen, I. S. & Doronin, S. V. (2009) Apoptotic endothelial cells demonstrate increased adhesiveness for human mesenchymal stem cells, J Cell Physiol. 219, 23–30.

    PubMed  CAS  Google Scholar 

  51. Campbell, J. J., Hedrick, J., Zlotnik, A., Siani, M. A., Thompson, D. A. & Butcher, E. C. (1998) Chemokines and the arrest of lymphocytes rolling under flow conditions, Science. 279, 381–4.

    PubMed  CAS  Google Scholar 

  52. Shamri, R., Grabovsky, V., Gauguet, J. M., Feigelson, S., Manevich, E., Kolanus, W., Robinson, M. K., Staunton, D. E., von Andrian, U. H. & Alon, R. (2005) Lymphocyte arrest requires instantaneous induction of an extended LFA-1 conformation mediated by endothelium-bound chemokines, Nat Immunol. 6, 497–506.

    PubMed  CAS  Google Scholar 

  53. Reininger, A. J. (2008) Function of von Willebrand factor in haemostasis and thrombosis, Haemophilia. 14 Suppl 5, 11–26.

    PubMed  CAS  Google Scholar 

  54. Ruster, B., Gottig, S., Ludwig, R. J., Bistrian, R., Muller, S., Seifried, E., Gille, J. & Henschler, R. (2006) Mesenchymal stem cells display coordinated rolling and adhesion behavior on endothelial cells, Blood. 108, 3938–44.

    PubMed  Google Scholar 

  55. Schmidt, A., Ladage, D., Steingen, C., Brixius, K., Schinkцthe, T., Klinz, F.-J., Schwinger, R. H. G., Mehlhorn, U. & Bloch, W. (2006) Mesenchymal stem cells transmigrate over the endothelial barrier, Eur J Cell Biol. 85, 1179–88.

    PubMed  CAS  Google Scholar 

  56. Baddoo, M., Hill, K., Wilkinson, R., Gaupp, D., Hughes, C., Kopen, G. C. & Phinney, D. G. (2003) Characterization of mesenchymal stem cells isolated from murine bone marrow by negative selection, J Cell Biochem. 89, 1235–49.

    PubMed  CAS  Google Scholar 

  57. Cheng, S. L., Yang, J. W., Rifas, L., Zhang, S. F. & Avioli, L. V. (1994) Differentiation of human bone marrow osteogenic stromal cells in vitro: induction of the osteoblast phenotype by dexamethasone, Endocrinology. 134, 277–86.

    PubMed  CAS  Google Scholar 

  58. Clark, B. R. & Keating, A. (1995) Biology of bone marrow stroma, Ann N Y Acad Sci. 770, 70–8.

    PubMed  CAS  Google Scholar 

  59. Keating, A., Horsfall, W., Hawley, R. G. & Toneguzzo, F. (1990) Effect of different promoters on expression of genes introduced into hematopoietic and marrow stromal cells by electroporation, Exp Hematol. 18, 99–102.

    PubMed  CAS  Google Scholar 

  60. Seeger, F. H., Tonn, T., Krzossok, N., Zeiher, A. M. & Dimmeler, S. (2007) Cell isolation procedures matter: a comparison of different isolation protocols of bone marrow mononuclear cells used for cell therapy in patients with acute myocardial infarction, Eur Heart J. 28, 766–72.

    PubMed  Google Scholar 

  61. Galmiche, M. C., Koteliansky, V. E., Briere, J., Herve, P. & Charbord, P. (1993) Stromal cells from human long-term marrow cultures are mesenchymal cells that differentiate following a vascular smooth muscle differentiation pathway, Blood. 82, 66–76.

    PubMed  CAS  Google Scholar 

  62. Haynesworth, S. E., Baber, M. A. & Caplan, A. I. (1992) Cell surface antigens on human marrow-derived mesenchymal cells are detected by monoclonal antibodies, Bone. 13, 69–80.

    PubMed  CAS  Google Scholar 

  63. Le Blanc, K., Tammik, C., Rosendahl, K., Zetterberg, E. & Ringden, O. (2003) HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells, Exp Hematol. 31, 890–6.

    PubMed  Google Scholar 

  64. Sordi, V., Malosio, M. L., Marchesi, F., Mercalli, A., Melzi, R., Giordano, T., Belmonte, N., Ferrari, G., Leone, B. E., Bertuzzi, F., Zerbini, G., Allavena, P., Bonifacio, E. & Piemonti, L. (2005) Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets, Blood. 106, 419–27.

    PubMed  CAS  Google Scholar 

  65. Honczarenko, M., Le, Y., Swierkowski, M., Ghiran, I., Glodek, A. M. & Silberstein, L. E. (2006) Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors, Stem Cells. 24, 1030–41.

    PubMed  CAS  Google Scholar 

  66. Wynn, R. F., Hart, C. A., Corradi-Perini, C., O’Neill, L., Evans, C. A., Wraith, J. E., Fairbairn, L. J. & Bellantuono, I. (2004) A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow, Blood. 104, 2643–5.

    PubMed  CAS  Google Scholar 

  67. von Luttichau, I., Notohamiprodjo, M., Wechselberger, A., Peters, C., Henger, A., Seliger, C., Djafarzadeh, R., Huss, R. & Nelson, P. J. (2005) Human adult CD34- progenitor cells functionally express the chemokine receptors CCR1, CCR4, CCR7, CXCR5, and CCR10 but not CXCR4, Stem Cells Dev. 14, 329–36.

    Google Scholar 

  68. Chamberlain, G., Wright, K., Rot, A., Ashton, B. & Middleton, J. (2008) Murine mesenchymal stem cells exhibit a restricted repertoire of functional chemokine receptors: comparison with human, PLoS One. 3, e2934.

    PubMed  Google Scholar 

  69. Zhang, F., Tsai, S., Kato, K., Yamanouchi, D., Wang, C., Rafii, S., Liu, B. & Kent, K. C. (2009) Transforming growth factor-beta promotes recruitment of bone marrow cells and bone marrow-derived mesenchymal stem cells through stimulation of MCP-1 production in vascular smooth muscle cells, J Biol Chem. 284, 17564–74.

    PubMed  CAS  Google Scholar 

  70. Schenk, S., Mal, N., Finan, A., Zhang, M., Kiedrowski, M., Popovic, Z., McCarthy, P. M. & Penn, M. S. (2007) Monocyte chemotactic protein-3 is a myocardial mesenchymal stem cell homing factor, Stem Cells. 25, 245–51.

    PubMed  CAS  Google Scholar 

  71. Brooke, G., Tong, H., Levesque, J. P. & Atkinson, K. (2008) Molecular trafficking mechanisms of multipotent mesenchymal stem cells derived from human bone marrow and placenta, Stem Cells Dev. 17, 929–40.

    PubMed  CAS  Google Scholar 

  72. Hwang, J. H., Shim, S. S., Seok, O. S., Lee, H. Y., Woo, S. K., Kim, B. H., Song, H. R., Lee, J. K. & Park, Y. K. (2009) Comparison of cytokine expression in mesenchymal stem cells from human placenta, cord blood, and bone marrow, J Korean Med Sci. 24, 547–54.

    PubMed  CAS  Google Scholar 

  73. Ringe, J., Strassburg, S., Neumann, K., Endres, M., Notter, M., Burmester, G. R., Kaps, C. & Sittinger, M. (2007) Towards in situ tissue repair: human mesenchymal stem cells express chemokine receptors CXCR1, CXCR2 and CCR2, and migrate upon stimulation with CXCL8 but not CCL2, J Cell Biochem. 101, 135–46.

    PubMed  CAS  Google Scholar 

  74. Dwyer, R. M., Potter-Beirne, S. M., Harrington, K. A., Lowery, A. J., Hennessy, E., Murphy, J. M., Barry, F. P., O’Brien, T. & Kerin, M. J. (2007) Monocyte chemotactic protein-1 secreted by primary breast tumors stimulates migration of mesenchymal stem cells, Clin Cancer Res. 13, 5020–7.

    PubMed  CAS  Google Scholar 

  75. Potapova, I. A., Brink, P. R., Cohen, I. S. & Doronin, S. V. (2008) Culturing of human mesenchymal stem cells as 3D-aggregates induces functional expression of CXCR4 that regulates adhesion to endothelial cells, J. Biol. Chem. 283, 13100–7.

    PubMed  CAS  Google Scholar 

  76. Shield, K., Riley, C., Quinn, M. A., Rice, G. E., Ackland, M. L. & Ahmed, N. (2007) Alpha2beta1 integrin affects metastatic potential of ovarian carcinoma spheroids by supporting disaggregation and proteolysis, J Carcinog. 6, 11.

    PubMed  Google Scholar 

  77. Friedl, P., Noble, P. B. & Zanker, K. S. (1995) T lymphocyte locomotion in a three-dimensional collagen matrix. Expression and function of cell adhesion molecules, Journal of immunology. 154, 4973–85.

    PubMed  CAS  Google Scholar 

  78. Sixt, M., Bauer, M., Lammermann, T. & Fassler, R. (2006) Beta1 integrins: zip codes and signaling relay for blood cells, Curr Opin Cell Biol. 18, 482–90.

    PubMed  CAS  Google Scholar 

  79. van Buul, J. D., Voermans, C., van Gelderen, J., Anthony, E. C., van der Schoot, C. E. & Hordijk, P. L. (2003) Leukocyte-endothelium interaction promotes SDF-1-dependent polarization of CXCR4, J Biol Chem. 278, 30302–10.

    PubMed  Google Scholar 

  80. Glodek, A. M., Le, Y., Dykxhoorn, D. M., Park, S. Y., Mostoslavsky, G., Mulligan, R., Lieberman, J., Beggs, H. E., Honczarenko, M. & Silberstein, L. E. (2007) Focal adhesion kinase is required for CXCL12-induced chemotactic and pro-adhesive responses in hematopoietic precursor cells, Leukemia. 21, 1723–32.

    PubMed  CAS  Google Scholar 

  81. Honczarenko, M., Le, Y., Glodek, A. M., Majka, M., Campbell, J. J., Ratajczak, M. Z. & Silberstein, L. E. (2002) CCR5-binding chemokines modulate CXCL12 (SDF-1)-induced responses of progenitor B cells in human bone marrow through heterologous desensitization of the CXCR4 chemokine receptor, Blood. 100, 2321–9.

    PubMed  CAS  Google Scholar 

  82. Le, Y., Honczarenko, M., Glodek, A. M., Ho, D. K. & Silberstein, L. E. (2005) CXC chemokine ligand 12-induced focal adhesion kinase activation and segregation into membrane domains is modulated by regulator of G protein signaling 1 in pro-B cells, Journal of immunology. 174, 2582–90.

    PubMed  CAS  Google Scholar 

  83. Neel, N. F., Schutyser, E., Sai, J., Fan, G. H. & Richmond, A. (2005) Chemokine receptor internalization and intracellular trafficking, Cytokine Growth Factor Rev. 16, 637–58.

    PubMed  CAS  Google Scholar 

  84. Seeger, F. H., Zeiher, A. M. & Dimmeler, S. (2007) Cell-enhancement strategies for the treatment of ischemic heart disease, Nat Clin Pract Cardiovasc Med. 4 Suppl 1, S110–3.

    PubMed  CAS  Google Scholar 

  85. Wang, Y., Johnsen, H. E., Mortensen, S., Bindslev, L., Ripa, R. S., Haack-Sorensen, M., Jorgensen, E., Fang, W. & Kastrup, J. (2006) Changes in circulating mesenchymal stem cells, stem cell homing factor, and vascular growth factors in patients with acute ST elevation myocardial infarction treated with primary percutaneous coronary intervention, Heart. 92, 768–74.

    PubMed  CAS  Google Scholar 

  86. Wang, Y., Deng, Y. & Zhou, G. Q. (2008) SDF-1alpha/CXCR4-mediated migration of systemically transplanted bone marrow stromal cells towards ischemic brain lesion in a rat model, Brain Res. 1195, 104–12.

    PubMed  CAS  Google Scholar 

  87. Bhakta, S., Hong, P. & Koc, O. (2006) The surface adhesion molecule CXCR4 stimulates mesenchymal stem cell migration to stromal cell-derived factor-1 in vitro but does not decrease apoptosis under serum deprivation, Cardiovasc Revasc Med. 7, 19–24.

    PubMed  Google Scholar 

  88. Cheng, Z., Ou, L., Zhou, X., Li, F., Jia, X., Zhang, Y., Liu, X., Li, Y., Ward, C. A., Melo, L. G. & Kong, D. (2008) Targeted migration of mesenchymal stem cells modified with CXCR4 gene to infarcted myocardium improves cardiac performance, Mol Ther. 16, 571–9.

    PubMed  CAS  Google Scholar 

  89. Zhang, D., Fan, G. C., Zhou, X., Zhao, T., Pasha, Z., Xu, M., Zhu, Y., Ashraf, M. & Wang, Y. (2008) Over-expression of CXCR4 on mesenchymal stem cells augments myoangiogenesis in the infarcted myocardium, J Mol Cell Cardiol. 44, 281–92.

    PubMed  CAS  Google Scholar 

  90. Schachinger, V., Aicher, A., Dobert, N., Rover, R., Diener, J., Fichtlscherer, S., Assmus, B., Seeger, F. H., Menzel, C., Brenner, W., Dimmeler, S. & Zeiher, A. M. (2008) Pilot trial on determinants of progenitor cell recruitment to the infarcted human myocardium, Circulation. 118, 1425–32.

    PubMed  Google Scholar 

  91. Abbott, J. D., Huang, Y., Liu, D., Hickey, R., Krause, D. S. & Giordano, F. J. (2004) Stromal cell-derived factor-1alpha plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury, Circulation. 110, 3300–5.

    PubMed  Google Scholar 

  92. Belema-Bedada, F., Uchida, S., Martire, A., Kostin, S. & Braun, T. (2008) Efficient homing of multipotent adult mesenchymal stem cells depends on FROUNT-mediated clustering of CCR2, Cell Stem Cell. 2, 566–75.

    PubMed  CAS  Google Scholar 

  93. Abedin, M., Tintut, Y. & Demer, L. L. (2004) Mesenchymal stem cells and the artery wall, Circ Res. 95, 671–6.

    PubMed  CAS  Google Scholar 

  94. Riedl, S. J. & Salvesen, G. S. (2007) The apoptosome: signalling platform of cell death, Nat Rev Mol Cell Biol. 8, 405–13.

    PubMed  CAS  Google Scholar 

  95. Orrenius, S., Gogvadze, V. & Zhivotovsky, B. (2007) Mitochondrial oxidative stress: implications for cell death, Annu Rev Pharmacol Toxicol. 47, 143–83.

    PubMed  CAS  Google Scholar 

  96. Semedo, P., Palasio, C. G., Oliveira, C. D., Feitoza, C. Q., Goncalves, G. M., Cenedeze, M. A., Wang, P. M., Teixeira, V. P., Reis, M. A., Pacheco-Silva, A. & Camara, N. O. (2009) Early modulation of inflammation by mesenchymal stem cell after acute kidney injury, Int Immunopharmacol. 9, 677–82.

    PubMed  CAS  Google Scholar 

  97. Caplan, A. I. (2009) Why are MSCs therapeutic? New data: new insight, J Pathol. 217, 318–24.

    PubMed  CAS  Google Scholar 

  98. Bian, L., Guo, Z. K., Wang, H. X., Wang, J. S., Wang, H., Li, Q. F., Yang, Y. F., Xiao, F. J., Wu, C. T. & Wang, L. S. (2009) In vitro and in vivo immunosuppressive characteristics of hepatocyte growth factor-modified murine mesenchymal stem cells, In Vivo. 23, 21–7.

    PubMed  CAS  Google Scholar 

  99. Bexell, D., Gunnarsson, S., Tormin, A., Darabi, A., Gisselsson, D., Roybon, L., Scheding, S. & Bengzon, J. (2009) Bone marrow multipotent mesenchymal stroma cells act as pericyte-like migratory vehicles in experimental gliomas, Mol Ther. 17, 183–90.

    PubMed  CAS  Google Scholar 

  100. Asari, S., Itakura, S., Ferreri, K., Liu, C. P., Kuroda, Y., Kandeel, F. & Mullen, Y. (2009) Mesenchymal stem cells suppress B-cell terminal differentiation, Exp Hematol. 37, 604–15.

    PubMed  CAS  Google Scholar 

  101. Jones, B. J. & McTaggart, S. J. (2008) Immunosuppression by mesenchymal stromal cells: from culture to clinic, Exp Hematol. 36, 733–41.

    PubMed  CAS  Google Scholar 

  102. Le Blanc, K. & Ringden, O. (2007) Immunomodulation by mesenchymal stem cells and clinical experience, J Intern Med. 262, 509–25.

    PubMed  Google Scholar 

  103. Gur-Wahnon, D., Borovsky, Z., Beyth, S., Liebergall, M. & Rachmilewitz, J. (2007) Contact-dependent induction of regulatory antigen-presenting cells by human mesenchymal stem cells is mediated via STAT3 signaling, Exp Hematol. 35, 426–33.

    PubMed  CAS  Google Scholar 

  104. Gerdoni, E., Gallo, B., Casazza, S., Musio, S., Bonanni, I., Pedemonte, E., Mantegazza, R., Frassoni, F., Mancardi, G., Pedotti, R. & Uccelli, A. (2007) Mesenchymal stem cells effectively modulate pathogenic immune response in experimental autoimmune encephalomyelitis, Ann Neurol. 61, 219–27.

    PubMed  CAS  Google Scholar 

  105. Fibbe, W. E., Nauta, A. J. & Roelofs, H. (2007) Modulation of immune responses by mesenchymal stem cells, Ann N Y Acad Sci. 1106, 272–8.

    PubMed  CAS  Google Scholar 

  106. Beggs, K. J., Lyubimov, A., Borneman, J. N., Bartholomew, A., Moseley, A., Dodds, R., Archambault, M. P., Smith, A. K. & McIntosh, K. R. (2006) Immunologic consequences of multiple, high-dose administration of allogeneic mesenchymal stem cells to baboons, Cell Transplant. 15, 711–21.

    PubMed  Google Scholar 

  107. Beyth, S., Borovsky, Z., Mevorach, D., Liebergall, M., Gazit, Z., Aslan, H., Galun, E. & Rachmilewitz, J. (2005) Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness, Blood. 105, 2214–9.

    PubMed  CAS  Google Scholar 

  108. Fukunaga, A., Uchida, K., Hara, K., Kuroshima, Y. & Kawase, T. (1999) Differentiation and angiogenesis of central nervous system stem cells implanted with mesenchyme into ischemic rat brain, Cell Transplant. 8, 435–41.

    PubMed  CAS  Google Scholar 

  109. Furumatsu, T., Shen, Z. N., Kawai, A., Nishida, K., Manabe, H., Oohashi, T., Inoue, H. & Ninomiya, Y. (2003) Vascular endothelial growth factor principally acts as the main angiogenic factor in the early stage of human osteoblastogenesis, J Biochem. 133, 633–9.

    PubMed  CAS  Google Scholar 

  110. Nagaya, N., Fujii, T., Iwase, T., Ohgushi, H., Itoh, T., Uematsu, M., Yamagishi, M., Mori, H., Kangawa, K. & Kitamura, S. (2004) Intravenous administration of mesenchymal stem cells improves cardiac function in rats with acute myocardial infarction through angiogenesis and myogenesis, Am J Physiol Heart Circ Physiol. 287, H2670–6.

    PubMed  CAS  Google Scholar 

  111. Tang, Y. L., Zhao, Q., Zhang, Y. C., Cheng, L., Liu, M., Shi, J., Yang, Y. Z., Pan, C., Ge, J. & Phillips, M. I. (2004) Autologous mesenchymal stem cell transplantation induce VEGF and neovascularization in ischemic myocardium, Regul Pept. 117, 3–10.

    PubMed  CAS  Google Scholar 

  112. Mayer, H., Bertram, H., Lindenmaier, W., Korff, T., Weber, H. & Weich, H. (2005) Vascular endothelial growth factor (VEGF-A) expression in human mesenchymal stem cells: autocrine and paracrine role on osteoblastic and endothelial differentiation, J Cell Biochem. 95, 827–39.

    PubMed  CAS  Google Scholar 

  113. Tang, Y. L., Zhao, Q., Qin, X., Shen, L., Cheng, L., Ge, J. & Phillips, M. I. (2005) Paracrine action enhances the effects of autologous mesenchymal stem cell transplantation on vascular regeneration in rat model of myocardial infarction, Ann Thorac Surg. 80, 229–36; discussion 236–7.

    PubMed  Google Scholar 

  114. Ghajar, C. M., Blevins, K. S., Hughes, C. C., George, S. C. & Putnam, A. J. (2006) Mesenchymal stem cells enhance angiogenesis in mechanically viable prevascularized tissues via early matrix metalloproteinase upregulation, Tissue Eng. 12, 2875–88.

    PubMed  CAS  Google Scholar 

  115. Han, S. K., Chun, K. W., Gye, M. S. & Kim, W. K. (2006) The effect of human bone marrow stromal cells and dermal fibroblasts on angiogenesis, Plast Reconstr Surg. 117, 829–35.

    PubMed  CAS  Google Scholar 

  116. Shyu, K. G., Wang, B. W., Hung, H. F., Chang, C. C. & Shih, D. T. (2006) Mesenchymal stem cells are superior to angiogenic growth factor genes for improving myocardial performance in the mouse model of acute myocardial infarction, J Biomed Sci. 13, 47–58.

    PubMed  CAS  Google Scholar 

  117. Tang, J., Xie, Q., Pan, G., Wang, J. & Wang, M. (2006) Mesenchymal stem cells participate in angiogenesis and improve heart function in rat model of myocardial ischemia with reperfusion, Eur J Cardiothorac Surg. 30, 353–61.

    PubMed  Google Scholar 

  118. Kasper, G., Dankert, N., Tuischer, J., Hoeft, M., Gaber, T., Glaeser, J. D., Zander, D., Tschirschmann, M., Thompson, M., Matziolis, G. & Duda, G. N. (2007) Mesenchymal stem cells regulate angiogenesis according to their mechanical environment, Stem Cells. 25, 903–10.

    PubMed  CAS  Google Scholar 

  119. Kim, Y., Kim, H., Cho, H., Bae, Y., Suh, K. & Jung, J. (2007) Direct comparison of human mesenchymal stem cells derived from adipose tissues and bone marrow in mediating neovascularization in response to vascular ischemia, Cell Physiol Biochem. 20, 867–76.

    PubMed  CAS  Google Scholar 

  120. Wu, Y., Chen, L., Scott, P. G. & Tredget, E. E. (2007) Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis, Stem Cells. 25, 2648–59.

    PubMed  CAS  Google Scholar 

  121. Askarov, M. B. & Onischenko, N. A. (2008) Multipotent mesenchymal stromal cells of autologous bone marrow stimulate neoangiogenesis, restore microcirculation, and promote healing of indolent ulcers of the stomach, Bull Exp Biol Med. 146, 512–6.

    PubMed  CAS  Google Scholar 

  122. Egana, J. T., Fierro, F. A., Kruger, S., Bornhauser, M., Huss, R., Lavandero, S. & Machens, H. G. (2009) Use of human mesenchymal cells to improve vascularization in a mouse model for scaffold-based dermal regeneration, Tissue Eng Part A. 15, 1191–200.

    PubMed  CAS  Google Scholar 

  123. Huang, N. F., Lam, A., Fang, Q., Sievers, R. E., Li, S. & Lee, R. J. (2009) Bone marrow-derived mesenchymal stem cells in fibrin augment angiogenesis in the chronically infarcted myocardium, Regen Med. 4, 527–38.

    PubMed  CAS  Google Scholar 

  124. Bellini, A. & Mattoli, S. (2007) The role of the fibrocyte, a bone marrow-derived mesenchymal progenitor, in reactive and reparative fibroses, Lab Invest. 87, 858–70.

    PubMed  CAS  Google Scholar 

  125. Dixon, J. A., Gorman, R. C., Stroud, R. E., Bouges, S., Hirotsugu, H., Gorman, J. H., 3rd, Martens, T. P., Itescu, S., Schuster, M. D., Plappert, T., St John-Sutton, M. G. & Spinale, F. G. (2009) Mesenchymal cell transplantation and myocardial remodeling after myocardial infarction, Circulation. 120, S220–9.

    PubMed  CAS  Google Scholar 

  126. Molina, E. J., Palma, J., Gupta, D., Torres, D., Gaughan, J. P., Houser, S. & Macha, M. (2009) Reverse remodeling is associated with changes in extracellular matrix proteases and tissue inhibitors after mesenchymal stem cell (MSC) treatment of pressure overload hypertrophy, J Tissue Eng Regen Med. 3, 85–91.

    PubMed  CAS  Google Scholar 

  127. Dai, W., Hale, S. L. & Kloner, R. A. (2007) Role of a paracrine action of mesenchymal stem cells in the improvement of left ventricular function after coronary artery occlusion in rats, Regen Med. 2, 63–8.

    PubMed  Google Scholar 

  128. Ohnishi, S., Sumiyoshi, H., Kitamura, S. & Nagaya, N. (2007) Mesenchymal stem cells attenuate cardiac fibroblast proliferation and collagen synthesis through paracrine actions, FEBS Lett. 581, 3961–6.

    PubMed  CAS  Google Scholar 

  129. Chen, L., Tredget, E. E., Wu, P. Y. & Wu, Y. (2008) Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing, PLoS One. 3, e1886.

    PubMed  Google Scholar 

  130. Oh, J. Y., Kim, M. K., Shin, M. S., Lee, H. J., Ko, J. H., Wee, W. R. & Lee, J. H. (2008) The anti-inflammatory and anti-angiogenic role of mesenchymal stem cells in corneal wound healing following chemical injury, Stem Cells. 26, 1047–55.

    PubMed  CAS  Google Scholar 

  131. Estrada, R., Li, N., Sarojini, H., An, J., Lee, M. J. & Wang, E. (2009) Secretome from mesenchymal stem cells induces angiogenesis via Cyr61, J Cell Physiol. 219, 563–71.

    PubMed  CAS  Google Scholar 

  132. Gruber, R., Kandler, B., Holzmann, P., Vogele-Kadletz, M., Losert, U., Fischer, M. B. & Watzek, G. (2005) Bone marrow stromal cells can provide a local environment that favors migration and formation of tubular structures of endothelial cells, Tissue Eng. 11, 896–903.

    PubMed  CAS  Google Scholar 

  133. Kinnaird, T., Stabile, E., Burnett, M. S., Lee, C. W., Barr, S., Fuchs, S. & Epstein, S. E. (2004) Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms, Circ Res. 94, 678–85.

    PubMed  CAS  Google Scholar 

  134. Kamihata, H., Matsubara, H., Nishiue, T., Fujiyama, S., Tsutsumi, Y., Ozono, R., Masaki, H., Mori, Y., Iba, O., Tateishi, E., Kosaki, A., Shintani, S., Murohara, T., Imaizumi, T. & Iwasaka, T. (2001) Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines, Circulation. 104, 1046–52.

    PubMed  CAS  Google Scholar 

  135. Caplan, A. I. (2005) Review: mesenchymal stem cells: cell-based reconstructive therapy in orthopedics, Tissue Eng. 11, 1198–211.

    PubMed  CAS  Google Scholar 

  136. Tang, Y. L., Zhu, W., Cheng, M., Chen, L., Zhang, J., Sun, T., Kishore, R., Phillips, M. I., Losordo, D. W. & Qin, G. (2009) Hypoxic preconditioning enhances the benefit of cardiac progenitor cell therapy for treatment of myocardial infarction by inducing CXCR4 expression, Circ Res. 104, 1209–16.

    PubMed  CAS  Google Scholar 

  137. Ma, T., Grayson, W. L., Frohlich, M. & Vunjak-Novakovic, G. (2009) Hypoxia and stem cell-based engineering of mesenchymal tissues, Biotechnol Prog. 25, 32–42.

    PubMed  CAS  Google Scholar 

  138. Wang, J. A., Chen, T. L., Jiang, J., Shi, H., Gui, C., Luo, R. H., Xie, X. J., Xiang, M. X. & Zhang, X. (2008) Hypoxic preconditioning attenuates hypoxia/reoxygenation-induced apoptosis in mesenchymal stem cells, Acta Pharmacol Sin. 29, 74–82.

    PubMed  Google Scholar 

  139. Rosova, I., Dao, M., Capoccia, B., Link, D. & Nolta, J. A. (2008) Hypoxic preconditioning results in increased motility and improved therapeutic potential of human mesenchymal stem cells, Stem Cells. 26, 2173–82.

    PubMed  CAS  Google Scholar 

  140. Mylotte, L. A., Duffy, A. M., Murphy, M., O’Brien, T., Samali, A., Barry, F. & Szegezdi, E. (2008) Metabolic flexibility permits mesenchymal stem cell survival in an ischemic environment, Stem Cells. 26, 1325–36.

    PubMed  CAS  Google Scholar 

  141. Hu, X., Yu, S. P., Fraser, J. L., Lu, Z., Ogle, M. E., Wang, J. A. & Wei, L. (2008) Transplantation of hypoxia-preconditioned mesenchymal stem cells improves infarcted heart function via enhanced survival of implanted cells and angiogenesis, J Thorac Cardiovasc Surg. 135, 799–808.

    PubMed  CAS  Google Scholar 

  142. Hare, J. M., Traverse, J. H., Henry, T. D., Dib, N., Strumpf, R. K., Schulman, S. P., Gerstenblith, G., DeMaria, A. N., Denktas, A. E., Gammon, R. S., Hermiller, J. B., Jr., Reisman, M. A., Schaer, G. L. & Sherman, W. (2009) A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction, J Am Coll Cardiol. 54, 2277–86.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Doronin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Doronin, S. (2011). Homing, Survival, and Paracrine Effects of Human Mesenchymal Stem Cells. In: Cohen, I., Gaudette, G. (eds) Regenerating the Heart. Stem Cell Biology and Regenerative Medicine. Humana Press. https://doi.org/10.1007/978-1-61779-021-8_7

Download citation

Publish with us

Policies and ethics