Skip to main content

Tracking of Stem Cells In Vivo

  • Chapter
  • First Online:
Regenerating the Heart

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

Clinical and basic studies of stem-cell-based therapies have shown promising results for cardiovascular diseases. Despite a rapid transition from animal studies to clinical trials, the mechanisms of action by which stem cells improve heart function remain largely unknown. To optimize stem cell therapies in patients, a method to noninvasively monitor stem cell delivery and to evaluate cell survival, biodistribution, and the fate of implanted cells in the same subject over time would be desirable. Many different methods have been adapted from histopathological cell labeling techniques to enable tracking of stem cells with noninvasive imaging. This chapter focuses on the most promising stem cell labeling techniques that can be combined with clinically available imaging modalities for the evaluation of cardiac function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdel-Latif A, Bolli R, Tleyjeh IM, et al. (2007) Adult bone marrow-derived cells for cardiac repair: a systematic review and meta-analysis. Arch Intern Med 167: 989–997

    PubMed  Google Scholar 

  2. Lipinski MJ, Biondi-Zoccai GG, Abbate A, et al. (2007) Impact of intracoronary cell therapy on left ventricular function in the setting of acute myocardial infarction: a collaborative systematic review and meta-analysis of controlled clinical trials. J Am Coll Cardiol 50: 1761–1767

    PubMed  Google Scholar 

  3. Singh S, Arora R, Handa K, et al. (2009) Stem cells improve left ventricular function in acute myocardial infarction. Clin Cardiol 32: 176–180

    PubMed  Google Scholar 

  4. Zhang SN, Sun AJ, Ge JB, et al. (2009) Intracoronary autologous bone marrow stem cells transfer for patients with acute myocardial infarction: a meta-analysis of randomised controlled trials. Int J Cardiol 136: 178–185

    PubMed  Google Scholar 

  5. Bartunek J, Vanderheyden M, Vandekerckhove B, et al. (2005) Intracoronary injection of CD133-positive enriched bone marrow progenitor cells promotes cardiac recovery after recent myocardial infarction: feasibility and safety. Circulation 112: I178–I183

    PubMed  Google Scholar 

  6. Fernandez-Aviles F, San Roman JA, Garcia-Frade J, et al. (2004) Experimental and clinical regenerative capability of human bone marrow cells after myocardial infarction. Circ Res 95: 742–748

    PubMed  CAS  Google Scholar 

  7. Lunde K, Solheim S, Aakhus S, et al. (2005) Autologous stem cell transplantation in acute myocardial infarction: the ASTAMI randomized controlled trial. Intracoronary transplantation of autologous mononuclear bone marrow cells, study design and safety aspects. Scand Cardiovasc J 39: 150–158

    PubMed  CAS  Google Scholar 

  8. Perin EC, Dohmann HF, Borojevic R, et al. (2004) Improved exercise capacity and ischemia 6 and 12 months after transendocardial injection of autologous bone marrow mononuclear cells for ischemic cardiomyopathy. Circulation 110: I213–I218

    Google Scholar 

  9. Schachinger V, Assmus B, Britten MB, et al. (2004) Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: final one-year results of the TOPCARE-AMI trial. J Am Coll Cardiol 44: 1690–1699

    PubMed  Google Scholar 

  10. Wollert KC, Meyer GP, Lotz J, et al. (2004) Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet 364: 141–148

    PubMed  Google Scholar 

  11. Zhang M, Methot D, Poppa V, et al. (2001) Cardiomyocyte grafting for cardiac repair: graft cell death and anti-death strategies. J Mol Cell Cardiol 33: 907–921

    PubMed  CAS  Google Scholar 

  12. Lavender JP, Goldman JM, Arnot RN, et al. (1977) Kinetics of indium-III labelled lymphocytes in normal subjects and patients with Hodgkin’s disease. Br Med J 2: 797–799

    PubMed  CAS  Google Scholar 

  13. Thakur ML, Segal AW, Louis L, et al. (1977) Indium-111-labeled cellular blood components: mechanism of labeling and intracellular location in human neutrophils. J Nucl Med 18: 1022–1026

    PubMed  CAS  Google Scholar 

  14. Gao J, Dennis JE, Muzic RF, et al. (2001) The dynamic in vivo distribution of bone marrow-derived mesenchymal stem cells after infusion. Cell Tissues Organs 169: 12–20

    CAS  Google Scholar 

  15. Zhou R, Thomas DH, Qiao H, et al. (2005) In vivo detection of stem cells grafted in infarcted rat myocardium. J Nucl Med 46: 816–822

    PubMed  CAS  Google Scholar 

  16. Hou D, Youssef EA, Brinton TJ, et al. (2005) Radiolabeled cell distribution after intramyocardial, intracoronary, and interstitial retrograde coronary venous delivery: implications for current clinical trials. Circulation 112: I150–I156

    PubMed  Google Scholar 

  17. Aicher A, Brenner W, Zuhayra M, et al. (2003) Assessment of the tissue distribution of transplanted human endothelial progenitor cells by radioactive labeling. Circulation 107: 2134–2139

    PubMed  Google Scholar 

  18. Brenner W, Aicher A, Eckey T, et al. (2004) 111In-labeled CD34+ hematopoietic progenitor cells in a rat myocardial infarction model. J Nucl Med 45: 512–518

    PubMed  CAS  Google Scholar 

  19. Chin BB, Nakamoto Y, Bulte JW, et al. (2003) 111In oxine labelled mesenchymal stem cell SPECT after intravenous administration in myocardial infarction. Nucl Med Commun 24: 1149–1154

    PubMed  CAS  Google Scholar 

  20. Kraitchman DL, Mahmood A, Soto AV, et al. (2005) Targeted magnetic resonance imaging fluoroscopic delivery of magnetically-labeled mesenchymal stem cells improves myocardial function without altering infarction size. Circulation 112: U175

    Google Scholar 

  21. Kraitchman DL, Tatsumi M, Gilson WD, et al. (2005) Dynamic imaging of allogeneic mesenchymal stem cells trafficking to myocardial infarction. Circulation 112: 1451–1461

    PubMed  Google Scholar 

  22. Doyle B, Kemp BJ, Chareonthaitawee P, et al. (2007) Dynamic tracking during intracoronary injection of 18F-FDG-labeled progenitor cell therapy for acute myocardial infarction. J Nucl Med 48: 1708–1714

    PubMed  Google Scholar 

  23. Hofmann M, Wollert KC, Meyer GP, et al. (2005) Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation 111: 2198–2202

    PubMed  Google Scholar 

  24. Kang HJ, Lee HY, Na SH, et al. (2006) Differential effect of intracoronary infusion of mobilized peripheral blood stem cells by granulocyte colony-stimulating factor on left ventricular function and remodeling in patients with acute myocardial infarction versus old myocardial infarction: the MAGIC Cell-3-DES randomized, controlled trial. Circulation 114: I145–I151

    PubMed  Google Scholar 

  25. Schachinger V, Aicher A, Dobert N, et al. (2008) Pilot trial on determinants of progenitor cell recruitment to the infarcted human myocardium. Circulation 118: 1425–1432

    PubMed  Google Scholar 

  26. Adonai N, Nguyen KN, Walsh J, et al. (2002) Ex vivo cell labeling with 64Cu-pyruvaldehyde-bis(N 4-methylthiosemicarbazone) for imaging cell trafficking in mice with positron-emission tomography. Proc Natl Acad Sci USA 99: 3030–3035

    PubMed  CAS  Google Scholar 

  27. Jin Y, Kong H, Stodilka RZ, et al. (2005) Determining the minimum number of detectable cardiac-transplanted 111In-tropolone-labelled bone-marrow-derived mesenchymal stem cells by SPECT. Phys Med Biol 50: 4445–4455

    PubMed  Google Scholar 

  28. Gholamrezanezhad A, Mirpour S, Ardekani JM, et al. (2009) Cytotoxicity of 111In-oxine on mesenchymal stem cells: a time-dependent adverse effect. Nucl Med Commun 30: 210–216

    PubMed  CAS  Google Scholar 

  29. Stark DD, Weissleder R, Elizondo G, et al. (1988) Superparamagnetic iron oxide: clinical application as a contrast agent for MR imaging of the liver. Radiology 168: 297–301

    PubMed  CAS  Google Scholar 

  30. Cunningham CH, Arai T, Yang PC, et al. (2005) Positive contrast magnetic resonance imaging of cells labeled with magnetic nanoparticles. Magn Reson Med 53: 999–1005

    PubMed  CAS  Google Scholar 

  31. Mani V, Saebo KC, Itskovich V, et al. (2006) Gradient echo acquisition for superparamagnetic particles with positive contrast (GRASP): sequence characterization in membrane and glass superparamagnetic iron oxide phantoms at 1.5T and 3T. Magn Reson Med 55: 126–135

    PubMed  CAS  Google Scholar 

  32. Stuber M, Gilson WD, Schär M, et al. (2007) Positive contrast visualization of iron oxide-labeled stem cells using inversion recovery with ON-resonant water suppression (IRON). Magn Reson Med 58: 1072–1077

    PubMed  Google Scholar 

  33. Daldrup-Link HE, Meier R, Rudelius M, et al. (2005) In vivo tracking of genetically engineered, anti-HER2/neu directed natural killer cells to HER2/neu positive mammary tumors with magnetic resonance imaging. Eur Radiol 15: 4–13

    PubMed  Google Scholar 

  34. Frank JA, Miller BR, Arbab AS, et al. (2003) Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents. Radiology 228: 480–487

    PubMed  Google Scholar 

  35. Frank JA, Zywicke H, Jordan EK, et al. (2002) Magnetic intracellular labeling of mammalian cells by combining (FDA-approved) superparamagnetic iron oxide MR contrast agents and commonly used transfection agents. Acad Radiol 9: S484–S487

    PubMed  Google Scholar 

  36. Kostura L, Kraitchman DL, Mackay AM, et al. (2004) Feridex labeling of mesenchymal stem cells inhibits chondrogenesis but not adipogenesis or osteogenesis. NMR Biomed 17: 513–517

    PubMed  Google Scholar 

  37. Schafer R, Kehlbach R, Muller M, et al. (2009) Labeling of human mesenchymal stromal cells with superparamagnetic iron oxide leads to a decrease in migration capacity and colony formation ability. Cytotherapy 11: 68–78

    PubMed  Google Scholar 

  38. Arbab AS, Yocum GT, Rad AM, et al. (2005) Labeling of cells with ferumoxides-protamine sulfate complexes does not inhibit function or differentiation capacity of hematopoietic or mesenchymal stem cells. NMR Biomed 18: 553–559

    PubMed  CAS  Google Scholar 

  39. Arbab AS, Yocum GT, Kalish H, et al. (2004) Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI. Blood 104: 1217–1223

    PubMed  CAS  Google Scholar 

  40. Kraitchman DL, Heldman AW, Atalar E, et al. (2003) In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation 107: 2290–2293

    PubMed  Google Scholar 

  41. Hill JM, Dick AJ, Raman VK, et al. (2003) Serial cardiac magnetic resonance imaging of injected mesenchymal stem cells. Circulation 108: 1009–1014

    PubMed  Google Scholar 

  42. Kraitchman DL and Bulte JW (2008) Imaging of stem cells using MRI. Basic Res Cardiol 103: 105–113

    PubMed  CAS  Google Scholar 

  43. Kraitchman DL, Gilson WD, and Lorenz CH (2008) Stem cell therapy: MRI guidance and monitoring. J Magn Reson Imaging 27: 299–310

    PubMed  Google Scholar 

  44. Rickers C, Gallegos R, Seethamraju RT, et al. (2004) Applications of magnetic resonance imaging for cardiac stem cell therapy. J Interv Cardiol 17: 37–46

    PubMed  Google Scholar 

  45. Saeed M, Saloner D, Weber O, et al. (2005) MRI in guiding and assessing intramyocardial therapy. Eur Radiol 15: 851–863

    PubMed  CAS  Google Scholar 

  46. Dick AJ, Guttman MA, Raman VK, et al. (2003) Magnetic resonance fluoroscopy allows targeted delivery of mesenchymal stem cells to infarct borders in swine. Circulation 108: 2899–2904

    PubMed  Google Scholar 

  47. Kraitchman DL (2007) Non-invasive imaging and labelling techniques in stem cell therapy. In Rebuilding the infarcted heart, K.C. Wollert, and L.J. Field, eds. (London, UK Informa UK Ltd), pp. 135–149

    Google Scholar 

  48. Rickers C, Kraitchman D, Fischer G, et al. (2005) Cardiovascular interventional MR imaging: a new road for therapy and repair in the heart. Magn Reson Imaging Clin N Am 13: 465–479

    PubMed  Google Scholar 

  49. Amado LC, Salrais AP, Schuleri KH, et al. (2005) Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proc Natl Acad Sci USA 102: 11474–11479

    PubMed  CAS  Google Scholar 

  50. Schuleri KH, Amado LC, Boyle AJ, et al. (2008) Early improvement in cardiac tissue perfusion due to mesenchymal stem cells. Am J Physiol Heart Circ Physiol 294: H2002–H2011

    PubMed  CAS  Google Scholar 

  51. Britten MB, Abolmaali ND, Assmus B, et al. (2003) Infarct remodeling after intracoronary progenitor cell treatment in patients with acute myocardial infarction (TOPCARE-AMI): mechanistic insights from serial contrast-enhanced magnetic resonance imaging. Circulation 108: 2212–2218

    PubMed  CAS  Google Scholar 

  52. Janssens S, Dubois C, Bogaert J, et al. (2006) Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet 367: 113–121

    PubMed  Google Scholar 

  53. Walczak P, Kedziorek D, Gilad AA, et al. (2005) Instant MR labeling of stem cells using magnetoelectroporation. Magn Reson Med 54: 769–774

    PubMed  CAS  Google Scholar 

  54. Partlow KC, Chen J, Brant JA, et al. (2007) 19F magnetic resonance imaging for stem/progenitor cell tracking with multiple unique perfluorocarbon nanobeacons. FASEB J 21: 1647–1654

    PubMed  CAS  Google Scholar 

  55. Ahrens ET, Flores R, Xu H, et al. (2005) In vivo imaging platform for tracking immunotherapeutic cells. Nat Biotechnol 23: 983–987

    PubMed  CAS  Google Scholar 

  56. Bulte JW (2005) Hot spot MRI emerges from the background. Nat Biotechnol 23: 945–946

    PubMed  CAS  Google Scholar 

  57. Srinivas M, Turner MS, Janjic JM, et al. (2009) In vivo cytometry of antigen-specific t cells using (19)F MRI. Magn Reson Med 63: 747–753

    Google Scholar 

  58. Lin S, Xie X, Patel MR, et al. (2007) Quantum dot imaging for embryonic stem cells. BMC Biotechnol 7: 67

    PubMed  Google Scholar 

  59. Muller-Borer BJ, Collins MC, Gunst PR, et al. (2007) Quantum dot labeling of mesenchymal stem cells. J Nanobiotechnol 5: 9

    Google Scholar 

  60. Slotkin JR, Chakrabarti L, Dai HN, et al. (2007) In vivo quantum dot labeling of mammalian stem and progenitor cells. Dev Dyn 236: 3393–3401

    PubMed  CAS  Google Scholar 

  61. Medintz IL, Uyeda HT, Goldman ER, et al. (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4: 435–446

    PubMed  CAS  Google Scholar 

  62. Rosen AB, Kelly DJ, Schuldt AJ, et al. (2007) Finding fluorescent needles in the cardiac haystack: tracking human mesenchymal stem cells labeled with quantum dots for quantitative in vivo three-dimensional fluorescence analysis. Stem Cells 25: 2128–2138

    PubMed  CAS  Google Scholar 

  63. Shah BS, Clark PA, Moioli EK, et al. (2007) Labeling of mesenchymal stem cells by bioconjugated quantum dots. Nano Lett 7: 3071–3079

    PubMed  CAS  Google Scholar 

  64. Hoshino K, Ly HQ, Frangioni JV, et al. (2007) In vivo tracking in cardiac stem cell-based therapy. Prog Cardiovasc Dis 49: 414–420

    PubMed  Google Scholar 

  65. Ma B, Hankenson KD, Dennis JE, et al. (2005) A simple method for stem cell labeling with fluorine 18. Nucl Med Biol 32: 701–705

    PubMed  CAS  Google Scholar 

  66. Amsalem Y, Mardor Y, Feinberg MS, et al. (2007) Iron-oxide labeling and outcome of transplanted mesenchymal stem cells in the infarcted myocardium. Circulation 116: I38–I45

    PubMed  CAS  Google Scholar 

  67. Terrovitis J, Kwok KF, Lautamaki R, et al. (2008) Ectopic expression of the sodium-iodide symporter enables imaging of transplanted cardiac stem cells in vivo by single-photon emission computed tomography or positron emission tomography. J Am Coll Cardiol 52: 1652–1660

    PubMed  Google Scholar 

  68. Terrovitis J, Stuber M, Youssef A, et al. (2008) Magnetic resonance imaging overestimates ferumoxide-labeled stem cell survival after transplantation in the heart. Circulation 117: 1555–1562

    PubMed  Google Scholar 

  69. Ebert SN, Taylor DG, Nguyen HL, et al. (2007) Noninvasive tracking of cardiac embryonic stem cells in vivo using magnetic resonance imaging techniques. Stem Cells25: 2936–2944

    PubMed  Google Scholar 

  70. Stuckey DJ, Carr CA, Martin-Rendon E, et al. (2006) Iron particles for noninvasive monitoring of bone marrow stromal cell engraftment into, and isolation of viable engrafted donor cells from, the heart. Stem Cells 24: 1968–1975

    PubMed  CAS  Google Scholar 

  71. Walczak P, Kedziorek DA, Gilad AA, et al. (2007) Applicability and limitations of MR tracking of neural stem cells with asymmetric cell division and rapid turnover: the case of the shiverer dysmyelinated mouse brain. Magn Reson Med 58: 261–269

    PubMed  CAS  Google Scholar 

  72. Sheikh AY, Lin SA, Cao F, et al. (2007) Molecular imaging of bone marrow mononuclear cell homing and engraftment in ischemic myocardium. Stem Cells 25: 2677–2684

    PubMed  Google Scholar 

  73. Lin Y, Molter J, Lee Z, et al. (2008) Bioluminescence imaging of hematopoietic stem cell repopulation in murine models. Methods Mol Biol 430: 295–306

    PubMed  CAS  Google Scholar 

  74. DeLuca M and McElroy WD (1974) Kinetics of the firefly luciferase catalyzed reactions. Biochemistry 13: 921–925

    PubMed  CAS  Google Scholar 

  75. Wang X, Rosol M, Ge S, et al. (2003) Dynamic tracking of human hematopoietic stem cell engraftment using in vivo bioluminescence imaging. Blood 102: 3478–3482

    PubMed  CAS  Google Scholar 

  76. Chen IY, Greve JM, Gheysens O, et al. (2009) Comparison of optical bioluminescence reporter gene and superparamagnetic iron oxide MR contrast agent as cell markers for noninvasive imaging of cardiac cell transplantation. Mol Imaging Biol 11: 178–187

    PubMed  Google Scholar 

  77. Cao F, Lin S, Xie X, et al. (2006) In vivo visualization of embryonic stem cell survival, proliferation, and migration after cardiac delivery. Circulation 113: 1005–1014

    PubMed  Google Scholar 

  78. Min JJ, Ahn Y, Moon S, et al. (2006) In vivo bioluminescence imaging of cord blood derived mesenchymal stem cell transplantation into rat myocardium. Ann Nucl Med 20: 165–170

    PubMed  Google Scholar 

  79. van der Bogt KE, Sheikh AY, Schrepfer S, et al. (2008) Comparison of different adult stem cell types for treatment of myocardial ischemia. Circulation 118: S121–S129

    PubMed  Google Scholar 

  80. Wilson K, Yu J, Lee A, et al. (2008) In vitro and in vivo bioluminescence reporter gene imaging of human embryonic stem cells. J Vis Exp 14: 740

    Google Scholar 

  81. Wu JC, Chen IY, Sundaresan G, et al. (2003) Molecular imaging of cardiac cell transplantation in living animals using optical bioluminescence and positron emission tomography. Circulation 108: 1302–1305

    PubMed  Google Scholar 

  82. Wu JC, Chen IY, Wang Y, et al. (2004) Molecular imaging of the kinetics of vascular endothelial growth factor gene expression in ischemic myocardium. Circulation 110: 685–691

    PubMed  CAS  Google Scholar 

  83. Lee Z, Dennis JE, and Gerson SL (2008) Imaging stem cell implant for cellular-based therapies. Exp Biol Med (Maywood) 233: 930–940

    CAS  Google Scholar 

  84. Miyagawa M, Anton M, Wagner B, et al. (2005) Non-invasive imaging of cardiac transgene expression with PET: comparison of the human sodium/iodide symporter gene and HSV1-tk as the reporter gene. Eur J Nucl Med Mol Imaging 32: 1108–1114

    PubMed  Google Scholar 

  85. Sun X, Annala AJ, Yaghoubi SS, et al. (2001) Quantitative imaging of gene induction in living animals. Gene Ther 8: 1572–1579

    PubMed  CAS  Google Scholar 

  86. Yaghoubi SS, Wu L, Liang Q, et al. (2001) Direct correlation between positron emission tomographic images of two reporter genes delivered by two distinct adenoviral vectors. Gene Ther 8: 1072–1080

    PubMed  CAS  Google Scholar 

  87. Kang JH, Lee DS, Paeng JC, et al. (2005) Development of a sodium/iodide symporter (NIS)-transgenic mouse for imaging of cardiomyocyte-specific reporter gene expression. J Nucl Med 46: 479–483

    PubMed  CAS  Google Scholar 

  88. Ricci D, Mennander AA, Pham LD, et al. (2008) Non-invasive radioiodine imaging for accurate quantitation of NIS reporter gene expression in transplanted hearts. Eur J Cardiothorac Surg 33: 32–39

    PubMed  Google Scholar 

  89. Shin JH, Chung JK, Kang JH, et al. (2004) Feasibility of sodium/iodide symporter gene as a new imaging reporter gene: comparison with HSV1-tk. Eur J Nucl Med Mol Imaging 31: 425–432

    PubMed  CAS  Google Scholar 

  90. Huang M, Batra RK, Kogai T, et al. (2001) Ectopic expression of the thyroperoxidase gene augments radioiodide uptake and retention mediated by the sodium iodide symporter in non-small cell lung cancer. Cancer Gene Ther 8: 612–618

    PubMed  CAS  Google Scholar 

  91. Barrio JR, Satyamurthy N, Huang SC, et al. (1989) 3-(2′-[18F]fluoroethyl)spiperone: in vivo biochemical and kinetic characterization in rodents, nonhuman primates, and humans.J Cereb Blood Flow Metab 9: 830–839

    PubMed  CAS  Google Scholar 

  92. MacLaren DC, Gambhir SS, Satyamurthy N, et al. (1999) Repetitive, non-invasive imaging of the dopamine D2 receptor as a reporter gene in living animals. Gene Ther 6: 785–791

    PubMed  CAS  Google Scholar 

  93. Chen IY, Wu JC, Min JJ, et al. (2004) Micro-positron emission tomography imaging of cardiac gene expression in rats using bicistronic adenoviral vector-mediated gene delivery. Circulation 109: 1415–1420; Epub 2004 Mar, 1418

    PubMed  Google Scholar 

  94. Inubushi M, Wu JC, Gambhir SS, et al. (2003) Positron-emission tomography reporter gene expression imaging in rat myocardium. Circulation 107: 326–332

    PubMed  CAS  Google Scholar 

  95. Wu JC, Inubushi M, Sundaresan G, et al. (2002) Positron emission tomography imaging of cardiac reporter gene expression in living rats. Circulation 106: 180–183

    PubMed  Google Scholar 

  96. Penuelas I, Mazzolini G, Boan JF, et al. (2005) Positron emission tomography imaging of adenoviral-mediated transgene expression in liver cancer patients. Gastroenterology 128: 1787–1795

    PubMed  CAS  Google Scholar 

  97. Luker GD, Sharma V, Pica CM, et al. (2002) Noninvasive imaging of protein–protein interactions in living animals. Proc Natl Acad Sci USA 99: 6961–6966

    PubMed  CAS  Google Scholar 

  98. Gambhir SS, Bauer E, Black ME, et al. (2000) A mutant herpes simplex virus type 1 thymidine kinase reporter gene shows improved sensitivity for imaging reporter gene expression with positron emission tomography. Proc Natl Acad Sci USA 97: 2785–2790

    PubMed  CAS  Google Scholar 

  99. Ray P, De A, Min JJ, et al. (2004) Imaging tri-fusion multimodality reporter gene expression in living subjects. Cancer Res 64: 1323–1330

    PubMed  CAS  Google Scholar 

  100. Koretsky AP, Brosnan MJ, Chen LH, et al. (1990) NMR detection of creatine kinase expressed in liver of transgenic mice: determination of free ADP levels. Proc Natl Acad Sci USA 87: 3112–3116

    PubMed  CAS  Google Scholar 

  101. Deans AE, Wadghiri YZ, Bernas LM, et al. (2006) Cellular MRI contrast via coexpression of transferrin receptor and ferritin. Magn Reson Med 56: 51–59

    PubMed  CAS  Google Scholar 

  102. Genove G, DeMarco U, Xu H, et al. (2005) A new transgene reporter for in vivo magnetic resonance imaging. Nat Med 11: 450–454

    PubMed  CAS  Google Scholar 

  103. Liu J, Cheng EC, Long Jr RC, et al. (2009) Noninvasive monitoring of embryonic stem cells in vivo with MRI transgene reporter. Tissue Eng Part C Methods 15: 739–747

    PubMed  CAS  Google Scholar 

  104. Pawelczyk E, Arbab AS, Pandit S, et al. (2006) Expression of transferrin receptor and ferritin following ferumoxides-protamine sulfate labeling of cells: implications for cellular magnetic resonance imaging. NMR Biomed 19: 581–592

    PubMed  CAS  Google Scholar 

  105. Gilad AA, McMahon MT, Walczak P, et al. (2007) Artificial reporter gene providing MRI contrast based on proton exchange. Nat Biotechnol 25: 217–219

    PubMed  CAS  Google Scholar 

  106. Gilad AA, Winnard PT, Jr., van Zijl PC, et al. (2007) Developing MR reporter genes: promises and pitfalls. NMR Biomed 20: 275–290

    PubMed  CAS  Google Scholar 

  107. Gilad AA, Ziv K, McMahon MT, et al. (2008) MRI reporter genes. J Nucl Med49: 1905–1908

    PubMed  CAS  Google Scholar 

  108. Kuliszewski MA, Fujii H, Liao C, et al. (2009) Molecular imaging of endothelial progenitor cell engraftment using contrast-enhanced ultrasound and targeted microbubbles. Cardiovasc Res 83: 653–662; doi:10.1093/cvr/cvp218

    PubMed  CAS  Google Scholar 

  109. Ray P, Wu AM, and Gambhir SS (2003) Optical bioluminescence and positron emission tomography imaging of a novel fusion reporter gene in tumor xenografts of living mice. Cancer Res 63: 1160–1165

    PubMed  CAS  Google Scholar 

  110. Gyöngyösi M, Blanco J, Marian T, et al. (2008) Serial noninvasive in vivo positron emission tomographic tracking of percutaneously intramyocardially injected autologous porcine mesenchymal stem cells modified for transgene reporter gene expression. Circ Cardiovasc Imaging 1: 94–103

    PubMed  Google Scholar 

  111. Jacobs A, Braunlich I, Graf R, et al. (2001) Quantitative kinetics of [124I]FIAU in cat and man. J Nucl Med 42: 467–475

    PubMed  CAS  Google Scholar 

  112. Jacobs A, Voges J, Reszka R, et al. (2001) Positron-emission tomography of vector-mediated gene expression in gene therapy for gliomas. Lancet 358: 727–729

    PubMed  CAS  Google Scholar 

  113. Ponomarev V, Doubrovin M, Shavrin A, et al. (2007) A human-derived reporter gene for noninvasive imaging in humans: mitochondrial thymidine kinase type 2. J Nucl Med48: 819–826

    PubMed  CAS  Google Scholar 

  114. Yaghoubi SS, Barrio JR, Namavari M, et al. (2005) Imaging progress of herpes simplex virus type 1 thymidine kinase suicide gene therapy in living subjects with positron emission tomography. Cancer Gene Ther 12: 329–339

    PubMed  CAS  Google Scholar 

  115. Reinecke H, Zhang M, Bartosek T, et al. (1999) Survival, integration, and differentiation of cardiomyocyte grafts: a study in normal and injured rat hearts. Circulation 100: 193–202

    PubMed  CAS  Google Scholar 

  116. Dar A, Shachar M, Leor J, et al. (2002) Optimization of cardiac cell seeding and distribution in 3D porous alginate scaffolds. Biotechnol Bioeng 80: 305–312

    PubMed  CAS  Google Scholar 

  117. Willmann JK, Paulmurugan R, Rodriguez-Porcel M, et al. (2009) Imaging gene expression in human mesenchymal stem cells: from small to large animals. Radiology 252: 117–127

    PubMed  Google Scholar 

  118. Ott HC, Matthiesen TS, Goh SK, et al. (2008) Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med 14: 213–221

    PubMed  CAS  Google Scholar 

  119. Terrovitis JV, Bulte JW, Sarvananthan S, et al. (2006) Magnetic resonance imaging of ferumoxide-labeled mesenchymal stem cells seeded on collagen scaffolds – relevance to tissue engineering. Tissue Eng 12: 2765–2775

    PubMed  CAS  Google Scholar 

  120. Barnett BP, Arepally A, Karmarkar PV, et al. (2007) Magnetic resonance-guided, real-time targeted delivery and imaging of magnetocapsules immunoprotecting pancreatic islet cells. Nat Med 13: 986–991

    PubMed  CAS  Google Scholar 

  121. Nahrendorf M, Sosnovik D, French B, et al. (2009) Multimodality cardiovascular molecular imaging – part II. Circ Cardiovasc Imaging 2: 56–70

    PubMed  Google Scholar 

  122. Barnett BP, Kraitchman DL, Lauzon C, et al. (2006) Radiopaque alginate microcapsules for X-ray visualization and immunoprotection of cellular therapeutics. Mol Pharm 3: 531–538

    PubMed  CAS  Google Scholar 

  123. Fu Y, Kedziorek D, Ouwerkerk R, et al. (2009) Multifunctional perfluorooctylbromide alginate microcapsules for monitoring of mesenchymal stem cell delivery using CT and MRI. J Cardiovasc Magn Reson 11: O7

    Google Scholar 

  124. Kraitchman DL and Bulte JW (2009) In vivo imaging of stem cells and beta cells using direct cell labeling and reporter gene methods. Arterioscler Thromb Vasc Biol 29: 1025–1030

    PubMed  CAS  Google Scholar 

  125. Burchfield JS and Dimmeler S (2008) Role of paracrine factors in stem and progenitor cell mediated cardiac repair and tissue fibrosis. Fibrogenesis Tissue Repair 1: 4

    PubMed  Google Scholar 

  126. Doyle B, Sorajja P, Hynes B, et al. (2008) Progenitor cell therapy in a porcine acute myocardial infarction model induces cardiac hypertrophy, mediated by paracrine secretion of cardiotrophic factors including TGFbeta1. Stem Cells Dev 17: 941–951

    PubMed  CAS  Google Scholar 

  127. Kinnaird T, Stabile E, Burnett MS, et al. (2004) Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation 109: 1543–1549

    PubMed  CAS  Google Scholar 

  128. Tang YL, Zhao Q, Qin X, et al. (2005) Paracrine action enhances the effects of autologous mesenchymal stem cell transplantation on vascular regeneration in rat model of myocardial infarction. Ann Thorac Surg 80: 229–236; discussion 236–237

    PubMed  Google Scholar 

  129. Zhang SJ and Wu JC (2007) Comparison of imaging techniques for tracking cardiac stem cell therapy. J Nucl Med 48: 1916–1919

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dara L. Kraitchman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Fu, Y., Kraitchman, D.L. (2011). Tracking of Stem Cells In Vivo. In: Cohen, I., Gaudette, G. (eds) Regenerating the Heart. Stem Cell Biology and Regenerative Medicine. Humana Press. https://doi.org/10.1007/978-1-61779-021-8_25

Download citation

Publish with us

Policies and ethics