Skip to main content

Induced Pluripotent Cells for Myocardial Infarction Repair

  • Chapter
  • First Online:
  • 1020 Accesses

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

Managing the rapidly expanding scope of chronic degenerative heart ­disease is a major clinical challenge. Owing to progressive cellular destruction and loss of functional tissues, chronic degenerative diseases are responsible for many of the disabilities suffered throughout lifespan. This creates an ever-growing need for new therapies capable of repairing the underlying pathophysiologic changes and restoring native cellular architecture. The emergence of regenerative medicine expands the therapeutic armamentarium, establishing new paradigms to address disease management unmet by traditional strategies. Stem-cell-based regenerative medicine drives the evolution of medical sciences from palliation, which mitigates symptoms, to curative therapy aimed at treating the root cause of degenerative disease and thus promoting long-term wellness.

With the optimization of acute hospital care, more individuals are surviving life-threatening myocardial infarction and deferring the burden of ischemic heart disease as they accumulate incremental insults leading to progressive heart failure. The incidence of long-term complications of inadequate cardiac performance is increasingly recognized as an unmet need within health care systems. An attractive alternative to address this expanding challenge has been documented with stem cell therapeutics. Specialized stem cell populations demonstrate a unique aptitude to differentiate into cardiac progenitors, and form new tissue. Cell-based strategies that promote, augment, and reestablish repair are at the core of translating the science of stem cell biology into the practice of cardiovascular regenerative medicine. Here, the latest evolution of stem-cell-based therapy, with emphasis on a bioengineered pluripotent stem cell platform, is outlined from discovery science to potential clinical use in the setting of ischemic heart disease.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Nelson TJ, Behfar A, Yamada S, Martinez-Fernandez A, Terzic A. Stem cell platforms for regenerative medicine. Clin Transl Sci 2009;2:222–227.

    Article  PubMed  CAS  Google Scholar 

  2. Klimanskaya I, Rosenthal N, Lanza R. Derive and conquer: sourcing and differentiating stem cells for therapeutic applications. Nat Rev Drug Discov 2008;7:131–142.

    Article  PubMed  CAS  Google Scholar 

  3. Morrison SJ, Spradling AC. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 2008;132:598–611.

    Article  PubMed  CAS  Google Scholar 

  4. Surani MA, McLaren A. Stem cells: a new route to rejuvenation. Nature 2006;443:284–285.

    Article  PubMed  CAS  Google Scholar 

  5. Rossant J. Stem cells and early lineage development. Cell 2008;132:527–531.

    Article  PubMed  CAS  Google Scholar 

  6. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. Embryonic stem cell lines derived from human blastocysts. Science 1998;282:1145–1147.

    Article  PubMed  CAS  Google Scholar 

  7. Solter D. From teratocarcinomas to embryonic stem cells and beyond: a history of embryonic stem cell research. Nat Rev Genet 2006;7:319–327.

    Article  PubMed  CAS  Google Scholar 

  8. Silva J, Smith A. Capturing pluripotency. Cell 2008;132:532–536.

    Article  PubMed  CAS  Google Scholar 

  9. Behfar A, Perez-Terzic C, Faustino RS, Arrell DK, Hodgson DM, Yamada S, Puceat M, Niederländer N, Alekseev AE, Zingman LV, Terzic A. Cardiopoietic programming of embryonic stem cells for tumor-free heart repair. J Exp Med 2007;204:405–420.

    Article  PubMed  CAS  Google Scholar 

  10. Murry CE, Keller G. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 2008;132:661–680.

    Article  PubMed  CAS  Google Scholar 

  11. Koch CA, Geraldes P, Platt JL. Immunosuppression by embryonic stem cells. Stem Cells 2008;26:89–98.

    Article  PubMed  CAS  Google Scholar 

  12. Goldman S. Stem and progenitor cell-based therapy of the human central nervous system. Nat Biotechnol 2005;23:862–871.

    Article  PubMed  CAS  Google Scholar 

  13. Kroon E, Martinson LA, Kadoya K, Bang AG, Kelly OG, Eliazer S, Young H, Richardson M, Smart NG, Cunningham J, Agulnick AD, D’Amour KA, Carpenter MK, Baetge EE. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol 2008;4:443–452.

    Article  Google Scholar 

  14. Laflamme MA, Murry CE, Regenerating the heart. Nat Biotechnol 2005;23:845–856.

    Article  PubMed  CAS  Google Scholar 

  15. Fraidenraich D, Benezra R. Embryonic stem cells prevent developmental cardiac defects in mice. Nat Clin Pract Cardiovasc Med 2006;3 Suppl 1:S14–17.

    Article  PubMed  CAS  Google Scholar 

  16. Van de Ven C, Collins D, Bradley MB, Morris E, Cairo MS. The potential of umbilical cord blood multipotent stem cells for nonhematopoietic tissue and cell regeneration. Exp Hematol 2007;35:1753–1765.

    Article  PubMed  Google Scholar 

  17. McGuckin CP, Forraz N. Potential for access to embryonic-like cells from human umbilical cord blood. Cell Prolif 2008;41 Suppl 1:31–40.

    PubMed  Google Scholar 

  18. De Coppi P, Bartsch G Jr, Siddiqui MM, Xu T, Santos CC, Perin L, Mostoslavsky G, Serre AC, Snyder EY, Yoo JJ, Furth ME, Soker S, Atala A. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 2007;25:100–106.

    Article  PubMed  Google Scholar 

  19. Wagers AJ, Weissman IL. Plasticity of adult stem cells. Cell 2004;116:639–648.

    Article  PubMed  CAS  Google Scholar 

  20. Orkin SH, Zon LI. Hematopoiesis: an evolving paradigm for stem cell biology. Cell 2008;132:631–644.

    Article  PubMed  CAS  Google Scholar 

  21. Chamberlain G, Fox J, Ashton B, Middleton J. Mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 2007;25:2739–2749.

    Article  PubMed  CAS  Google Scholar 

  22. Phinney DG, Prockop DJ. Mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair. Stem Cells 2007;25:2896–2902.

    Article  PubMed  Google Scholar 

  23. Caplan AL. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol. 2007;213:341–347.

    Article  PubMed  CAS  Google Scholar 

  24. Martinez C, Hofmann TJ, Marino R, Dominici M, Horwitz EM. Human bone marrow mesenchymal stromal cells express the neural ganglioside GD2: a novel surface marker for the identification of MSCs. Blood 2007;109:4245–4248.

    Article  PubMed  CAS  Google Scholar 

  25. Le Blanc K, Ringdén O. Immunomodulation by mesenchymal stem cells and clinical experience. J Intern Med 2007;262:509–525.

    Article  PubMed  Google Scholar 

  26. Jaenisch R, Young R. Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 2008;132:567–582.

    Article  PubMed  CAS  Google Scholar 

  27. Yamanaka, S. A fresh look at iPS cells. Cell 2009;137:13–17.

    Article  PubMed  CAS  Google Scholar 

  28. Yang X, Smith SL, Tian XC, Lewin HA, Renard JP, Wakayama T. Nuclear reprogramming of cloned embryos and its implications for therapeutic cloning. Nat Genet 2007;39:295–302.

    Article  PubMed  CAS  Google Scholar 

  29. Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T, Okita K, Mochiduki Y, Takizawa N, Yamanaka S. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 2008;26:101–106.

    Article  PubMed  CAS  Google Scholar 

  30. Park IH, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA, Lerou PH, Lensch MW, Daley GQ. Reprogramming of human somatic cells to pluripotency with defined factors. Nature 2008;451:141–146.

    Article  PubMed  CAS  Google Scholar 

  31. Nelson TJ, Terzic A. Induced pluripotent stem cells: reprogrammed without a trace. Regen Med 2009;4:333–355.

    Article  PubMed  Google Scholar 

  32. Leri A, Kajstura J, Anversa P, Frishman WH. Myocardial regeneration and stem cell repair. Curr Probl Cardiol 2008;33:91–153.

    Article  PubMed  Google Scholar 

  33. Dimmeler S, Zeiher AM, Schneider MD. Unchain my heart: the scientific foundations of cardiac repair. J Clin Invest 2005;115:572–583.

    PubMed  CAS  Google Scholar 

  34. Nelson TJ, Behfar A, Terzic A. Stem cells: biologics for regeneration. Clin Pharmacol Ther 2008;84:620–623.

    Article  PubMed  CAS  Google Scholar 

  35. Chien KR, Domian IJ, Parker KK. Cardiogenesis and the complex biology of regenerative cardiovascular medicine. Science 2008;322:1494–1497.

    Article  PubMed  CAS  Google Scholar 

  36. Menasche P. Cell-based therapy for heart disease: a clinically oriented perspective. Mol Ther 2009;17:758–766.

    Article  PubMed  CAS  Google Scholar 

  37. Reinecke H, Minami E, Zhu WZ, Laflamme MA. Cardiogenic differentiation and transdifferentiation of progenitor cells. Circ Res 2008;103:1058–1071.

    Article  PubMed  CAS  Google Scholar 

  38. Gnecchi M, Zhang Z, Ni A, Dzau VJ. Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res 2008;103:1204–1219.

    Article  PubMed  CAS  Google Scholar 

  39. Nelson TJ, Martinez-Fernandez A, Yamada S, Perez-Terzic C, Ikeda Y, Terzic A. Repair of acute myocardial infarction with human stemness factors induced pluirpotent stem cells. Circulation 2009;120:408–416.

    Article  PubMed  Google Scholar 

  40. Bartunek J, Sherman W, Vanderheyden M, Fernandez-Aviles F, Wijns W, Terzic A. Delivery of biologics in cardiovascular regenerative medicine. Clin Pharmacol Ther 2009;85:548–552.

    Article  PubMed  CAS  Google Scholar 

  41. Waldman SA, Christensen NB, Moore JE, Terzic A. Clinical pharmacology: the science of therapeutics. Clin Pharmacol Ther 2007;81:3–6.

    Article  PubMed  CAS  Google Scholar 

  42. European Medicines Agency. Guideline on human cell-based medicinal products. EMEA 2007;EMEA/CHMP/410869/2006:1–24.

    Google Scholar 

  43. Halme DG, Kessler DA. FDA regulation of stem-cell-based therapies. N Engl J Med 2006;355:1730–1735.

    Article  PubMed  CAS  Google Scholar 

  44. Dietz AB, Padley DJ, Gastineau DA. Infrastructure development for human cell therapy translation. Clin Pharmacol Ther 2007;82:320–324.

    Article  PubMed  CAS  Google Scholar 

  45. Takahashi K, Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006;126:663–676.

    Article  PubMed  CAS  Google Scholar 

  46. Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature 2007;448:313–317.

    Article  PubMed  CAS  Google Scholar 

  47. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007;131:861–872.

    Article  PubMed  CAS  Google Scholar 

  48. Yu J, Vodyanik MA, Smuga-Otto K et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007;318:1917–1920.

    Article  PubMed  CAS  Google Scholar 

  49. Yamanaka S. Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell 2007;1:39–49.

    Article  PubMed  CAS  Google Scholar 

  50. Park IH, Lerou PH, Zhao R, Huo H, Daley GQ. Generation of human-induced pluripotent stem cells. Nat Protoc 2008;3:1180–1186.

    Article  PubMed  CAS  Google Scholar 

  51. Park IH, Arora N, Huo H, Maherali N, Ahfeldt T, Shimamura A, Lensch MW, Cowan C, Hochedlinger K, Daley GQ. Disease-specific induced pluripotent stem cells. Cell 2008;134:877–886.

    Article  PubMed  CAS  Google Scholar 

  52. Kim JB, Zaehres H, Wu G, Gentile L, Ko K, Sebastiano V, Araúzo-Bravo MJ, Ruau D, Han DW, Zenke M, Schöler HR. Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature 2008;454:646–650.

    Article  PubMed  CAS  Google Scholar 

  53. Kim JB, Sebastiano V, Wu G, Araúzo-Bravo MJ, Sasse P, Gentile L, Ko K, Ruau D, Ehrich M, van den Boom D, Meyer J, Hübner K, Bernemann C, Ortmeier C, Zenke M, Fleischmann BK, Zaehres H, Schöler HR. Oct4-induced pluripotency in adult neural stem cells. Cell 2009;136:411–419.

    Article  PubMed  CAS  Google Scholar 

  54. Papapetrou EP, Tomishima MJ, Chambers SM, Mica Y, Reed E, Menon J, Tabar V, Mo Q, Studer L, Sadelain M. Stoichiometric and temporal requirements of Oct4, Sox2, Klf4, and c-Myc expression for efficient human iPSC induction and differentiation. Proc Natl Acad Sci U S A 2009;106:12759–12764 Jun 23 [Epub ahead of print].

    Article  PubMed  CAS  Google Scholar 

  55. Marion RM, Strati K, Li H, Tejera A, Schoeftner S, Ortega S, Serrano M, Blasco MA. Telomeres acquire embryonic stem cell characteristics in induced pluripotent stem cells. Cell Stem Cell 2009;4:141–154.

    Article  PubMed  CAS  Google Scholar 

  56. Deng J, Shoemaker R, Xie B, Gore A, LeProust EM, Antosiewicz-Bourget J, Egli D, Maherali N, Park IH, Yu J, Daley GQ, Eggan K, Hochedlinger K, Thomson J, Wang W, Gao Y, Zhang K. Targeted bisulfite sequencing reveals changes in DNA methylation associated with nuclear reprogramming. Nat Biotechnol 2009;27:353–360.

    Article  PubMed  CAS  Google Scholar 

  57. Mikkelsen TS, Hanna J, Zhang X, Ku M, Wernig M, Schorderet P, Bernstein BE, Jaenisch R, Lander ES, Meissner A. Dissecting direct reprogramming through integrative genomic analysis. Nature 2008;454:49–55.

    Article  PubMed  CAS  Google Scholar 

  58. Woltjen K, Michael IP, Mohseni P et al. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 2009;458:766–770.

    Article  PubMed  CAS  Google Scholar 

  59. Kaji K, Norrby K, Paca A et al. Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 2009;458:771–775.

    Article  PubMed  CAS  Google Scholar 

  60. Yamanaka S. Elite and stochastic models for induced pluripotent stem cell generation. Nature 2009;460:49–52.

    Article  PubMed  CAS  Google Scholar 

  61. Hanna J, Markoulaki S, Schorderet P et al. Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell 2008;133:250–264.

    Article  PubMed  CAS  Google Scholar 

  62. Maherali N, Hochedlinger K. Guidelines and techniques for the generation of induced pluripotent stem cells. Cell Stem Cell 2008;3:595–605.

    Article  PubMed  CAS  Google Scholar 

  63. Smith KP, Luong MX, Stein GS. Pluripotency: toward a gold standard for human ES and iPS cells. J Cell Physiol 2009;220:21–29.

    Article  PubMed  CAS  Google Scholar 

  64. Hanna J, Wernig M, Markoulaki S, Sun CW, Meissner A, Cassady JP, Beard C, Brambrink T, Wu LC, Townes TM, Jaenisch R. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 2007;318:1920–1923.

    Article  PubMed  CAS  Google Scholar 

  65. Wernig M, Zhao JP, Pruszak J, Hedlund E, Fu D, Soldner F, Broccoli V, Constantine-Paton M, Isacson O, Jaenisch R. Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proc Natl Acad Sci USA 2008;105:5856–5861.

    Article  PubMed  CAS  Google Scholar 

  66. Xu D, Alipio Z, Fink LM, Adcock DM, Yang J, Ward DC, Ma Y. Phenotypic correction of murine hemophilia A using an iPS cell-based therapy. Proc Natl Acad Sci USA 2009;106:808–813.

    Article  PubMed  CAS  Google Scholar 

  67. Schenke-Layland K, Rhodes KE, Angelis E, Butylkova Y, Heydarkhan-Hagvall S, Gekas C, Zhang R, Goldhaber JI, Mikkola HK, Plath K, MacLellan WR. Reprogrammed mouse fibroblasts differentiate into cells of the cardiovascular and hematopoietic lineages. Stem Cells 2008;26:1537–1546.

    Article  PubMed  CAS  Google Scholar 

  68. Narazaki G, Uosaki H, Teranishi M, Okita K, Kim B, Matsuoka S, Yamanaka S, Yamashita JK. Directed and systematic differentiation of cardiovascular cells from mouse induced pluripotent stem cells. Circulation 2008;118:498–506.

    Article  PubMed  Google Scholar 

  69. Mauritz C, Schwanke K, Reppel M, Neef S, Katsirntaki K, Maier LS, Nguemo F, Menke S, Haustein M, Hescheler J, Hasenfuss G, Martin U. Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation 2008;118:507–517.

    Article  PubMed  Google Scholar 

  70. Zhang J, Wilson GF, Soerens AG, Koonce CH, Yu J, Palecek SP, Thomson JA, Kamp TJ. Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ Res 2009;104:e30–e41.

    Article  PubMed  CAS  Google Scholar 

  71. Yokoo N, Baba S, Kaichi S, Niwa A, Mima T, Doi H, Yamanaka S, Nakahata T, Heike T. The effects of cardioactive drugs on cardiomyocytes derived from human induced pluripotent stem cells. Biochem Biophys Res Commun 2009;387:482–488.

    Article  PubMed  CAS  Google Scholar 

  72. Srinivas G, Anversa P, Frishman WH. Cytokines and myocardial regeneration: a novel treatment option for acute myocardial infarction. Cardiol Rev 2009;17:1–9.

    Article  PubMed  Google Scholar 

  73. Li JY, Christophersen NS, Hall V, Soulet D, Brundin P. Critical issues of clinical human embryonic stem cell therapy for brain repair. Trends Neurosci 2008;31:146–153.

    Article  PubMed  Google Scholar 

  74. Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K. Induced pluripotent stem cells generated without viral integration. Science 2008;322:945–949.

    Article  PubMed  CAS  Google Scholar 

  75. Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S. Generation of mouse induced pluripotent stem cells without viral vectors. Science 2008;322:949–953.

    Article  PubMed  CAS  Google Scholar 

  76. Yu J, Hu K, Smuga-Otto K, Tian S, Stewart R, Slukvin II, Thomson JA. Human induced pluripotent stem cells free of vector and transgene sequences. Science 2009;324:797–801.

    Article  PubMed  CAS  Google Scholar 

  77. Behfar A, Faustino RS, Arrell DK, Dzeja PP, Perez-Terzic C, Terzic A. Guided stem cell cardiopoiesis: discovery and translation. J Mol Cell Cardiol 2008;45:523–529.

    Article  PubMed  CAS  Google Scholar 

  78. Nelson TJ, Faustino RS, Chiriac A, Crespo-Diaz R, Behfar A, Terzic A. CXCR4+/FLK-1+ biomarkers select a cardiopoietic lineage from embryonic stem cells. Stem Cells 2008;26:1464–1473.

    Article  PubMed  CAS  Google Scholar 

  79. Moretti A, Caron L, Nakano A, Lam JT, Bernshausen A, Chen Y, Qyang Y, Bu L, Sasaki M, Martin-Puig S, Sun Y, Evans SM, Laugwitz KL, Chien KR. Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell 2006;127:1151–1165.

    Article  PubMed  CAS  Google Scholar 

  80. Kattman SJ, Huber TL, Keller GM. Multipotent flk-1+ cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial, and vascular smooth muscle lineages. Dev Cell 2006;11:723–732.

    Article  PubMed  CAS  Google Scholar 

  81. Yang L, Soonpaa MH, Adler ED, Roepke TK, Kattman SJ, Kennedy M, Henckaerts E, Bonham K, Abbott GW, Linden RM, Field LJ, Keller GM. Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature 2008;453:524–852.

    Article  PubMed  CAS  Google Scholar 

  82. Takeuchi JK, Bruneau BG. Directed transdifferentiation of mouse mesoderm to heart tissue by defined factors. Nature 2009;459:708–711.

    Article  PubMed  CAS  Google Scholar 

  83. Martinez-Fernandez A, Nelson TJ, Yamada S, Reyes S, Alekseev AE, Perez-Terzic C, Ikeda Y, Terzic A. iPS Programmed without c-MYC yield proficient cardiogenesis for functional heart chimerism. Circ Res. 2009;105;648–656.

    Article  PubMed  CAS  Google Scholar 

  84. Nelson TJ, Behfar A, Terzic A. Strategies for therapeutic repair: the “R3” regenerative medicine paradigm. Clin Transl Sci 2008;1:168–171.

    Article  PubMed  Google Scholar 

  85. Nelson TJ, Behfar A, Terzic A. Regenerative medicine and stem cell therapeutics. In: Pharmacology and Therapeutics – Principles to Practice. Edited by SA Waldman and A Terzic, Saunders Elsevier, 2009.

    Google Scholar 

  86. Daley GQ, Scadden DT. Prospects for stem cell-based therapy. Cell 2008;132:544–548.

    Article  PubMed  CAS  Google Scholar 

  87. Rosenthal N. Prometheus’s vulture and the stem-cell promise. N Engl J Med 2003;349:267–274.

    Article  PubMed  Google Scholar 

  88. Segers V, Lee RT. Stem-cell therapy for cardiac disease. Nature 2008;451:937–942.

    Article  PubMed  CAS  Google Scholar 

  89. Torella D, Ellison GM, Méndez-Ferrer S, Ibanez B, Nadal-Ginard B. Resident human cardiac stem cells: role in cardiac cellular homeostasis and potential for myocardial regeneration. Nat Clin Pract Cardiovasc Med 2006;3 Suppl 1:S8–13.

    Article  PubMed  CAS  Google Scholar 

  90. Quaini F, Urbanek K, Beltrami AP, Finato N, Beltrami CA, Nadal-Ginard B, Kajstura J, Leri A, Anversa P. Chimerism of the transplanted heart. N Engl J Med 2002;346:5–15.

    Article  PubMed  Google Scholar 

  91. Kajstura J, Hosoda T, Bearzi C, Rota M, Maestroni S, Urbanek K, Leri A, Anversa P. The human heart: a self-renewing organ. Clin Transl Sci 2008;1:80–86.

    Article  PubMed  CAS  Google Scholar 

  92. Deb A, Wang S, Skelding KA, Miller D, Simper D, Caplice NM. Bone marrow-derived cardiomyocytes are present in adult human heart: a study of gender-mismatched bone marrow transplantation patients. Circulation 2003;107:1247–1249.

    Article  PubMed  Google Scholar 

  93. Kubo H, Jaleel N, Kumarapeli A, Berretta RM, Bratinov G, Shan X, Wang H, Houser SR, Margulies KB. Increased cardiac myocyte progenitors in failing human hearts. Circulation 2008;118:649–657.

    Article  PubMed  Google Scholar 

  94. Rupp S, Koyanagi M, Iwasaki M, Bauer J, von Gerlach S, Schranz D, Zeiher AM, Dimmeler S. Characterization of long-term endogenous cardiac repair in children after heart transplantation. Eur Heart J 2008;29:1867–1872.

    Article  PubMed  CAS  Google Scholar 

  95. Urbanek K, Torella D, Sheikh F, De Angelis A, Nurzynska D, Silvestri F, Beltrami CA, Bussani R, Beltrami AP, Quaini F, Bolli R, Leri A, Kajstura J, Anversa P. Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure. Proc Natl Acad Sci U S A 2005;102:8692–8697.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andre Terzic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Nelson, T.J., Terzic, A. (2011). Induced Pluripotent Cells for Myocardial Infarction Repair. In: Cohen, I., Gaudette, G. (eds) Regenerating the Heart. Stem Cell Biology and Regenerative Medicine. Humana Press. https://doi.org/10.1007/978-1-61779-021-8_15

Download citation

Publish with us

Policies and ethics