Skip to main content

Methods for Inducing Pluripotency

  • Chapter
  • First Online:
Regenerating the Heart

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 1023 Accesses

Abstract

Induced pluripotent stem (iPS) cells are embryonic stem-like cells produced by forcing expression of a minimal number of key factors in differentiated somatic cells. In many ways, they are indistinguishable from embryonic stem cells in that they can differentiate into any cell type in the body. This development has led to worldwide excitement over the possibility to develop cell-based therapies for a variety of degenerative diseases using cells derived from and thus genetically matched to the patient they are aimed to treat. This chapter reviews the scientific foundation that has led to the ability to create iPS cells and the current methods used to make them, as well as the studies that have been conducted to help decipher the molecular pathways involved. The evolution of steps developed in recent years to improve both the efficiency and the safety of the process for clinical and in vitro diagnostic use is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126: 663–676

    PubMed  CAS  Google Scholar 

  2. Schultz RM (1993) Regulation of zygotic gene activation in the mouse. Bioessays 15: 531–538

    PubMed  CAS  Google Scholar 

  3. Telford NA, Watson AJ, et al. (1990) Transition from maternal to embryonic control in early mammalian development: a comparison of several species. Mol Reprod Dev 26: 90–100

    PubMed  CAS  Google Scholar 

  4. Frei RE, Schultz GA, et al. (1989) Qualitative and quantitative changes in protein synthesis occur at the 8–16-cell stage of embryogenesis in the cow. J Reprod Fertil 86: 637–641

    PubMed  CAS  Google Scholar 

  5. Farthing CR, Ficz G, et al. (2008) Global mapping of DNA methylation in mouse promoters reveals epigenetic reprogramming of pluripotency genes. PloS Genetics 4:e1000116

    Google Scholar 

  6. Tagawa M, Matoba S, et al. (2008) Production of monozygotic twin calves using the blastomere separation technique and well of the well culture system. Theriogenology 69: 574–582

    PubMed  CAS  Google Scholar 

  7. Johnson WH, Loskutoff NM, et al. (1995) Production of four identical calves by the separation of blastomeres from an in vitro derived four-cell embryo. Vet Rec 137: 15–16

    Google Scholar 

  8. Chan AW, Dominko T, et al. (2000) Clonal propagation of primate offspring by embryo splitting. Science 287: 317–319

    PubMed  CAS  Google Scholar 

  9. Bilodeau-Goeseels S, Schultz GA (1997) Changes in the relative abundance of various housekeeping gene transcripts in in vitro-produced early bovine embryos. Mol Reprod Dev 47: 413–420

    PubMed  CAS  Google Scholar 

  10. Stein P, Worrad DM, et al. (1997) Stage-dependent redistributions of acetylated histones in nuclei of the early preimplantation mouse embryo. Mol Reprod Dev 47: 421–429

    PubMed  CAS  Google Scholar 

  11. Memili E, First NL (1999) Control of gene expression at the onset of bovine embryonic development. Biol Reprod 61: 1198–1207

    PubMed  CAS  Google Scholar 

  12. Wangh LJ, DeGrace D, et al. (1995) Efficient reactivation of Xenopus erythrocyte nuclei in Xenopus egg extracts. J Cell Sci 108 (Pt 6): 2187–2196

    PubMed  CAS  Google Scholar 

  13. Zheng P, Patel B, et al. (2004) Expression of genes encoding chromatin regulatory factors in developing rhesus monkey oocytes and preimplantation stage embryos: possible roles in genome activation. Biol Reprod 70: 1419–1427

    PubMed  CAS  Google Scholar 

  14. Vigneault C, McGraw S, et al. (2004) Transcription factor expression patterns in bovine in vitro-derived embryos prior to maternal-zygotic transition. Biol Reprod 70: 1701–1709

    PubMed  CAS  Google Scholar 

  15. Misirlioglu M, Page GP, et al. (2006) Dynamics of global transcriptome in bovine matured oocytes and preimplantation embryos. Proc Natl Acad Sci USA 103: 18905–18910

    PubMed  CAS  Google Scholar 

  16. Pesce M, Scholer HR (2001) Oct-4: gatekeeper in the beginnings of mammalian development. Stem Cells 19: 271–278

    PubMed  CAS  Google Scholar 

  17. Chambers I, Colby D, et al. (2003) Functional expression cloning of nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113: 643–655

    PubMed  CAS  Google Scholar 

  18. Nichols J, Zevnik B, et al. (1998) Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95: 379–391

    PubMed  CAS  Google Scholar 

  19. Silva J, Nichols J, et al. (2009) Nanog is the gateway to the pluripotent ground state. Cell 138: 722–737

    PubMed  CAS  Google Scholar 

  20. Thomson JA, Itskovitz-Eldor J, et al. (1998) Embryonic stem cell lines derived from human blastocysts. Science 282: 1145–1147

    PubMed  CAS  Google Scholar 

  21. Niwa H, Miyazaki J, et al. (2000) Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 24: 372–376

    PubMed  CAS  Google Scholar 

  22. de Vries WN, Evsikov AV, et al. (2008) Reprogramming and differentiation in mammals: motifs and mechanisms. Cold Spring Harb Symp Quant Biol 73: 33–38

    PubMed  Google Scholar 

  23. Scholer HR, Balling R, et al. (1989) Octamer binding proteins confer transcriptional activity in early mouse embryogenesis. EMBO J 8: 2551–2557

    PubMed  CAS  Google Scholar 

  24. Rosner MH, Vigano MA, et al. (1990) A POU-domain transcription factor in early stem cells and germ cells of the mammalian embryo. Nature 345: 686–692

    PubMed  CAS  Google Scholar 

  25. Cauffman G, Liebaers I, et al. (2006) Pou5f1 isoforms show different expression patterns in human embryonic stem cells and preimplantation embryos. Stem Cells 24: 2685–2691

    PubMed  CAS  Google Scholar 

  26. Cauffman G, Van de Velde H, et al. (2005) Oct-4 mRNA and protein expression during human preimplantation development. Mol Hum Reprod 11: 173–181

    PubMed  CAS  Google Scholar 

  27. Takeda J, Seino S, et al. (1992) Human Oct3 gene family: cDNA sequences, alternative splicing, gene organization, chromosomal location, and expression at low levels in adult tissues. Nucleic Acids Res 20: 4613–4620

    PubMed  CAS  Google Scholar 

  28. Pesce M, Wang X, et al. (1998) Differential expression of the Oct-4 transcription factor during mouse germ cell differentiation. Mech Dev 71: 89–98

    PubMed  CAS  Google Scholar 

  29. Kirchhof N, Carnwath JW, et al. (2000) Expression pattern of Oct-4 in preimplantation embryos of different species. Biol Reprod 63: 1698–1705

    PubMed  CAS  Google Scholar 

  30. Boyer LA, Lee TI, et al. (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122: 947–956

    PubMed  CAS  Google Scholar 

  31. Gurdon JB, Elsdale TR, et al. (1958) Sexually mature individuals of Xenopus laevis from the transplantation of single somatic nuclei. Nature 182: 64–65

    PubMed  CAS  Google Scholar 

  32. First NL, Prather RS (1991) Genomic potential in mammals. Differentiation 48: 1–8

    PubMed  CAS  Google Scholar 

  33. Campbell KH, Loi P, et al. (1996) Cell cycle co-ordination in embryo cloning by nuclear transfer. Rev Reprod 1: 40–46

    PubMed  CAS  Google Scholar 

  34. Wilmut I, Schnieke AE, et al. (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385: 810–813

    PubMed  CAS  Google Scholar 

  35. Lanza RP, Cibelli JB, et al. (1999) Human therapeutic cloning. Nat Med 5: 975–977

    PubMed  CAS  Google Scholar 

  36. Burley J (1999) The ethics of therapeutic and reproductive human cloning. Semin Cell Dev Biol 10: 287–294

    PubMed  CAS  Google Scholar 

  37. Simerly C, Dominko T, et al. (2003) Molecular correlates of primate nuclear transfer failures. Science 300: 297

    PubMed  Google Scholar 

  38. Simerly C, Navara C, et al. (2004) Embryogenesis and blastocyst development after somatic cell nuclear transfer in nonhuman primates: overcoming defects caused by meiotic spindle extraction. Dev Biol 276: 237–252

    PubMed  CAS  Google Scholar 

  39. Byrne JA, Pedersen DA, et al. (2007) Producing primate embryonic stem cells by somatic cell nuclear transfer. Nature 450: 497–502

    PubMed  CAS  Google Scholar 

  40. Sparman M, Dighe V, et al. (2009) Epigenetic reprogramming by somatic cell nuclear transfer in primates. Stem Cells 27: 1255–1264

    PubMed  CAS  Google Scholar 

  41. Jiang W, Bai Z, et al. (2008) Differentiation of mouse nuclear transfer embryonic stem cells into functional pancreatic beta cells. Diabetologia 51: 1671–1679

    PubMed  CAS  Google Scholar 

  42. Mombaerts P (2003) Therapeutic cloning in the mouse. Proc Natl Acad Sci USA 100 Suppl 1: 11924–11925

    PubMed  CAS  Google Scholar 

  43. Munsie MJ, Michalska AE, et al. (2000) Isolation of pluripotent embryonic stem cells from reprogrammed adult mouse somatic cell nuclei. Curr Biol 10: 989–992

    PubMed  CAS  Google Scholar 

  44. Sviridova-Chailakhyan TA, Chailakhyan LM (2005) Mouse embryo reconstruction as an adequate model for developing the principles of therapeutic cloning. Dokl Biol Sci 404: 399–401

    PubMed  CAS  Google Scholar 

  45. Rideout WM, 3rd, Hochedlinger K, et al. (2002) Correction of a genetic defect by nuclear transplantation and combined cell and gene therapy. Cell 109: 17–27

    PubMed  CAS  Google Scholar 

  46. Dean W, Santos F, et al. (2001) Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos. Proc Natl Acad Sci USA 98: 13734–13738

    PubMed  CAS  Google Scholar 

  47. Santos F, Zakhartchenko V, et al. (2003) Epigenetic marking correlates with developmental potential in cloned bovine preimplantation embryos. Curr Biol 13: 1116–1121

    PubMed  CAS  Google Scholar 

  48. Yamazaki Y, Fujita TC, et al. (2006) Gradual DNA demethylation of the Oct4 promoter in cloned mouse embryos. Mol Reprod Dev 73: 180–188

    PubMed  CAS  Google Scholar 

  49. Simonsson S, Gurdon J (2004) DNA demethylation is necessary for the epigenetic reprogramming of somatic cell nuclei. Nat Cell Biol 6: 984–990

    PubMed  CAS  Google Scholar 

  50. Kishigami S, Mizutani E, et al. (2006) Significant improvement of mouse cloning technique by treatment with trichostatin A after somatic nuclear transfer. Biochem Biophys Res Commun 340: 183–189

    PubMed  CAS  Google Scholar 

  51. Li X, Kato Y, et al. (2008) The effects of trichostatin A on mRNA expression of chromatin structure-, DNA methylation-, and development-related genes in cloned mouse blastocysts. Cloning Stem Cells 10: 133–142

    PubMed  CAS  Google Scholar 

  52. Brambrink T, Hochedlinger K, et al. (2006) ES cells derived from cloned and fertilized blastocysts are transcriptionally and functionally indistinguishable. Proc Natl Acad Sci USA 103: 933–938

    PubMed  CAS  Google Scholar 

  53. Wakayama S, Mizutani E, et al. (2005) Mice cloned by nuclear transfer from somatic and ntES cells derived from the same individuals. J Reprod Dev 51: 765–772

    PubMed  Google Scholar 

  54. Byrne JA, Simonsson S, et al. (2003) Nuclei of adult mammalian somatic cells are directly reprogrammed to Oct-4 stem cell gene expression by amphibian oocytes. Curr Biol 13: 1206–1213

    PubMed  CAS  Google Scholar 

  55. Dominko T, Mitalipova M, et al. (1999) Bovine oocyte cytoplasm supports development of embryos produced by nuclear transfer of somatic cell nuclei from various mammalian species. Biol Reprod 60: 1496–1502

    PubMed  CAS  Google Scholar 

  56. Li F, Cao H, et al. (2008) Activation of human embryonic gene expression in cytoplasmic hybrid embryos constructed between bovine oocytes and human fibroblasts. Cloning Stem Cells 10: 297–305

    PubMed  CAS  Google Scholar 

  57. Wang K, Beyhan Z, et al. (2009) Bovine ooplasm partially remodels primate somatic nuclei following somatic cell nuclear transfer. Cloning Stem Cells 11: 187–202

    PubMed  CAS  Google Scholar 

  58. Vogel G (2008) Bioethics. U.K. approves new embryo law. Science 322: 663

    PubMed  CAS  Google Scholar 

  59. Hakelien AM, Landsverk HB, et al. (2002) Reprogramming fibroblasts to express t-cell functions using cell extracts. Nat Biotechnol 20: 460–466

    PubMed  CAS  Google Scholar 

  60. Condorelli G, Borello U, et al. (2001) Cardiomyocytes induce endothelial cells to trans-differentiate into cardiac muscle: implications for myocardium regeneration. Proc Natl Acad Sci USA 98: 10733–10738

    PubMed  CAS  Google Scholar 

  61. Qin M, Tai G, et al. (2005) Cell extract-derived differentiation of embryonic stem cells. Stem Cells 23: 712–718

    PubMed  CAS  Google Scholar 

  62. Kikyo N, Wade PA, et al. (2000) Active remodeling of somatic nuclei in egg cytoplasm by the nucleosomal ATPase ISWI. Science 289: 2360–2362

    PubMed  CAS  Google Scholar 

  63. Hansis C, Barreto G, et al. (2004) Nuclear reprogramming of human somatic cells by Xenopus egg extract requires brg1. Curr Biol 14: 1475–1480

    PubMed  CAS  Google Scholar 

  64. Alberio R, Johnson AD, et al. (2005) Differential nuclear remodeling of mammalian somatic cells by Xenopus laevis oocyte and egg cytoplasm. Exp Cell Res 307: 131–141

    PubMed  CAS  Google Scholar 

  65. Shimazaki T, Okazawa H, et al. (1993) Hybrid cell extinction and re-expression of Oct-3 function correlates with differentiation potential. EMBO J 12: 4489–4498

    PubMed  CAS  Google Scholar 

  66. Taranger CK, Noer A, et al. (2005) Induction of dedifferentiation, genomewide transcriptional programming, and epigenetic reprogramming by extracts of carcinoma and embryonic stem cells. Mol Biol Cell 16: 5719–5735

    PubMed  CAS  Google Scholar 

  67. Freberg CT, Dahl JA, et al. (2007) Epigenetic reprogramming of Oct4 and nanog regulatory regions by embryonal carcinoma cell extract. Mol Biol Cell 18: 1543–1553

    PubMed  CAS  Google Scholar 

  68. Tada M, Tada T, et al. (1997) Embryonic germ cells induce epigenetic reprogramming of somatic nucleus in hybrid cells. EMBO J 16: 6510–6520

    PubMed  CAS  Google Scholar 

  69. Tada M, Takahama Y, et al. (2001) Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr Biol 11: 1553–1558

    PubMed  CAS  Google Scholar 

  70. Kimura H, Tada M, et al. (2004) Histone code modifications on pluripotential nuclei of reprogrammed somatic cells. Mol Cell Biol 24: 5710–5720

    PubMed  CAS  Google Scholar 

  71. Bru T, Clarke C, et al. (2008) Rapid induction of pluripotency genes after exposure of human somatic cells to mouse es cell extracts. Exp Cell Res 314: 2634–2642

    PubMed  CAS  Google Scholar 

  72. Tamada H, Van Thuan N, et al. (2006) Chromatin decondensation and nuclear reprogramming by nucleoplasmin. Mol Cell Biol 26: 1259–1271

    PubMed  CAS  Google Scholar 

  73. Rai K, Huggins IJ, et al. (2008) DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and gadd45. Cell 135: 1201–1212

    PubMed  CAS  Google Scholar 

  74. Santos-Rosa H, Schneider R, et al. (2003) Methylation of histone h3 k4 mediates association of the ISW1p ATPase with chromatin. Mol Cell 12: 1325–1332

    PubMed  CAS  Google Scholar 

  75. Kingston RE, Narlikar GJ (1999) ATP-dependent remodeling and acetylation as regulators of chromatin fluidity. Genes Dev 13: 2339–2352

    PubMed  CAS  Google Scholar 

  76. Page RL, Ambady S, et al. (2009) Induction of stem cell gene expression in adult human fibroblasts without transgenes. Cloning Stem Cells 11: 417–426

    PubMed  CAS  Google Scholar 

  77. Kikyo N, Wolffe AP (2000) Reprogramming nuclei: insights from cloning, nuclear transfer and heterokaryons. J Cell Sci 113 (Pt 1): 11–20

    PubMed  CAS  Google Scholar 

  78. Kimura H, Tada M, et al. (2002) Chromatin reprogramming of male somatic cell-derived Xist and Tsix in ES hybrid cells. Cytogenet Genome Res 99: 106–114

    PubMed  CAS  Google Scholar 

  79. Tada T, Tada M (2001) Toti-/pluripotential stem cells and epigenetic modifications. Cell Struct Funct 26: 149–160

    PubMed  CAS  Google Scholar 

  80. Cowan CA, Atienza J, et al. (2005) Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science 309: 1369–1373

    PubMed  CAS  Google Scholar 

  81. Ivanova NB, Dimos JT, et al. (2002) A stem cell molecular signature. Science 298: 601–604

    PubMed  CAS  Google Scholar 

  82. Ramalho-Santos M, Yoon S, et al. (2002) “Stemness”: transcriptional profiling of embryonic and adult stem cells. Science 298: 597–600

    PubMed  CAS  Google Scholar 

  83. Tokuzawa Y, Kaiho E, et al. (2003) Fbx15 is a novel target of Oct3/4 but is dispensable for embryonic stem cell self-renewal and mouse development. Mol Cell Biol 23: 2699–2708

    PubMed  CAS  Google Scholar 

  84. Okita K, Ichisaka T, et al. (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448: 313–317

    PubMed  CAS  Google Scholar 

  85. Takahashi K, Tanabe K, et al. (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131: 861–872

    PubMed  CAS  Google Scholar 

  86. Takahashi K, Okita K, et al. (2007) Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc 2: 3081–3089

    PubMed  CAS  Google Scholar 

  87. Maherali N, Sridharan R, et al. (2007) Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1: 55–70

    PubMed  CAS  Google Scholar 

  88. Stadtfeld M, Maherali N, et al. (2008) Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell 2: 230–240

    PubMed  CAS  Google Scholar 

  89. Stadtfeld M, Nagaya M, et al. (2008) Induced pluripotent stem cells generated without viral integration. Science 322: 945–949

    PubMed  CAS  Google Scholar 

  90. Wolf D, Goff SP (2007) Trim28 mediates primer binding site-targeted silencing of murine leukemia virus in embryonic cells. Cell 131: 46–57

    PubMed  CAS  Google Scholar 

  91. Okita K, Nakagawa M, et al. (2008) Generation of mouse induced pluripotent stem cells without viral vectors. Science 322: 949–953

    PubMed  CAS  Google Scholar 

  92. Wernig M, Meissner A, et al. (2007) In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448: 318–324

    PubMed  CAS  Google Scholar 

  93. Meissner A, Wernig M, et al. (2007) Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nat Biotechnol 25: 1177–1181

    PubMed  CAS  Google Scholar 

  94. Lowry WE, Richter L, et al. (2008) Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc Natl Acad Sci USA 105: 2883–2888

    PubMed  CAS  Google Scholar 

  95. Yu J, Hu K, et al. (2009) Human induced pluripotent stem cells free of vector and transgene sequences. Science 324: 797–801

    PubMed  CAS  Google Scholar 

  96. Byrne JA, Nguyen HN, et al. (2009) Enhanced generation of induced pluripotent stem cells from a subpopulation of human fibroblasts. PLoS One 4: e7118

    PubMed  Google Scholar 

  97. Aoi T, Yae K, et al. (2008) Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science 321: 699–702

    PubMed  CAS  Google Scholar 

  98. Hasegawa K, Cowan AB, et al. (2007) Efficient multicistronic expression of a transgene in human embryonic stem cells. Stem Cells 25: 1707–1712

    PubMed  CAS  Google Scholar 

  99. Nakagawa M, Koyanagi M, et al. (2008) Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 26: 101–106

    PubMed  CAS  Google Scholar 

  100. Yu J, Vodyanik MA, et al. (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318: 1917–1920

    PubMed  CAS  Google Scholar 

  101. Gonzales C, Pedrazzini T (2009) Progenitor cell therapy for heart disease. Exp Cell Res 315: 3077–3085

    PubMed  CAS  Google Scholar 

  102. Carey BW, Markoulaki S, et al. (2009) Reprogramming of murine and human somatic cells using a single polycistronic vector. Proc Natl Acad Sci U S A 106: 157–162

    PubMed  CAS  Google Scholar 

  103. Sommer CA, Stadtfeld M, et al. (2009) Induced pluripotent stem cell generation using a single lentiviral stem cell cassette. Stem Cells 27: 543–549

    PubMed  CAS  Google Scholar 

  104. Chang CW, Lai YS, et al. (2009) Polycistronic lentiviral vector for “hit and run” reprogramming of adult skin fibroblasts to induced pluripotent stem cells. Stem Cells 27: 1042–1049

    PubMed  CAS  Google Scholar 

  105. Kaji K, Norrby K, et al. (2009) Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 458: 771–775

    PubMed  CAS  Google Scholar 

  106. Woltjen K, Michael IP, et al. (2009) Piggybac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458: 766–770

    PubMed  CAS  Google Scholar 

  107. Kim D, Kim CH, et al. (2009) Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4: 472–476

    PubMed  CAS  Google Scholar 

  108. Zhou H, Wu S, et al. (2009) Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4: 381–384

    PubMed  CAS  Google Scholar 

  109. Shi Y, Do JT, et al. (2008) A combined chemical and genetic approach for the generation of induced pluripotent stem cells. Cell Stem Cell 2: 525–528

    PubMed  CAS  Google Scholar 

  110. Huangfu D, Maehr R, et al. (2008) Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat Biotechnol 26: 795–797

    PubMed  CAS  Google Scholar 

  111. Huangfu D, Osafune K, et al. (2008) Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol 26(11): 1269–1275

    PubMed  CAS  Google Scholar 

  112. Feng B, Ng JH, et al. (2009) Molecules that promote or enhance reprogramming of somatic cells to induced pluripotent stem cells. Cell Stem Cell 4: 301–312

    PubMed  CAS  Google Scholar 

  113. Ichida JK, Blanchard J, et al. (2009) A small-molecule inhibitor of TGF-beta signaling replaces Sox2 in reprogramming by inducing nanog. Cell Stem Cell 5(5): 491–503

    PubMed  CAS  Google Scholar 

  114. Kim JB, Sebastiano V, et al. (2009) Oct4-induced pluripotency in adult neural stem cells. Cell 136: 411–419

    PubMed  CAS  Google Scholar 

  115. Kim JB, Greber B, et al. (2009) Direct reprogramming of human neural stem cells by Oct4. Nature 461: 649–653

    PubMed  CAS  Google Scholar 

  116. Frankel AD, Bredt DS, et al. (1988) Tat protein from human immunodeficiency virus forms a metal-linked dimer. Science 240: 70–73

    PubMed  CAS  Google Scholar 

  117. Frankel AD, Pabo CO (1988) Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55: 1189–1193

    PubMed  CAS  Google Scholar 

  118. Bosnali M, Edenhofer F (2008) Generation of transducible versions of transcription factors Oct4 and Sox2. Biol Chem 389: 851–861

    PubMed  CAS  Google Scholar 

  119. O’Malley J, Woltjen K, et al. (2009) New strategies to generate induced pluripotent stem cells. Curr Opin Biotechnol 20(5): 516–521

    PubMed  Google Scholar 

  120. Xu RH, Sampsell-Barron TL, et al. (2008) Nanog is a direct target of tgfbeta/activin-mediated smad signaling in human ESCs. Cell Stem Cell 3: 196–206

    PubMed  CAS  Google Scholar 

  121. Ying QL, Nichols J, et al. (2003) BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115: 281–292

    PubMed  CAS  Google Scholar 

  122. Humphrey RK, Beattie GM, et al. (2004) Maintenance of pluripotency in human embryonic stem cells is STAT3 independent. Stem Cells 22: 522–530

    PubMed  CAS  Google Scholar 

  123. Hanna J, Carey BW, et al. (2008) Reprogramming of somatic cell identity. Cold Spring Harb Symp Quant Biol 73: 147–155

    PubMed  CAS  Google Scholar 

  124. Stadtfeld M, Brennand K, et al. (2008) Reprogramming of pancreatic beta cells into induced pluripotent stem cells. Curr Biol 18: 890–894

    PubMed  CAS  Google Scholar 

  125. Sun N, Panetta NJ, et al. (2009) Feeder-free derivation of induced pluripotent stem cells from adult human adipose stem cells. Proc Natl Acad Sci USA 106: 15720–15725

    PubMed  CAS  Google Scholar 

  126. Ye Z, Zhan H, et al. (2009) Human induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders. Blood 114(27): 5473–5480

    PubMed  CAS  Google Scholar 

  127. Kim JB, Zaehres H, et al. (2008) Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature 454: 646–650

    PubMed  CAS  Google Scholar 

  128. Kim JB, Zaehres H, et al. (2009) Generation of induced pluripotent stem cells from neural stem cells. Nat Protoc 4: 1464–1470

    PubMed  CAS  Google Scholar 

  129. Yoshida Y, Takahashi K, et al. (2009) Hypoxia enhances the generation of induced pluripotent stem cells. Cell Stem Cell 5: 237–241

    PubMed  CAS  Google Scholar 

  130. Silvan U, Diez-Torre A, et al. (2009) Hypoxia and pluripotency in embryonic and embryonal carcinoma stem cell biology. Differentiation 78: 159–168

    PubMed  CAS  Google Scholar 

  131. Feng Q, Lu SJ, et al. Hemangioblastic derivatives from human induced pluripotent stem cells exhibit limited expansion and early senescence. Stem Cells 28(4): 704–712

    PubMed  Google Scholar 

  132. Wernig M, Zhao JP, et al. (2008) Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proc Natl Acad Sci USA 105: 5856–5861

    Google Scholar 

  133. Dimos JT, Rodolfa KT, et al. (2008) Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321: 1218–1221

    PubMed  CAS  Google Scholar 

  134. Mauritz C, Schwanke K, et al. (2008) Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation 118: 507–517

    PubMed  Google Scholar 

  135. Narazaki G, Uosaki H, et al. (2008) Directed and systematic differentiation of cardiovascular cells from mouse induced pluripotent stem cells. Circulation 118: 498–506

    PubMed  Google Scholar 

  136. Gai H, Leung EL, et al. (2009) Generation and characterization of functional cardiomyocytes using induced pluripotent stem cells derived from human fibroblasts. Cell Biol Int 33(11): 1184–1193

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond L. Page .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Page, R.L., Malcuit, C., Dominko, T. (2011). Methods for Inducing Pluripotency. In: Cohen, I., Gaudette, G. (eds) Regenerating the Heart. Stem Cell Biology and Regenerative Medicine. Humana Press. https://doi.org/10.1007/978-1-61779-021-8_13

Download citation

Publish with us

Policies and ethics