Skip to main content

Skeletal Muscle Stem Cells in the Spotlight: The Satellite Cell

  • Chapter
  • First Online:
Regenerating the Heart

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

The formation of striated muscle during embryogenesis involves morphogenetic programs that orchestrate the development of the functional units of skeletal muscle – the myofibers. These multinucleated syncytia share with cardiomyocytes some structural and contractile characteristics that commonly define skeletal and cardiac muscles as sarcomeric muscles. However, distinctive to adult skeletal muscle is its repair capacity that is contributed by satellite cells. These cells are specified during development for response to muscle trauma in the adult. Satellite cells are myogenic progenitors that reside on the surface of skeletal muscle myofibers beneath the basal lamina and provide a supply of myoblasts that readily contribute to muscle regeneration. Activated satellite cells give rise to myoblast progeny that fuse into new myofibers or with damaged myofibers. This differentiation process of satellite cell progeny integrates temporal gene expression with cell cycle control. Furthermore, satellite cells also may self-renew, which qualifies their identity as muscle stem cells. Similarities in the structure of the contractile units of skeletal and cardiac muscle have led cardiologists to consider novel approaches toward the use of skeletal muscle stem cells for improving cardiac regeneration. In this chapter, we discuss the basic biology of satellite cells and introduce in brief the hopes and obstacles for repairing muscle deterioration with donor satellite cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Horackova M, Arora R, Chen R, Armour JA, Cattini PA, Livingston R, Byczko Z (2004) Cell transplantation for treatment of acute myocardial infarction: unique capacity for repair by skeletal muscle satellite cells. Am J Physiol Heart Circ Physiol 287:H1599–1608

    PubMed  CAS  Google Scholar 

  2. Murry CE, Wiseman RW, Schwartz SM, Hauschka SD (1996) Skeletal myoblast transplantation for repair of myocardial necrosis. J Clin Invest 98:2512–2523

    PubMed  CAS  Google Scholar 

  3. Reinecke H, Poppa V, Murry CE (2002) Skeletal muscle stem cells do not transdifferentiate into cardiomyocytes after cardiac grafting. J Mol Cell Cardiol 34:241–249

    PubMed  CAS  Google Scholar 

  4. Suzuki K, Murtuza B, Beauchamp JR, Smolenski RT, Varela-Carver A, Fukushima S, Coppen SR, Partridge TA, Yacoub MH (2004) Dynamics and mediators of acute graft attrition after myoblast transplantation to the heart. FASEB J 18:1153–1155

    PubMed  CAS  Google Scholar 

  5. Aharinejad S, Abraham D, Paulus P, Zins K, Hofmann M, Michlits W, Gyongyosi M, Macfelda K, Lucas T, Trescher K, Grimm M, Stanley ER (2008) Colony-stimulating factor-1 transfection of myoblasts improves the repair of failing myocardium following autologous myoblast transplantation. Cardiovasc Res 79:395–404

    PubMed  CAS  Google Scholar 

  6. Menasche P (2008) Towards the second generation of skeletal myoblasts? Cardiovasc Res 79:355–356

    PubMed  CAS  Google Scholar 

  7. Menasche P (2008) Skeletal myoblasts and cardiac repair. J Mol Cell Cardiol 45:545–553

    PubMed  CAS  Google Scholar 

  8. Okada M, Payne TR, Zheng B, Oshima H, Momoi N, Tobita K, Keller BB, Phillippi JA, Peault B, Huard J (2008) Myogenic endothelial cells purified from human skeletal muscle improve cardiac function after transplantation into infarcted myocardium. J Am Coll Cardiol 52:1869–1880

    PubMed  Google Scholar 

  9. Formigli L, Zecchi-Orlandini S, Meacci E, Bani D (2010) Skeletal myoblasts for heart regeneration and repair: state of the art and perspectives on the mechanisms for functional cardiac benefits. Curr Pharm Des 16:915–928

    PubMed  CAS  Google Scholar 

  10. Larose E, Proulx G, Voisine P, Rodes-Cabau J, De Larochelliere R, Rossignol G, Bertrand OF, Tremblay JP (2010) Percutaneous versus surgical delivery of autologous myoblasts after chronic myocardial infarction: an in vivo cardiovascular magnetic resonance study. Catheter Cardiovasc Interv 75:120–127

    PubMed  Google Scholar 

  11. Schabort EJ, Myburgh KH, Wiehe JM, Torzewski J, Niesler CU (2009) Potential myogenic stem cell populations: sources, plasticity, and application for cardiac repair. Stem Cells Dev 18:813–830

    PubMed  Google Scholar 

  12. Ciciliot S, Schiaffino S (2010) Regeneration of mammalian skeletal muscle. Basic mechanisms and clinical implications. Curr Pharm Des 16:906–914

    PubMed  CAS  Google Scholar 

  13. Hawke TJ, Garry DJ (2001) Myogenic satellite cells: physiology to molecular biology. J Appl Physiol 91:534–551

    PubMed  CAS  Google Scholar 

  14. Zammit PS, Partridge TA, Yablonka-Reuveni Z (2006) The skeletal muscle satellite cell: the stem cell that came in from the cold. J Histochem Cytochem 54:1177–1191

    PubMed  CAS  Google Scholar 

  15. Dellavalle A, Sampaolesi M, Tonlorenzi R, Tagliafico E, Sacchetti B, Perani L, Innocenzi A, Galvez BG, Messina G, Morosetti R, Li S, Belicchi M, Peretti G, Chamberlain JS, Wright WE, Torrente Y, Ferrari S, Bianco P, Cossu G (2007) Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nat Cell Biol 9:255–267

    PubMed  CAS  Google Scholar 

  16. Tedesco FS, Dellavalle A, Diaz-Manera J, Messina G, Cossu G (2010) Repairing skeletal muscle: regenerative potential of skeletal muscle stem cells. J Clin Invest 120:11–19

    PubMed  CAS  Google Scholar 

  17. Zheng B, Cao B, Crisan M, Sun B, Li G, Logar A, Yap S, Pollett JB, Drowley L, Cassino T, Gharaibeh B, Deasy BM, Huard J, Peault B (2007) Prospective identification of myogenic endothelial cells in human skeletal muscle. Nat Biotechnol 25:1025–1034

    PubMed  CAS  Google Scholar 

  18. Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9:493–495

    PubMed  CAS  Google Scholar 

  19. Yablonka-Reuveni Z (1995) Development and postnatal regulation of adult myoblasts. Microsc Res Tech 30:366–380

    PubMed  CAS  Google Scholar 

  20. Yablonka-Reuveni Z, Day K, Vine A, Shefer G (2008) Defining the transcriptional signature of skeletal muscle stem cells. J Anim Sci 86:E207–E216

    PubMed  CAS  Google Scholar 

  21. Anderson JE (2006) The satellite cell as a companion in skeletal muscle plasticity: currency, conveyance, clue, connector and colander. J Exp Biol 209:2276–2292

    PubMed  CAS  Google Scholar 

  22. Luo D, Renault VM, Rando TA (2005) The regulation of Notch signaling in muscle stem cell activation and postnatal myogenesis. Semin Cell Dev Biol 16:612–622

    PubMed  CAS  Google Scholar 

  23. Shefer G, Yablonka-Reuveni Z (2008) Ins and outs of satellite cell myogenesis: the role of the ruling growth factors. In Schiaffino S, Partridge T, eds. Skeletal Muscle Repair and Regeneration (Advances in Muscle Res, vol 3). Springer, Dordrecht, 107–143

    Google Scholar 

  24. Wozniak AC, Kong J, Bock E, Pilipowicz O, Anderson JE (2005) Signaling satellite-cell activation in skeletal muscle: markers, models, stretch, and potential alternate pathways. Muscle Nerve 31:283–300

    PubMed  CAS  Google Scholar 

  25. Yablonka-Reuveni Z (1997) Proliferative dynamics and the role of FGF2 during myogenesis of rat satellite cells on isolated fibers. Basic Appl Myol 7:176–189

    Google Scholar 

  26. Yablonka-Reuveni Z, Seger R, Rivera AJ (1999) Fibroblast growth factor promotes recruitment of skeletal muscle satellite cells in young and old rats. J Histochem Cytochem 47:23–42

    PubMed  CAS  Google Scholar 

  27. Yamada M, Tatsumi R, Yamanouchi K, Hosoyama T, Shiratsuchi SI, Sato A, Mizunoya W, Ikeuchi Y, Furuse M, Allen RE (2010) High concentrations of HGF inhibit skeletal muscle satellite cell proliferation in vitro by inducing expression of myostatin. Am J Physiol Cell Physiol 298:C465–C476

    PubMed  CAS  Google Scholar 

  28. Zammit PS (2008) All muscle satellite cells are equal, but are some more equal than others? J Cell Sci 121:2975–2982

    PubMed  CAS  Google Scholar 

  29. Campion DR (1984) The muscle satellite cell: a review. Int Rev Cytol 87:225–251

    PubMed  CAS  Google Scholar 

  30. Halevy O, Piestun Y, Allouh MZ, Rosser BW, Rinkevich Y, Reshef R, Rozenboim I, Wleklinski-Lee M, Yablonka-Reuveni Z (2004) Pattern of Pax7 expression during myogenesis in the posthatch chicken establishes a model for satellite cell differentiation and renewal. Dev Dyn 231:489–502

    PubMed  CAS  Google Scholar 

  31. Moss FP, Leblond CP (1971) Satellite cells as the source of nuclei in muscles of growing rats. Anat Rec 170:421–435

    PubMed  CAS  Google Scholar 

  32. Schultz E (1996) Satellite cell proliferative compartments in growing skeletal muscles. Dev Biol 175:84–94

    PubMed  CAS  Google Scholar 

  33. Snow MH (1978) An autoradiographic study of satellite cell differentiation into regenerating myotubes following transplantation of muscles in young rats. Cell Tissue Res 186:535–540

    PubMed  CAS  Google Scholar 

  34. Bischoff R (1989) Analysis of muscle regeneration using single myofibers in culture. Med Sci Sports Exerc 21:S164–S172

    PubMed  CAS  Google Scholar 

  35. Carlson ME, Hsu M, Conboy IM (2008) Imbalance between pSmad3 and Notch induces CDK inhibitors in old muscle stem cells. Nature 454:528–532

    PubMed  CAS  Google Scholar 

  36. Christov C, Chretien F, Abou-Khalil R, Bassez G, Vallet G, Authier FJ, Bassaglia Y, Shinin V, Tajbakhsh S, Chazaud B, Gherardi RK (2007) Muscle satellite cells and endothelial cells: close neighbors and privileged partners. Mol Biol Cell 18:1397–1409

    PubMed  CAS  Google Scholar 

  37. Gopinath SD, Rando TA (2008) Stem cell review series: aging of the skeletal muscle stem cell niche. Aging Cell 7:590–598

    PubMed  CAS  Google Scholar 

  38. Shavlakadze T, McGeachie J, Grounds MD (2010) Delayed but excellent myogenic stem cell response of regenerating geriatric skeletal muscles in mice. Biogerontology 11:363–376

    PubMed  Google Scholar 

  39. Carlson ME, Conboy MJ, Hsu M, Barchas L, Jeong J, Agrawal A, Mikels AJ, Agrawal S, Schaffer DV, Conboy IM (2009) Relative roles of TGF-beta1 and Wnt in the systemic regulation and aging of satellite cell responses. Aging Cell 8:676–689

    PubMed  CAS  Google Scholar 

  40. Conboy IM, Conboy MJ, Wagers AJ, Girma ER, Weissman IL, Rando TA (2005) Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433:760–764

    PubMed  CAS  Google Scholar 

  41. Collins CA, Olsen I, Zammit PS, Heslop L, Petrie A, Partridge TA, Morgan JE (2005) Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 122:289–301

    PubMed  CAS  Google Scholar 

  42. Grounds MD, Yablonka-Reuveni Z (1993) Molecular and cell biology of skeletal muscle regeneration. Mol Cell Biol Hum Dis Ser 3:210–256

    PubMed  CAS  Google Scholar 

  43. Day K, Paterson B, Yablonka-Reuveni Z (2009) A distinct profile of myogenic regulatory factor detection within Pax7+ cells at S phase supports a unique role of Myf5 during posthatch chicken myogenesis. Dev Dyn 238:1001–1009

    PubMed  CAS  Google Scholar 

  44. Shefer G, Van de Mark DP, Richardson JB, Yablonka-Reuveni Z (2006) Satellite-cell pool size does matter: defining the myogenic potency of aging skeletal muscle. Dev Biol 294:50–66

    PubMed  CAS  Google Scholar 

  45. Zammit PS, Heslop L, Hudon V, Rosenblatt JD, Tajbakhsh S, Buckingham ME, Beauchamp JR, Partridge TA (2002) Kinetics of myoblast proliferation show that resident satellite cells are competent to fully regenerate skeletal muscle fibers. Exp Cell Res 281:39–49

    PubMed  CAS  Google Scholar 

  46. Allouh MZ, Yablonka-Reuveni Z, Rosser BW (2008) Pax7 reveals a greater frequency and concentration of satellite cells at the ends of growing skeletal muscle fibers. J Histochem Cytochem 56:77–87

    PubMed  CAS  Google Scholar 

  47. Collins CA, Zammit PS, Ruiz AP, Morgan JE, Partridge TA (2007) A population of myogenic stem cells that survives skeletal muscle aging. Stem Cells 25:885–894

    PubMed  CAS  Google Scholar 

  48. Day K, Shefer G, Shearer A, Yablonka-Reuveni Z (2010) The depletion of skeletal muscle satellite cells with age is concomitant with reduced capacity of single progenitors to produce reserve progeny. Dev Biol 340:330–343

    PubMed  CAS  Google Scholar 

  49. Ono Y, Boldrin L, Knopp P, Morgan JE, Zammit PS (2010) Muscle satellite cells are a functionally heterogeneous population in both somite-derived and branchiomeric muscles. Dev Biol 337:29–41

    PubMed  CAS  Google Scholar 

  50. Carlson BM, Faulkner JA (1989) Muscle transplantation between young and old rats: age of host determines recovery. Am J Physiol 256:C1262–C1266

    PubMed  CAS  Google Scholar 

  51. Thompson LV (2009) Age-related muscle dysfunction. Exp Gerontol 44:106–111

    PubMed  CAS  Google Scholar 

  52. Grounds MD (1998) Age-associated changes in the response of skeletal muscle cells to exercise and regeneration. Ann N Y Acad Sci 854:78–91

    PubMed  CAS  Google Scholar 

  53. Aguennouz M, Vita GL, Messina S, Cama A, Lanzano N, Ciranni A, Rodolico C, Di Giorgio RM, Vita G (2010) Telomere shortening is associated to TRF1 and PARP1 overexpression in Duchenne muscular dystrophy. Neurobiol Aging

    Google Scholar 

  54. Blau HM, Webster C, Pavlath GK (1983) Defective myoblasts identified in Duchenne muscular dystrophy. Proc Natl Acad Sci USA 80:4856–4860

    PubMed  CAS  Google Scholar 

  55. Webster C, Blau HM (1990) Accelerated age-related decline in replicative life-span of Duchenne muscular dystrophy myoblasts: implications for cell and gene therapy. Somat Cell Mol Genet 16:557–565

    PubMed  CAS  Google Scholar 

  56. Cerletti M, Jurga S, Witczak CA, Hirshman MF, Shadrach JL, Goodyear LJ, Wagers AJ (2008) Highly efficient, functional engraftment of skeletal muscle stem cells in dystrophic muscles. Cell 134:37–47

    PubMed  CAS  Google Scholar 

  57. Montarras D, Morgan J, Collins C, Relaix F, Zaffran S, Cumano A, Partridge T, Buckingham M (2005) Direct isolation of satellite cells for skeletal muscle regeneration. Science 309:2064–2067

    PubMed  CAS  Google Scholar 

  58. Sacco A, Doyonnas R, Kraft P, Vitorovic S, Blau HM (2008) Self-renewal and expansion of single transplanted muscle stem cells. Nature 456:502–506

    PubMed  CAS  Google Scholar 

  59. Yablonka-Reuveni Z (2004) Isolation and culture of myogenic stem cells. In: Lanza R, Blau H, Melton D, Moore M, Thomas ED, Verfaillie C, Weissman IL, West M, eds. Handbook of Stem Cells–Vol 2: Adult and Fetal Stem Cells. San Diego: Elsevier, 571–580

    Google Scholar 

  60. Qu-Petersen Z, Deasy B, Jankowski R, Ikezawa M, Cummins J, Pruchnic R, Mytinger J, Cao B, Gates C, Wernig A, Huard J (2002) Identification of a novel population of muscle stem cells in mice: potential for muscle regeneration. J Cell Biol 157:851–864

    PubMed  CAS  Google Scholar 

  61. Rando TA, Blau HM (1994) Primary mouse myoblast purification, characterization, and transplantation for cell-mediated gene therapy. J Cell Biol 125:1275–1287

    PubMed  CAS  Google Scholar 

  62. Richler C, Yaffe D (1970) The in vitro cultivation and differentiation capacities of myogenic cell lines. Dev Biol 23:1–22

    PubMed  CAS  Google Scholar 

  63. Kastner S, Elias MC, Rivera AJ, Yablonka-Reuveni Z (2000) Gene expression patterns of the fibroblast growth factors and their receptors during myogenesis of rat satellite cells. J Histochem Cytochem 48:1079–1096

    PubMed  CAS  Google Scholar 

  64. Morgan JE (1988) Myogenicity in vitro and in vivo of mouse muscle cells separated on discontinuous Percoll gradients. J Neurol Sci 85:197–207

    PubMed  CAS  Google Scholar 

  65. Yablonka-Reuveni Z, Nameroff M (1987) Skeletal muscle cell populations. Separation and partial characterization of fibroblast-like cells from embryonic tissue using density centrifugation. Histochemistry 87:27–38

    PubMed  CAS  Google Scholar 

  66. Yablonka-Reuveni Z, Quinn LS, Nameroff M (1987) Isolation and clonal analysis of satellite cells from chicken pectoralis muscle. Dev Biol 119:252–259

    PubMed  CAS  Google Scholar 

  67. Yablonka-Reuveni Z (1988) Discrimination of myogenic and nonmyogenic cells from embryonic skeletal muscle by 90 degrees light scattering. Cytometry 9:121–125

    PubMed  CAS  Google Scholar 

  68. Tanaka KK, Hall JK, Troy AA, Cornelison DD, Majka SM, Olwin BB (2009) Syndecan-4-expressing muscle progenitor cells in the SP engraft as satellite cells during muscle regeneration. Cell Stem Cell 4:217–225

    PubMed  CAS  Google Scholar 

  69. Day K, Shefer G, Richardson JB, Enikolopov G, Yablonka-Reuveni Z (2007) Nestin-GFP reporter expression defines the quiescent state of skeletal muscle satellite cells. Dev Biol 304:246–259

    PubMed  CAS  Google Scholar 

  70. Bosnakovski D, Xu Z, Li W, Thet S, Cleaver O, Perlingeiro RC, Kyba M (2008) Prospective isolation of skeletal muscle stem cells with a Pax7 reporter. Stem Cells 26:3194–3204

    PubMed  CAS  Google Scholar 

  71. Biressi S, Tagliafico E, Lamorte G, Monteverde S, Tenedini E, Roncaglia E, Ferrari S, Ferrari S, Cusella-De Angelis MG, Tajbakhsh S, Cossu G (2007) Intrinsic phenotypic diversity of embryonic and fetal myoblasts is revealed by genome-wide gene expression analysis on purified cells. Dev Biol 304:633–651

    PubMed  CAS  Google Scholar 

  72. Gayraud-Morel B, Chretien F, Flamant P, Gomes D, Zammit PS, Tajbakhsh S (2007) A role for the myogenic determination gene Myf5 in adult regenerative myogenesis. Dev Biol 312:13–28

    PubMed  CAS  Google Scholar 

  73. Kanisicak O, Mendez JJ, Yamamoto S, Yamamoto M, Goldhamer DJ (2009) Progenitors of skeletal muscle satellite cells express the muscle determination gene, MyoD. Dev Biol 332:131–141

    PubMed  CAS  Google Scholar 

  74. Kuang S, Kuroda K, Le Grand F, Rudnicki MA (2007) Asymmetric self-renewal and commitment of satellite stem cells in muscle. Cell 129:999–1010

    PubMed  CAS  Google Scholar 

  75. Schienda J, Engleka KA, Jun S, Hansen MS, Epstein JA, Tabin CJ, Kunkel LM, Kardon G (2006) Somitic origin of limb muscle satellite and side population cells. Proc Natl Acad Sci USA 103:945–950

    PubMed  CAS  Google Scholar 

  76. Gensch N, Borchardt T, Schneider A, Riethmacher D, Braun T (2008) Different autonomous myogenic cell populations revealed by ablation of Myf5-expressing cells during mouse embryogenesis. Development 135:1597–1604

    PubMed  CAS  Google Scholar 

  77. Bischoff R (1986) Proliferation of muscle satellite cells on intact myofibers in culture. Dev Biol 115:129–139

    PubMed  CAS  Google Scholar 

  78. Bischoff R (1975) Regeneration of single skeletal muscle fibers in vitro. Anat Rec 182:215–235

    PubMed  CAS  Google Scholar 

  79. Konigsberg UR, Lipton BH, Konigsberg IR (1975) The regenerative response of single mature muscle fibers isolated in vitro. Dev Biol 45:260–275

    PubMed  CAS  Google Scholar 

  80. Rosenblatt JD, Lunt AI, Parry DJ, Partridge TA (1995) Culturing satellite cells from living single muscle fiber explants. In Vitro Cell Dev Biol Anim 31:773–779

    PubMed  CAS  Google Scholar 

  81. Yablonka-Reuveni Z, Rivera AJ (1994) Temporal expression of regulatory and structural muscle proteins during myogenesis of satellite cells on isolated adult rat fibers. Dev Biol 164:588–603

    PubMed  CAS  Google Scholar 

  82. Shefer G, Yablonka-Reuveni Z (2005) Isolation and culture of skeletal muscle myofibers as a means to analyze satellite cells. Methods Mol Biol 290:281–304

    PubMed  Google Scholar 

  83. Zammit PS, Golding JP, Nagata Y, Hudon V, Partridge TA, Beauchamp JR (2004) Muscle satellite cells adopt divergent fates: a mechanism for self-renewal? J Cell Biol 166:347–357

    PubMed  CAS  Google Scholar 

  84. Beauchamp JR, Heslop L, Yu DS, Tajbakhsh S, Kelly RG, Wernig A, Buckingham ME, Partridge TA, Zammit PS (2000) Expression of CD34 and Myf5 defines the majority of quiescent adult skeletal muscle satellite cells. J Cell Biol 151:1221–1234

    PubMed  CAS  Google Scholar 

  85. Kwiatkowski BA, Kirillova I, Richard RE, Israeli D, Yablonka-Reuveni Z (2008) FGFR4 and its novel splice form in myogenic cells: Interplay of glycosylation and tyrosine phosphorylation. J Cell Physiol 215:803–817

    PubMed  CAS  Google Scholar 

  86. Yablonka-Reuveni Z, Balestreri TM, Bowen-Pope DF (1990) Regulation of proliferation and differentiation of myoblasts derived from adult mouse skeletal muscle by specific isoforms of PDGF. J Cell Biol 111:1623–1629

    PubMed  CAS  Google Scholar 

  87. Yablonka-Reuveni Z, Rivera AJ (1997) Influence of PDGF-BB on proliferation and transition through the MyoD-myogenin-MEF2A expression program during myogenesis in mouse C2 myoblasts. Growth Factors 15:1–27

    PubMed  CAS  Google Scholar 

  88. Yaffe D, Saxel O (1977) Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature 270:725–727

    PubMed  CAS  Google Scholar 

  89. Clegg CH, Linkhart TA, Olwin BB, Hauschka SD (1987) Growth factor control of skeletal muscle differentiation: commitment to terminal differentiation occurs in G1 phase and is repressed by fibroblast growth factor. J Cell Biol 105:949–956

    PubMed  CAS  Google Scholar 

  90. Fedorov YV, Rosenthal RS, Olwin BB (2001) Oncogenic Ras-induced proliferation requires autocrine fibroblast growth factor 2 signaling in skeletal muscle cells. J Cell Biol 152:1301–1305

    PubMed  CAS  Google Scholar 

  91. Graves DC, Yablonka-Reuveni Z (2000) Vascular smooth muscle cells spontaneously adopt a skeletal muscle phenotype: a unique Myf5(−)/MyoD(+) myogenic program. J Histochem Cytochem 48:1173–1193

    PubMed  CAS  Google Scholar 

  92. Yaffe D (1969) Cellular aspects of muscle differentiation in vitro. Curr Top Dev Biol 4:37–77

    PubMed  CAS  Google Scholar 

  93. Buckingham M, Montarras D (2008) Skeletal muscle stem cells. Curr Opin Genet Dev 18:330–336

    PubMed  CAS  Google Scholar 

  94. Armand O, Boutineau AM, Mauger A, Pautou MP, Kieny M (1983) Origin of satellite cells in avian skeletal muscles. Arch Anat Microsc Morphol Exp 72:163–181

    PubMed  CAS  Google Scholar 

  95. Cossu G, Eusebi F, Grassi F, Wanke E (1987) Acetylcholine receptor channels are present in undifferentiated satellite cells but not in embryonic myoblasts in culture. Dev Biol 123:43–50

    PubMed  CAS  Google Scholar 

  96. Cossu G, Molinaro M (1987) Cell heterogeneity in the myogenic lineage. Curr Top Dev Biol 23:185–208

    PubMed  CAS  Google Scholar 

  97. Feldman JL, Stockdale FE (1992) Temporal appearance of satellite cells during myogenesis. Dev Biol 153:217–226

    PubMed  CAS  Google Scholar 

  98. Hartley RS, Bandman E, Yablonka-Reuveni Z (1992) Skeletal muscle satellite cells appear during late chicken embryogenesis. Dev Biol 153:206–216

    PubMed  CAS  Google Scholar 

  99. Hartley RS, Bandman E, Yablonka-Reuveni Z (1991) Myoblasts from fetal and adult skeletal muscle regulate myosin expression differently. Dev Biol 148:249–260

    PubMed  CAS  Google Scholar 

  100. Gros J, Manceau M, Thome V, Marcelle C (2005) A common somitic origin for embryonic muscle progenitors and satellite cells. Nature 435:954–958

    PubMed  CAS  Google Scholar 

  101. Relaix F, Marcelle C (2009) Muscle stem cells. Curr Opin Cell Biol 21:748–753

    PubMed  CAS  Google Scholar 

  102. Relaix F, Rocancourt D, Mansouri A, Buckingham M (2005) A Pax3/Pax7-dependent population of skeletal muscle progenitor cells. Nature 435:948–953

    PubMed  CAS  Google Scholar 

  103. Barber TD, Barber MC, Cloutier TE, Friedman TB (1999) PAX3 gene structure, alternative splicing and evolution. Gene 237:311–319

    PubMed  CAS  Google Scholar 

  104. Vorobyov E, Horst J (2006) Getting the proto-Pax by the tail. J Mol Evol 63:153–164

    PubMed  CAS  Google Scholar 

  105. Buckingham M, Bajard L, Daubas P, Esner M, Lagha M, Relaix F, Rocancourt D (2006) Myogenic progenitor cells in the mouse embryo are marked by the expression of Pax3/7 genes that regulate their survival and myogenic potential. Anat Embryol (Berl) 211 Suppl 1:51–56

    Google Scholar 

  106. Buckingham M, Relaix F (2007) The role of Pax genes in the development of tissues and organs: Pax3 and Pax7 regulate muscle progenitor cell functions. Annu Rev Cell Dev Biol 23:645–673

    PubMed  CAS  Google Scholar 

  107. Galli LM, Willert K, Nusse R, Yablonka-Reuveni Z, Nohno T, Denetclaw W, Burrus LW (2004) A proliferative role for Wnt-3a in chick somites. Dev Biol 269:489–504

    PubMed  CAS  Google Scholar 

  108. Lamey TM, Koenders A, Ziman M (2004) Pax genes in myogenesis: alternate transcripts add complexity. Histol Histopathol 19:1289–1300

    PubMed  CAS  Google Scholar 

  109. Relaix F, Rocancourt D, Mansouri A, Buckingham M (2004) Divergent functions of murine Pax3 and Pax7 in limb muscle development. Genes Dev 18:1088–1105

    PubMed  CAS  Google Scholar 

  110. Epstein JA, Shapiro DN, Cheng J, Lam PY, Maas RL (1996) Pax3 modulates expression of the c-Met receptor during limb muscle development. Proc Natl Acad Sci USA 93:4213–4218

    PubMed  CAS  Google Scholar 

  111. Harel I, Nathan E, Tirosh-Finkel L, Zigdon H, Guimaraes-Camboa N, Evans SM, Tzahor E (2009) Distinct origins and genetic programs of head muscle satellite cells. Dev Cell 16:822–832

    PubMed  CAS  Google Scholar 

  112. Sambasivan R, Gayraud-Morel B, Dumas G, Cimper C, Paisant S, Kelly RG, Tajbakhsh S (2009) Distinct regulatory cascades govern extraocular and pharyngeal arch muscle progenitor cell fates. Dev Cell 16:810–821

    PubMed  CAS  Google Scholar 

  113. Tajbakhsh S, Rocancourt D, Cossu G, Buckingham M (1997) Redefining the genetic hierarchies controlling skeletal myogenesis: Pax-3 and Myf-5 act upstream of MyoD. Cell 89:127–138

    PubMed  CAS  Google Scholar 

  114. Noden DM, Francis-West P (2006) The differentiation and morphogenesis of craniofacial muscles. Dev Dyn 235:1194–1218

    PubMed  CAS  Google Scholar 

  115. Kuang S, Charge SB, Seale P, Huh M, Rudnicki MA (2006) Distinct roles for Pax7 and Pax3 in adult regenerative myogenesis. J Cell Biol 172:103–113

    PubMed  CAS  Google Scholar 

  116. Oustanina S, Hause G, Braun T (2004) Pax7 directs postnatal renewal and propagation of myogenic satellite cells but not their specification. EMBO J 23:3430–3439

    PubMed  CAS  Google Scholar 

  117. Relaix F, Montarras D, Zaffran S, Gayraud-Morel B, Rocancourt D, Tajbakhsh S, Mansouri A, Cumano A, Buckingham M (2006) Pax3 and Pax7 have distinct and overlapping functions in adult muscle progenitor cells. J Cell Biol 172:91–102

    PubMed  CAS  Google Scholar 

  118. Seale P, Sabourin LA, Girgis-Gabardo A, Mansouri A, Gruss P, Rudnicki MA (2000) Pax7 is required for the specification of myogenic satellite cells. Cell 102:777–786

    PubMed  CAS  Google Scholar 

  119. Lepper C, Conway SJ, Fan CM (2009) Adult satellite cells and embryonic muscle progenitors have distinct genetic requirements. Nature 460:627–631

    PubMed  CAS  Google Scholar 

  120. Kirkpatrick LJ, Yablonka-Reuveni Z, Rosser BW (2010) Retention of Pax3 expression in satellite cells of muscle spindles. J Histochem Cytochem 58:317–327

    PubMed  CAS  Google Scholar 

  121. Olguin HC, Olwin BB (2004) Pax-7 up-regulation inhibits myogenesis and cell cycle progression in satellite cells: a potential mechanism for self-renewal. Dev Biol 275:375–388

    PubMed  CAS  Google Scholar 

  122. Olguin HC, Yang Z, Tapscott SJ, Olwin BB (2007) Reciprocal inhibition between Pax7 and muscle regulatory factors modulates myogenic cell fate determination. J Cell Biol 177:769–779

    PubMed  CAS  Google Scholar 

  123. Zammit PS, Relaix F, Nagata Y, Ruiz AP, Collins CA, Partridge TA, Beauchamp JR (2006) Pax7 and myogenic progression in skeletal muscle satellite cells. J Cell Sci 119:1824–1832

    PubMed  CAS  Google Scholar 

  124. Collins CA, Gnocchi VF, White RB, Boldrin L, Perez-Ruiz A, Relaix F, Morgan JE, Zammit PS (2009) Integrated functions of Pax3 and Pax7 in the regulation of proliferation, cell size and myogenic differentiation. PLoS One 4:e4475.

    PubMed  Google Scholar 

  125. McKinnell IW, Ishibashi J, Le Grand F, Punch VG, Addicks GC, Greenblatt JF, Dilworth FJ, Rudnicki MA (2008) Pax7 activates myogenic genes by recruitment of a histone methyltransferase complex. Nat Cell Biol 10:77–84

    PubMed  CAS  Google Scholar 

  126. Kumar D, Shadrach JL, Wagers AJ, Lassar AB (2009) Id3 is a direct transcriptional target of Pax7 in quiescent satellite cells. Mol Biol Cell 20:3170–3177

    PubMed  CAS  Google Scholar 

  127. Czerny T, Busslinger M (1995) DNA-binding and transactivation properties of Pax-6: three amino acids in the paired domain are responsible for the different sequence recognition of Pax-6 and BSAP (Pax-5). Mol Cell Biol 15:2858–2871

    PubMed  CAS  Google Scholar 

  128. White RB, Ziman MR (2008) Genome-wide discovery of Pax7 target genes during development. Physiol Genomics 33:41–49

    PubMed  CAS  Google Scholar 

  129. Pritchard C, Grosveld G, Hollenbach AD (2003) Alternative splicing of Pax3 produces a transcriptionally inactive protein. Gene 305:61–69

    PubMed  CAS  Google Scholar 

  130. Vorobyov E, Horst J (2004) Expression of two protein isoforms of PAX7 is controlled by competing cleavage-polyadenylation and splicing. Gene 342:107–112

    PubMed  CAS  Google Scholar 

  131. Ziman MR, Fletcher S, Kay PH (1997) Alternate Pax7 transcripts are expressed specifically in skeletal muscle, brain and other organs of adult mice. Int J Biochem Cell Biol 29:1029–1036

    PubMed  CAS  Google Scholar 

  132. Ziman MR, Kay PH (1998) Differential expression of four alternate Pax7 paired box transcripts is influenced by organ- and strain-specific factors in adult mice. Gene 217:77–81

    PubMed  CAS  Google Scholar 

  133. Ziman MR, Pelham JT, Mastaglia FL, Kay PH (2000) Characterization of the alternate allelic forms of human PAX7. Mamm Genome 11:332–337

    PubMed  CAS  Google Scholar 

  134. Kassar-Duchossoy L, Gayraud-Morel B, Gomes D, Rocancourt D, Buckingham M, Shinin V, Tajbakhsh S (2004) Mrf4 determines skeletal muscle identity in Myf5:Myod double-mutant mice. Nature 431:466–471

    PubMed  CAS  Google Scholar 

  135. Ludolph DC, Konieczny SF (1995) Transcription factor families: muscling in on the myogenic program. FASEB J 9:1595–1604

    PubMed  CAS  Google Scholar 

  136. Rawls A, Morris JH, Rudnicki M, Braun T, Arnold HH, Klein WH, Olson EN (1995) Myogenin’s functions do not overlap with those of MyoD or Myf-5 during mouse embryogenesis. Dev Biol 172:37–50

    PubMed  CAS  Google Scholar 

  137. Rawls A, Valdez MR, Zhang W, Richardson J, Klein WH, Olson EN (1998) Overlapping functions of the myogenic bHLH genes MRF4 and MyoD revealed in double mutant mice. Development 125:2349–2358

    PubMed  CAS  Google Scholar 

  138. Valdez MR, Richardson JA, Klein WH, Olson EN (2000) Failure of Myf5 to support myogenic differentiation without myogenin, MyoD, and MRF4. Dev Biol 219:287–298

    PubMed  CAS  Google Scholar 

  139. Yablonka-Reuveni Z, Rudnicki MA, Rivera AJ, Primig M, Anderson JE, Natanson P (1999) The transition from proliferation to differentiation is delayed in satellite cells from mice lacking MyoD. Dev Biol 210:440–455

    PubMed  CAS  Google Scholar 

  140. White JD, Scaffidi A, Davies M, McGeachie J, Rudnicki MA, Grounds MD (2000) Myotube formation is delayed but not prevented in MyoD-deficient skeletal muscle: studies in regenerating whole muscle grafts of adult mice. J Histochem Cytochem 48:1531–1544

    PubMed  CAS  Google Scholar 

  141. Megeney LA, Kablar B, Garrett K, Anderson JE, Rudnicki MA (1996) MyoD is required for myogenic stem cell function in adult skeletal muscle. Genes Dev 10:1173–1183

    PubMed  CAS  Google Scholar 

  142. Olson EN, Arnold HH, Rigby PW, Wold BJ (1996) Know your neighbors: three phenotypes in null mutants of the myogenic bHLH gene MRF4. Cell 85:1–4

    PubMed  CAS  Google Scholar 

  143. Ustanina S, Carvajal J, Rigby P, Braun T (2007) The myogenic factor Myf5 supports efficient skeletal muscle regeneration by enabling transient myoblast amplification. Stem Cells 25:2006–2016

    PubMed  CAS  Google Scholar 

  144. Knapp JR, Davie JK, Myer A, Meadows E, Olson EN, Klein WH (2006) Loss of myogenin in postnatal life leads to normal skeletal muscle but reduced body size. Development 133:601–610

    PubMed  CAS  Google Scholar 

  145. Meadows E, Cho JH, Flynn JM, Klein WH (2008) Myogenin regulates a distinct genetic program in adult muscle stem cells. Dev Biol 322:406–414

    PubMed  CAS  Google Scholar 

  146. Hinterberger TJ, Sassoon DA, Rhodes SJ, Konieczny SF (1991) Expression of the muscle regulatory factor MRF4 during somite and skeletal myofiber development. Dev Biol 147:144–156

    PubMed  CAS  Google Scholar 

  147. Zhang W, Behringer RR, Olson EN (1995) Inactivation of the myogenic bHLH gene MRF4 results in up-regulation of myogenin and rib anomalies. Genes Dev 9:1388–1399

    PubMed  CAS  Google Scholar 

  148. Smith CK, II, Janney MJ, Allen RE (1994) Temporal expression of myogenic regulatory genes during activation, proliferation, and differentiation of rat skeletal muscle satellite cells. J Cell Physiol 159:379–385

    PubMed  CAS  Google Scholar 

  149. Smith TH, Block NE, Rhodes SJ, Konieczny SF, Miller JB (1993) A unique pattern of expression of the four muscle regulatory factor proteins distinguishes somitic from embryonic, fetal and newborn mouse myogenic cells. Development 117:1125–1133

    PubMed  CAS  Google Scholar 

  150. Berkes CA, Tapscott SJ (2005) MyoD and the transcriptional control of myogenesis. Semin Cell Dev Biol 16:585–595

    PubMed  CAS  Google Scholar 

  151. Tapscott SJ (2005) The circuitry of a master switch: Myod and the regulation of skeletal muscle gene transcription. Development 132:2685–2695

    PubMed  CAS  Google Scholar 

  152. Gillespie MA, Le Grand F, Scime A, Kuang S, von Maltzahn J, Seale V, Cuenda A, Ranish JA, Rudnicki MA (2009) p38-{gamma}-dependent gene silencing restricts entry into the myogenic differentiation program. J Cell Biol 187:991–1005

    PubMed  CAS  Google Scholar 

  153. Wyzykowski JC, Winata TI, Mitin N, Taparowsky EJ, Konieczny SF (2002) Identification of novel MyoD gene targets in proliferating myogenic stem cells. Mol Cell Biol 22:6199–6208

    PubMed  CAS  Google Scholar 

  154. Zhang K, Sha J, Harter ML (2010) Activation of Cdc6 by MyoD is associated with the expansion of quiescent myogenic satellite cells. J Cell Biol 188:39–48

    PubMed  CAS  Google Scholar 

  155. Grounds MD, Garrett KL, Lai MC, Wright WE, Beilharz MW (1992) Identification of skeletal muscle precursor cells in vivo by use of MyoD1 and myogenin probes. Cell Tissue Res 267:99–104

    PubMed  CAS  Google Scholar 

  156. Gnocchi VF, White RB, Ono Y, Ellis JA, Zammit PS (2009) Further characterisation of the molecular signature of quiescent and activated mouse muscle satellite cells. PLoS One 4:e5205

    PubMed  Google Scholar 

  157. Bischoff R (1990) Control of satellite cell proliferation. Adv Exp Med Biol 280:147–157; discussion 157–148

    PubMed  CAS  Google Scholar 

  158. Bischoff R (1986) A satellite cell mitogen from crushed adult muscle. Dev Biol 115:140–147

    PubMed  CAS  Google Scholar 

  159. Yablonka-Reuveni Z, Paterson BM (2001) MyoD and myogenin expression patterns in cultures of fetal and adult chicken myoblasts. J Histochem Cytochem 49:455–462

    PubMed  CAS  Google Scholar 

  160. Rudnicki MA, Braun T, Hinuma S, Jaenisch R (1992) Inactivation of MyoD in mice leads to up-regulation of the myogenic HLH gene Myf-5 and results in apparently normal muscle development. Cell 71:383–390

    PubMed  CAS  Google Scholar 

  161. Rudnicki MA, Schnegelsberg PN, Stead RH, Braun T, Arnold HH, Jaenisch R (1993) MyoD or Myf-5 is required for the formation of skeletal muscle. Cell 75:1351–1359

    PubMed  CAS  Google Scholar 

  162. Lindon C, Montarras D, Pinset C (1998) Cell cycle-regulated expression of the muscle determination factor Myf5 in proliferating myoblasts. J Cell Biol 140:111–118

    PubMed  CAS  Google Scholar 

  163. Kitzmann M, Carnac G, Vandromme M, Primig M, Lamb NJ, Fernandez A (1998) The muscle regulatory factors MyoD and myf-5 undergo distinct cell cycle-specific expression in muscle cells. J Cell Biol 142:1447–1459

    PubMed  CAS  Google Scholar 

  164. Kitzmann M, Fernandez A (2001) Crosstalk between cell cycle regulators and the myogenic factor MyoD in skeletal myoblasts. Cell Mol Life Sci 58:571–579

    PubMed  CAS  Google Scholar 

  165. Batonnet-Pichon S, Tintignac LJ, Castro A, Sirri V, Leibovitch MP, Lorca T, Leibovitch SA (2006) MyoD undergoes a distinct G2/M-specific regulation in muscle cells. Exp Cell Res 312:3999–4010

    PubMed  CAS  Google Scholar 

  166. Tintignac LA, Leibovitch MP, Kitzmann M, Fernandez A, Ducommun B, Meijer L, Leibovitch SA (2000) Cyclin E-cdk2 phosphorylation promotes late G1-phase degradation of MyoD in muscle cells. Exp Cell Res 259:300–307

    PubMed  CAS  Google Scholar 

  167. Doucet C, Gutierrez GJ, Lindon C, Lorca T, Lledo G, Pinset C, Coux O (2005) Multiple phosphorylation events control mitotic degradation of the muscle transcription factor Myf5. BMC Biochem 6:27

    PubMed  Google Scholar 

  168. Lindon C, Albagli O, Domeyne P, Montarras D, Pinset C (2000) Constitutive instability of muscle regulatory factor Myf5 is distinct from its mitosis-specific disappearance, which requires a D-box-like motif overlapping the basic domain. Mol Cell Biol 20:8923–8932

    PubMed  CAS  Google Scholar 

  169. Perez-Ruiz A, Ono Y, Gnocchi VF, Zammit PS (2008) beta-Catenin promotes self-renewal of skeletal-muscle satellite cells. J Cell Sci 121:1373–1382

    PubMed  CAS  Google Scholar 

  170. Friday BB, Pavlath GK (2001) A calcineurin- and NFAT-dependent pathway regulates Myf5 gene expression in skeletal muscle reserve cells. J Cell Sci 114:303–310

    PubMed  CAS  Google Scholar 

  171. Shinin V, Gayraud-Morel B, Gomes D, Tajbakhsh S (2006) Asymmetric division and cosegregation of template DNA strands in adult muscle satellite cells. Nat Cell Biol 8:677–687

    PubMed  CAS  Google Scholar 

  172. Huh MS, Parker MH, Scime A, Parks R, Rudnicki MA (2004) Rb is required for progression through myogenic differentiation but not maintenance of terminal differentiation. J Cell Biol 166:865–876

    PubMed  CAS  Google Scholar 

  173. Andres V, Walsh K (1996) Myogenin expression, cell cycle withdrawal, and phenotypic differentiation are temporally separable events that precede cell fusion upon myogenesis. J Cell Biol 132:657–666

    PubMed  CAS  Google Scholar 

  174. Horsley V, Pavlath GK (2004) Forming a multinucleated cell: molecules that regulate myoblast fusion. Cells Tissues Organs 176:67–78

    PubMed  Google Scholar 

  175. Jansen KM, Pavlath GK (2008) Molecular control of mammalian myoblast fusion. Methods Mol Biol 475:115–133

    PubMed  CAS  Google Scholar 

  176. Devlin BH, Konigsberg IR (1983) Reentry into the cell cycle of differentiated skeletal myocytes. Dev Biol 95:175–192

    PubMed  CAS  Google Scholar 

  177. Cenciarelli C, De Santa F, Puri PL, Mattei E, Ricci L, Bucci F, Felsani A, Caruso M (1999) Critical role played by cyclin D3 in the MyoD-mediated arrest of cell cycle during myoblast differentiation. Mol Cell Biol 19:5203–5217

    PubMed  CAS  Google Scholar 

  178. Halevy O, Novitch BG, Spicer DB, Skapek SX, Rhee J, Hannon GJ, Beach D, Lassar AB (1995) Correlation of terminal cell cycle arrest of skeletal muscle with induction of p21 by MyoD. Science 267:1018–1021

    PubMed  CAS  Google Scholar 

  179. Kitzmann M, Vandromme M, Schaeffer V, Carnac G, Labbe JC, Lamb N, Fernandez A (1999) cdk1- and cdk2-mediated phosphorylation of MyoD Ser200 in growing C2 myoblasts: role in modulating MyoD half-life and myogenic activity. Mol Cell Biol 19:3167–3176

    PubMed  CAS  Google Scholar 

  180. Novitch BG, Spicer DB, Kim PS, Cheung WL, Lassar AB (1999) pRb is required for MEF2-dependent gene expression as well as cell-cycle arrest during skeletal muscle differentiation. Curr Biol 9:449–459

    PubMed  CAS  Google Scholar 

  181. Perry RL, Parker MH, Rudnicki MA (2001) Activated MEK1 binds the nuclear MyoD transcriptional complex to repress transactivation. Mol Cell 8:291–301

    PubMed  CAS  Google Scholar 

  182. Puri PL, Iezzi S, Stiegler P, Chen TT, Schiltz RL, Muscat GE, Giordano A, Kedes L, Wang JY, Sartorelli V (2001) Class I histone deacetylases sequentially interact with MyoD and pRb during skeletal myogenesis. Mol Cell 8:885–897

    PubMed  CAS  Google Scholar 

  183. Song A, Wang Q, Goebl MG, Harrington MA (1998) Phosphorylation of nuclear MyoD is required for its rapid degradation. Mol Cell Biol 18:4994–4999

    PubMed  CAS  Google Scholar 

  184. De Falco G, Comes F, Simone C (2006) pRb: master of differentiation. Coupling irreversible cell cycle withdrawal with induction of muscle-specific transcription. Oncogene 25:5244–5249

    PubMed  Google Scholar 

  185. Yablonka-Reuveni Z, Anderson JE (2006) Satellite cells from dystrophic (mdx) mice display accelerated differentiation in primary cultures and in isolated myofibers. Dev Dyn 235:203–212

    PubMed  CAS  Google Scholar 

  186. Black BL, Olson EN (1998) Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins. Annu Rev Cell Dev Biol 14:167–196

    PubMed  CAS  Google Scholar 

  187. Molkentin JD, Black BL, Martin JF, Olson EN (1995) Cooperative activation of muscle gene expression by MEF2 and myogenic bHLH proteins. Cell 83:1125–1136

    PubMed  CAS  Google Scholar 

  188. Bonavaud S, Agbulut O, Nizard R, D’Honneur G, Mouly V, Butler-Browne G (2001) A discrepancy resolved: human satellite cells are not preprogrammed to fast and slow lineages. Neuromuscul Disord 11:747–752

    PubMed  CAS  Google Scholar 

  189. Dusterhoft S, Pette D (1993) Satellite cells from slow rat muscle express slow myosin under appropriate culture conditions. Differentiation 53:25–33

    PubMed  CAS  Google Scholar 

  190. Dusterhoft S, Yablonka-Reuveni Z, Pette D (1990) Characterization of myosin isoforms in satellite cell cultures from adult rat diaphragm, soleus and tibialis anterior muscles. Differentiation 45:185–191

    PubMed  CAS  Google Scholar 

  191. Rosenblatt JD, Parry DJ, Partridge TA (1996) Phenotype of adult mouse muscle myoblasts reflects their fiber type of origin. Differentiation 60:39–45

    PubMed  CAS  Google Scholar 

  192. DiMario JX, Stockdale FE (1997) Both myoblast lineage and innervation determine fiber type and are required for expression of the slow myosin heavy chain 2 gene. Dev Biol 188:167–180

    PubMed  CAS  Google Scholar 

  193. Esser K, Gunning P, Hardeman E (1993) Nerve-dependent and -independent patterns of mRNA expression in regenerating skeletal muscle. Dev Biol 159:173–183

    PubMed  Google Scholar 

  194. Gunning P, Hardeman E (1991) Multiple mechanisms regulate muscle fiber diversity. FASEB J 5:3064–3070

    PubMed  CAS  Google Scholar 

  195. Allen RE, Rankin LL, Greene EA, Boxhorn LK, Johnson SE, Taylor RG, Pierce PR (1991) Desmin is present in proliferating rat muscle satellite cells but not in bovine muscle satellite cells. J Cell Physiol 149:525–535

    PubMed  CAS  Google Scholar 

  196. Yablonka-Reuveni Z, Nameroff M (1990) Temporal differences in desmin expression between myoblasts from embryonic and adult chicken skeletal muscle. Differentiation 45:21–28

    PubMed  CAS  Google Scholar 

  197. Walro JM, Kucera J (1999) Why adult mammalian intrafusal and extrafusal fibers contain different myosin heavy-chain isoforms. Trends Neurosci 22:180–184

    PubMed  CAS  Google Scholar 

  198. Kirkpatrick LJ, Allouh MZ, Nightingale CN, Devon HG, Yablonka-Reuveni Z, Rosser BW (2008) Pax7 shows higher satellite cell frequencies and concentrations within intrafusal fibers of muscle spindles. J Histochem Cytochem 56:831–840

    PubMed  CAS  Google Scholar 

  199. Kozeka K, Ontell M (1981) The three-dimensional cytoarchitecture of developing murine muscle spindles. Dev Biol 87:133–147

    PubMed  CAS  Google Scholar 

  200. Zammit PS, Carvajal JJ, Golding JP, Morgan JE, Summerbell D, Zolnerciks J, Partridge TA, Rigby PW, Beauchamp JR (2004) Myf5 expression in satellite cells and spindles in adult muscle is controlled by separate genetic elements. Dev Biol 273:454–465

    PubMed  CAS  Google Scholar 

  201. Schmalbruch H, Lewis DM (2000) Dynamics of nuclei of muscle fibers and connective tissue cells in normal and denervated rat muscles. Muscle Nerve 23:617–626

    PubMed  CAS  Google Scholar 

  202. Conboy IM, Rando TA (2002) The regulation of Notch signaling controls satellite cell activation and cell fate determination in postnatal myogenesis. Dev Cell 3:397–409

    PubMed  CAS  Google Scholar 

  203. Shinin V, Gayraud-Morel B, Tajbakhsh S (2009) Template DNA-strand co-segregation and asymmetric cell division in skeletal muscle stem cells. Methods Mol Biol 482:295–317

    PubMed  CAS  Google Scholar 

  204. Vasyutina E, Lenhard DC, Birchmeier C (2007) Notch function in myogenesis. Cell Cycle 6:1451–1454

    PubMed  CAS  Google Scholar 

  205. Brack AS, Conboy MJ, Roy S, Lee M, Kuo CJ, Keller C, Rando TA (2007) Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 317:807–810

    PubMed  CAS  Google Scholar 

  206. Ono Y, Gnocchi VF, Zammit PS, Nagatomi R (2009) Presenilin-1 acts via Id1 to regulate the function of muscle satellite cells in a gamma-secretase-independent manner. J Cell Sci 122:4427–4438

    PubMed  CAS  Google Scholar 

  207. Holterman CE, Le Grand F, Kuang S, Seale P, Rudnicki MA (2007) Megf10 regulates the progression of the satellite cell myogenic program. J Cell Biol 179:911–922

    PubMed  CAS  Google Scholar 

  208. Abou-Khalil R, Le Grand F, Pallafacchina G, Valable S, Authier FJ, Rudnicki MA, Gherardi RK, Germain S, Chretien F, Sotiropoulos A, Lafuste P, Montarras D, Chazaud B (2009) Autocrine and paracrine angiopoietin 1/Tie-2 signaling promotes muscle satellite cell self-renewal. Cell Stem Cell 5:298–309

    PubMed  CAS  Google Scholar 

  209. Kuang S, Gillespie MA, Rudnicki MA (2008) Niche regulation of muscle satellite cell self-renewal and differentiation. Cell Stem Cell 2:22–31.

    PubMed  CAS  Google Scholar 

  210. Gussoni E, Blau HM, Kunkel LM (1997) The fate of individual myoblasts after transplantation into muscles of DMD patients. Nat Med 3:970–977

    PubMed  CAS  Google Scholar 

  211. Miller RG, Sharma KR, Pavlath GK, Gussoni E, Mynhier M, Lanctot AM, Greco CM, Steinman L, Blau HM (1997) Myoblast implantation in Duchenne muscular dystrophy: the San Francisco study. Muscle Nerve 20:469–478

    PubMed  CAS  Google Scholar 

  212. Muir LA, Chamberlain JS (2009) Emerging strategies for cell and gene therapy of the muscular dystrophies. Expert Rev Mol Med 11:e18.

    PubMed  Google Scholar 

  213. Tremblay JP, Skuk D (2008) Another new “super muscle stem cell” leaves unaddressed the real problems of cell therapy for duchenne muscular dystrophy. Mol Ther 16:1907–1909

    PubMed  CAS  Google Scholar 

  214. Lafreniere JF, Caron MC, Skuk D, Goulet M, Cheikh AR, Tremblay JP (2009) Growth factor coinjection improves the migration potential of monkey myogenic precursors without affecting cell transplantation success. Cell Transplant 18:719–730

    PubMed  Google Scholar 

  215. Mouly V, Aamiri A, Perie S, Mamchaoui K, Barani A, Bigot A, Bouazza B, Francois V, Furling D, Jacquemin V, Negroni E, Riederer I, Vignaud A, St Guily JL, Butler-Browne GS (2005) Myoblast transfer therapy: is there any light at the end of the tunnel? Acta Myol 24:128–133

    PubMed  CAS  Google Scholar 

  216. Partridge TA (2004) Stem cell therapies for neuromuscular diseases. Acta Neurol Belg 104:141–147

    PubMed  Google Scholar 

  217. Richard PL, Gosselin C, Laliberte T, Paradis M, Goulet M, Tremblay JP, Skuk D (2010) A first semi-manual device for clinical intramuscular repetitive cell injections. Cell Transplant 19:67–78.

    PubMed  Google Scholar 

  218. Tremblay JP, Skuk D, Palmieri B, Rothstein DM (2009) A case for immunosuppression for myoblast transplantation in duchenne muscular dystrophy. Mol Ther 17:1122–1124

    PubMed  CAS  Google Scholar 

  219. Sampaolesi M, Torrente Y, Innocenzi A, Tonlorenzi R, D’Antona G, Pellegrino MA, Barresi R, Bresolin N, De Angelis MG, Campbell KP, Bottinelli R, Cossu G (2003) Cell therapy of alpha-sarcoglycan null dystrophic mice through intra-arterial delivery of mesoangioblasts. Science 301:487–492

    PubMed  CAS  Google Scholar 

  220. Beauchamp JR, Morgan JE, Pagel CN, Partridge TA (1999) Dynamics of myoblast transplantation reveal a discrete minority of precursors with stem cell-like properties as the myogenic source. J Cell Biol 144:1113–1122

    PubMed  CAS  Google Scholar 

  221. Cossu G, Sampaolesi M (2007) New therapies for Duchenne muscular dystrophy: challenges, prospects and clinical trials. Trends Mol Med 13:520–526

    PubMed  CAS  Google Scholar 

  222. Morgan JE, Pagel CN, Sherratt T, Partridge TA (1993) Long-term persistence and migration of myogenic cells injected into pre-irradiated muscles of mdx mice. J Neurol Sci 115:191–200

    PubMed  CAS  Google Scholar 

  223. Gross JG, Bou-Gharios G, Morgan JE (1999) Potentiation of myoblast transplantation by host muscle irradiation is dependent on the rate of radiation delivery. Cell Tissue Res 298:371–375

    PubMed  CAS  Google Scholar 

  224. Chien KR, Domian IJ, Parker KK (2008) Cardiogenesis and the complex biology of regenerative cardiovascular medicine. Science 322:1494–1497

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Current research in the Z.Y.-R. laboratory is supported by grants from the National Institutes of Health (AG021566, AG013798, AG035377, AR057794) and the Muscular Dystrophy Association (award 135908). K.D. was supported by the Genetic Approaches to Aging Training Program (T32 AG000057) during his postdoctoral research in this laboratory. Z.Y.-R. is additionally grateful to the American Heart Association and the USDA Cooperative State Research, Education, and Extension Service for past support that facilitated some of the research described in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zipora Yablonka-Reuveni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Yablonka-Reuveni, Z., Day, K. (2011). Skeletal Muscle Stem Cells in the Spotlight: The Satellite Cell. In: Cohen, I., Gaudette, G. (eds) Regenerating the Heart. Stem Cell Biology and Regenerative Medicine. Humana Press. https://doi.org/10.1007/978-1-61779-021-8_11

Download citation

Publish with us

Policies and ethics