Skip to main content

Multiple Sources for Cardiac Stem Cells and Their Cardiogenic Potential

  • Chapter
  • First Online:

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

The belief that the heart is a terminally differentiated organ was a very well established notion among the scientific community until the early 2000s, although several authors tried to challenge this dogma over the years. Nonetheless, myocyte turnover was only accepted after the demonstration of the intense proliferation that occurs, in human hearts, acutely after myocardial infarction. The first clues indicating that myocytes could originate from unsuspected cell sources, characterized by migratory and differentiation capabilities, were provided by studying the chimerism of transplanted hearts. Following these studies, several classes of cardiac resident primitive cells endowed with cardiomyogenic potential were discovered. Specifically, murine cells expressing c-Kit, Sca1, Abcg2, Isl1, Tbx18, or Wt1 demonstrated their ability to differentiate into cardiac myocytes. Regarding human hearts, cardiospheres, c-Kit+ cells, multipotent adult stem cells, and possibly epicardial cells can differentiate into cardiac myocytes. However, cardiac stem cell (CSC) biology is at its beginning and critical questions such as the origin of CSCs and the relationships existing between different stem/progenitor cell classes still need to be answered.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ABC:

ATP-binding cassette

BrdU:

5-bromo-2′-deoxyuridine

Bry:

brachyury

CDC:

cardiosphere-derived cell

CSC:

cardiac stem cell

E:

embryonic day

EGFP:

enhanced green fluorescence protein

EMT:

epithelial–mesenchymal transition

HGF:

hepatocyte growth factor

MASC:

multipotent adult stem cell

MDR1:

multi-drug-resistance 1

MI:

myocardial infarction

NRG1:

neuregulin 1

SCF:

stem cell factor

SP:

side population

VEGF:

vascular endothelial growth factor

References

  1. Anversa P, Kajstura J (1998) Ventricular myocytes are not terminally differentiated in the adult mammalian heart. Circ Res, 83(1), 1–14.

    PubMed  CAS  Google Scholar 

  2. Anversa P, Leri A, Kajstura J et al. (2002) Myocyte growth and cardiac repair. J Mol Cell Cardiol, 34(2), 91–105.

    Article  PubMed  CAS  Google Scholar 

  3. Beltrami AP, Urbanek K, Kajstura J et al. (2001) Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med, 344(23), 1750–1757.

    Article  PubMed  CAS  Google Scholar 

  4. Hsieh PC, Segers VF, Davis ME et al. (2007) Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nat Med, 13(8), 970–974.

    Article  PubMed  CAS  Google Scholar 

  5. Bergmann O, Bhardwaj RD, Bernard S et al. (2009) Evidence for cardiomyocyte renewal in humans. Science, 324(5923), 98–102.

    Article  PubMed  CAS  Google Scholar 

  6. Kajstura J, Urbanek K, Perl S et al. (2010) Cardiomyogenesis in the adult human heart. Circ Res 107, 305–315.

    Article  PubMed  CAS  Google Scholar 

  7. Kajstura J, Gurusamy N, Ogorek B et al. (2010) Myocyte turnover in the aging human heart. Circ Res 107, 1374–1386.

    Article  PubMed  CAS  Google Scholar 

  8. Quaini F, Urbanek K, Beltrami AP et al. (2002) Chimerism of the transplanted heart. N Engl J Med, 346(1), 5–15.

    Article  PubMed  Google Scholar 

  9. Muller P, Pfeiffer P, Koglin J et al. (2002) Cardiomyocytes of noncardiac origin in myocardial biopsies of human transplanted hearts. Circulation, 106(1), 31–35.

    Article  PubMed  Google Scholar 

  10. Martin-Puig S, Wang Z, Chien KR (2008) Lives of a heart cell: tracing the origins of cardiac progenitors. Cell Stem Cell, 2(4), 320–331.

    Article  PubMed  CAS  Google Scholar 

  11. Chien KR, Domian IJ, Parker KK (2008) Cardiogenesis and the complex biology of regenerative cardiovascular medicine. Science, 322(5907), 1494–1497.

    Article  PubMed  CAS  Google Scholar 

  12. Kolossov E, Lu Z, Drobinskaya I et al. (2005) Identification and characterization of embryonic stem cell-derived pacemaker and atrial cardiomyocytes. FASEB J, 19(6), 577–579.

    PubMed  CAS  Google Scholar 

  13. Kehat I, Kenyagin-Karsenti D, Snir M et al. (2001) Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest, 108(3), 407–414.

    PubMed  CAS  Google Scholar 

  14. Sachinidis A, Fleischmann BK, Kolossov E et al. (2003) Cardiac specific differentiation of mouse embryonic stem cells. Cardiovasc Res, 58(2), 278–291.

    Article  PubMed  CAS  Google Scholar 

  15. Kattman SJ, Huber TL, Keller GM (2006) Multipotent flk-1+ cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial, and vascular smooth muscle lineages. Dev Cell, 11(5), 723–732.

    Article  PubMed  CAS  Google Scholar 

  16. Garry DJ, Olson EN (2006) A common progenitor at the heart of development. Cell, 127(6), 1101–1104.

    Article  PubMed  CAS  Google Scholar 

  17. Meilhac SM, Esner M, Kelly RG et al. (2004) The clonal origin of myocardial cells in different regions of the embryonic mouse heart. Dev Cell, 6(5), 685–698.

    Article  PubMed  CAS  Google Scholar 

  18. Leri A, Kajstura J, Anversa P (2005) Cardiac stem cells and mechanisms of myocardial regeneration. Physiol Rev, 85(4), 1373–1416.

    Article  PubMed  CAS  Google Scholar 

  19. Messina E, De Angelis L, Frati G et al. (2004) Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res, 95, 911–921.

    Article  PubMed  CAS  Google Scholar 

  20. Beltrami AP, Cesselli D, Bergamin N et al. (2007) Multipotent cells can be generated in vitro from several adult human organs (heart, liver and bone marrow). Blood, 110(9), 3438–3446.

    Article  PubMed  CAS  Google Scholar 

  21. Kirkland MA (2004) A phase space model of hemopoiesis and the concept of stem cell renewal. Exp Hematol, 32(6), 511–519.

    Article  PubMed  Google Scholar 

  22. Moretti A, Caron L, Nakano A et al. (2006) Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell, 127(6), 1151–1165.

    Article  PubMed  CAS  Google Scholar 

  23. Cai CL, Martin JC, Sun Y et al. (2008) A myocardial lineage derives from Tbx18 epicardial cells. Nature, 454(7200), 104–108.

    Article  PubMed  CAS  Google Scholar 

  24. Zhou B, Ma Q, Rajagopal S et al. (2008) Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature, 454(7200), 109–113.

    Article  PubMed  CAS  Google Scholar 

  25. Goodell MA, Brose K, Paradis G et al. (1996) Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med, 183(4), 1797–1806.

    Article  PubMed  CAS  Google Scholar 

  26. Zhou S, Schuetz JD, Bunting KD et al. (2001) The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med, 7(9), 1028–1034.

    Article  PubMed  CAS  Google Scholar 

  27. Challen GA, Little MH (2006) A side order of stem cells: the SP phenotype. Stem Cells, 24(1), 3–12.

    Article  PubMed  Google Scholar 

  28. Jackson KA, Majka SM, Wang H et al. (2001) Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest, 107(11), 1395–1402.

    Article  PubMed  CAS  Google Scholar 

  29. Hierlihy AM, Seale P, Lobe CG et al. (2002) The post-natal heart contains a myocardial stem cell population. FEBS Lett, 530(1–3), 239–243.

    Article  PubMed  CAS  Google Scholar 

  30. Martin CM, Meeson AP, Robertson SM et al. (2004) Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Dev Biol, 265(1), 262–275.

    Article  PubMed  CAS  Google Scholar 

  31. Pfister O, Mouquet F, Jain M et al. (2005) CD31- but not CD31+ cardiac side population cells exhibit functional cardiomyogenic differentiation. Circ Res, 97(1), 52–61.

    Article  PubMed  CAS  Google Scholar 

  32. Zhou S, Morris JJ, Barnes Y et al. (2002) Bcrp1 gene expression is required for normal numbers of side population stem cells in mice, and confers relative protection to mitoxantrone in hematopoietic cells in vivo. Proc Natl Acad Sci U S A, 99(19), 12339–12344.

    Article  PubMed  CAS  Google Scholar 

  33. Bunting KD, Zhou S, Lu T et al. (2000) Enforced P-glycoprotein pump function in murine bone marrow cells results in expansion of side population stem cells in vitro and repopulating cells in vivo. Blood, 96(3), 902–909.

    PubMed  CAS  Google Scholar 

  34. Zhou S, Zong Y, Lu T et al. (2003) Hematopoietic cells from mice that are deficient in both Bcrp1/Abcg2 and Mdr1a/1b develop normally but are sensitized to mitoxantrone. Biotechniques, 35(6), 1248–1252.

    PubMed  CAS  Google Scholar 

  35. Pfister O, Oikonomopoulos A, Sereti KI et al. (2008) Role of the ATP-binding cassette transporter Abcg2 in the phenotype and function of cardiac side population cells. Circ Res, 103(8), 825–835.

    Article  PubMed  CAS  Google Scholar 

  36. Bhattacharya S, Das A, Mallya K et al. (2007) Maintenance of retinal stem cells by Abcg2 is regulated by notch signaling. J Cell Sci, 120(Pt 15), 2652–2662.

    Article  PubMed  CAS  Google Scholar 

  37. Oyama T, Nagai T, Wada H et al. (2007) Cardiac side population cells have a potential to migrate and differentiate into cardiomyocytes in vitro and in vivo. J Cell Biol, 176(3), 329–341.

    Article  PubMed  CAS  Google Scholar 

  38. Beltrami AP, Barlucchi L, Torella D et al. (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell, 114(6), 763–776.

    Article  PubMed  CAS  Google Scholar 

  39. Bryder D, Rossi DJ, Weissman IL (2006) Hematopoietic stem cells: the paradigmatic tissue-specific stem cell. Am J Pathol, 169(2), 338–346.

    Article  PubMed  CAS  Google Scholar 

  40. Kerr CL, Hill CM, Blumenthal PD et al. (2008) Expression of pluripotent stem cell markers in the human fetal testis. Stem Cells, 26(2), 412–421.

    Article  PubMed  Google Scholar 

  41. Zwaka TP, Thomson JA (2005) A germ cell origin of embryonic stem cells? Development, 132(2), 227–233.

    Article  PubMed  CAS  Google Scholar 

  42. Motohashi T, Yamanaka K, Chiba K et al. (2009) Unexpected multipotency of melanoblasts isolated from murine skin. Stem Cells, 27(4), 888–897.

    Article  PubMed  CAS  Google Scholar 

  43. Kirby ML (1989) Plasticity and predetermination of mesencephalic and trunk neural crest transplanted into the region of the cardiac neural crest. Dev Biol, 134(2), 402–412.

    Article  PubMed  CAS  Google Scholar 

  44. Brito FC, Kos L (2008) Timeline and distribution of melanocyte precursors in the mouse heart. Pigment Cell Melanoma Res, 21(4), 464–470.

    Article  PubMed  CAS  Google Scholar 

  45. Urbanek K, Cesselli D, Rota M et al. (2006) Stem cell niches in the adult mouse heart. Proc Natl Acad Sci U S A, 103(24), 9226–9231.

    Article  PubMed  CAS  Google Scholar 

  46. Wu SM, Fujiwara Y, Cibulsky SM et al. (2006) Developmental origin of a bipotential myocardial and smooth muscle cell precursor in the mammalian heart. Cell, 127(6), 1137–1150.

    Article  PubMed  CAS  Google Scholar 

  47. Tallini YN, Greene KS, Craven M et al. (2009) c-Kit expression identifies cardiovascular precursors in the neonatal heart. Proc Natl Acad Sci U S A, 106(6), 1808–1813.

    Article  PubMed  CAS  Google Scholar 

  48. Fransioli J, Bailey B, Gude NA et al. (2008) Evolution of the c-kit-positive cell response to pathological challenge in the myocardium. Stem Cells, 26(5), 1315–1324.

    Article  PubMed  CAS  Google Scholar 

  49. Li M, Naqvi N, Yahiro E et al. (2008) c-Kit is required for cardiomyocyte terminal differentiation. Circ Res, 102(6), 677–685.

    Article  PubMed  CAS  Google Scholar 

  50. Davis BN, Hilyard AC, Nguyen PH et al. (2009) Induction of microRNA-221 by platelet-derived growth factor signaling is critical for modulation of vascular smooth muscle phenotype. J Biol Chem, 284(6), 3728–3738.

    Article  PubMed  CAS  Google Scholar 

  51. Hirobe T, Osawa M, Nishikawa S (2003) Steel factor controls the proliferation and differentiation of neonatal mouse epidermal melanocytes in culture. Pigment Cell Res, 16(6), 644–655.

    Article  PubMed  CAS  Google Scholar 

  52. Bashamboo A, Taylor AH, Samuel K et al. (2006) The survival of differentiating embryonic stem cells is dependent on the SCF-KIT pathway. J Cell Sci, 119(Pt 15), 3039–3046.

    Article  PubMed  CAS  Google Scholar 

  53. Bearzi C, Rota M, Hosoda T et al. (2007) Human cardiac stem cells. Proc Natl Acad Sci U S A, 104(35), 14068–14073.

    Article  PubMed  CAS  Google Scholar 

  54. Bearzi C, Leri A, Lo Monaco F et al. (2009) Identification of a coronary vascular progenitor cell in the human heart. Proc Natl Acad Sci USA 106, 15885–15890.

    Article  PubMed  CAS  Google Scholar 

  55. Holmes C, Stanford WL (2007) Concise review: stem cell antigen-1: expression, function, and enigma. Stem Cells, 25(6), 1339–1347.

    Article  PubMed  CAS  Google Scholar 

  56. Oh BH, Bradfute SB, Gallardo TD et al. (2003) Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci U S A, 100, 12313–12318.

    Article  PubMed  CAS  Google Scholar 

  57. Tateishi K, Ashihara E, Takehara N et al. (2007) Clonally amplified cardiac stem cells are regulated by Sca-1 signaling for efficient cardiovascular regeneration. J Cell Sci 120, 1791–1800.

    Article  PubMed  CAS  Google Scholar 

  58. Cesselli D, Jakoniuk I, Beltrami AP et al. (2002) Cardiac stem cells are endowed in niches of the mouse heart and possess the ability to divide and differentiate in the various cardiac lineages [Abstract]. Circulation, 106 (Suppl II), 206.

    Google Scholar 

  59. Bamezai A (2004) Mouse Ly-6 proteins and their extended family: markers of cell differentiation and regulators of cell signaling. Arch Immunol Ther Exp (Warsz), 52(4), 255–266.

    CAS  Google Scholar 

  60. de la Cruz MV, Sanchez Gomez C, Arteaga MM et al. (1977) Experimental study of the development of the truncus and the conus in the chick embryo. J Anat, 123(Pt 3), 661–686.

    PubMed  Google Scholar 

  61. Kelly RG, Brown NA, Buckingham ME (2001) The arterial pole of the mouse heart forms from Fgf10-expressing cells in pharyngeal mesoderm. Dev Cell, 1(3), 435–440.

    Article  PubMed  CAS  Google Scholar 

  62. Cai CL, Liang X, Shi Y et al. (2003) Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell, 5(6), 877–889.

    Article  PubMed  CAS  Google Scholar 

  63. Laugwitz KL, Moretti A, Lam J et al. (2005) Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature, 433(7026), 647–653.

    Article  PubMed  CAS  Google Scholar 

  64. Mikawa T, Gourdie RG (1996) Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ. Dev Biol, 174(2), 221–232.

    Article  PubMed  CAS  Google Scholar 

  65. Bu L, Jiang X, Martin-Puig S et al. (2009) Human ISL1 heart progenitors generate diverse multipotent cardiovascular cell lineages. Nature, 460(7251), 113–117.

    Article  PubMed  CAS  Google Scholar 

  66. Kispert A, Herrmann BG (1994) Immunohistochemical analysis of the Brachyury protein in wild-type and mutant mouse embryos. Dev Biol, 161(1), 179–193.

    Article  PubMed  Google Scholar 

  67. Kouskoff V, Lacaud G, Schwantz S et al. (2005) Sequential development of hematopoietic and cardiac mesoderm during embryonic stem cell differentiation. Proc Natl Acad Sci U S A, 102(37), 13170–13175.

    Article  PubMed  CAS  Google Scholar 

  68. Ema M, Takahashi S, Rossant J (2006) Deletion of the selection cassette, but not cis-acting elements, in targeted Flk1-lacZ allele reveals Flk1 expression in multipotent mesodermal progenitors. Blood, 107(1), 111–117.

    Article  PubMed  CAS  Google Scholar 

  69. Yang L, Soonpaa MH, Adler ED et al. (2008) Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature, 453(7194), 524–528.

    Article  PubMed  CAS  Google Scholar 

  70. Buckingham M, Meilhac S, Zaffran S (2005) Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet, 6(11), 826–835.

    Article  PubMed  CAS  Google Scholar 

  71. Wada AM, Smith TK, Osler ME et al. (2003) Epicardial/mesothelial cell line retains vasculogenic potential of embryonic epicardium. Circ Res, 92(5), 525–531.

    Article  PubMed  CAS  Google Scholar 

  72. Lie-Venema H, van den Akker NM, Bax NA et al. (2007) Origin, fate, and function of epicardium-derived cells (EPDCs) in normal and abnormal cardiac development. Sci World J, 7, 1777–1798.

    CAS  Google Scholar 

  73. Winter EM, Gittenberger-de Groot AC (2007) Epicardium-derived cells in cardiogenesis and cardiac regeneration. Cell Mol Life Sci, 64(6), 692–703.

    Article  PubMed  CAS  Google Scholar 

  74. van Tuyn J, Atsma DE, Winter EM et al. (2007) Epicardial cells of human adults can undergo an epithelial-to-mesenchymal transition and obtain characteristics of smooth muscle cells in vitro. Stem Cells, 25(2), 271–278.

    Article  PubMed  Google Scholar 

  75. Smart N, Risebro CA, Melville AA et al. (2007) Thymosin beta4 induces adult epicardial progenitor mobilization and neovascularization. Nature, 445(7124), 177–182.

    Article  PubMed  CAS  Google Scholar 

  76. Kruithof BP, van Wijk B, Somi S et al. (2006) BMP and FGF regulate the differentiation of multipotential pericardial mesoderm into the myocardial or epicardial lineage. Dev Biol, 295(2), 507–522.

    Article  PubMed  CAS  Google Scholar 

  77. Christoffels VM, Grieskamp T, Norden J et al. (2009) Tbx18 and the fate of epicardial progenitors. Nature, 458(7240), E8–9; discussion E9–10.

    Article  PubMed  CAS  Google Scholar 

  78. Limana F, Zacheo A, Mocini D et al. (2007) Identification of myocardial and vascular precursor cells in human and mouse epicardium. Circ Res, 101(12), 1255–1265.

    Article  PubMed  CAS  Google Scholar 

  79. Castaldo C, Di Meglio F, Nurzynska D et al. (2008) CD117-positive cells in adult human heart are localized in the subepicardium, and their activation is associated with laminin-1 and alpha6 integrin expression. Stem Cells, 26(7), 1723–1731.

    Article  PubMed  CAS  Google Scholar 

  80. Di Meglio F, Castaldo C, Nurzynska D et al. (2009) Epicardial cells are missing from the surface of hearts with ischemic cardiomyopathy: a useful clue about the self-renewal potential of the adult human heart? Int J Cardiol.

    Google Scholar 

  81. Smith RR, Barile L, Cho HC et al. (2007) Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation 115, 896–908.

    Article  PubMed  CAS  Google Scholar 

  82. Jiang Y, Jahagirdar BN, Reinhardt RL et al. (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 418(6893), 41–49.

    Article  PubMed  CAS  Google Scholar 

  83. Jiang Y, Vaessen B, Lenvik T et al. (2002) Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. Exp Hematol, 30(8), 896–904.

    Article  PubMed  CAS  Google Scholar 

  84. Krause DS, Theise ND, Collector MI et al. (2001) Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell, 105(3), 369–377.

    Article  PubMed  CAS  Google Scholar 

  85. Cesselli D, Beltrami AP, Rigo S et al. (2009) Multipotent progenitor cells are present in human peripheral blood. Circ Res, 104(10), 1225–1234.

    Article  PubMed  CAS  Google Scholar 

  86. Beltrami AP, Cesselli D, Beltrami CA (2009) Pluripotency rush! Molecular cues for pluripotency, genetic reprogramming of adult stem cells, and widely multipotent adult cells. Pharmacol Ther 124, 23–30.

    Article  PubMed  CAS  Google Scholar 

  87. Slack JM (2008) Origin of stem cells in organogenesis. Science, 322(5907), 1498–1501.

    Article  PubMed  CAS  Google Scholar 

  88. Bersell K, Arab S, Haring B et al. (2009) Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell, 138(2), 257–270.

    Article  PubMed  CAS  Google Scholar 

  89. Dimmeler S, Leri A (2008) Aging and disease as modifiers of efficacy of cell therapy. Circ Res, 102(11), 1319–1330.

    Article  PubMed  CAS  Google Scholar 

  90. Fausto N, Campbell JS (2003) The role of hepatocytes and oval cells in liver regeneration and repopulation. Mech Dev, 120(1), 117–130.

    Article  PubMed  CAS  Google Scholar 

  91. Ito M, Liu Y, Yang Z et al. (2005) Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat Med, 11(12), 1351–1354.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Alberto Beltrami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Beltrami, A.P., Cesselli, D., Beltrami, C.A. (2011). Multiple Sources for Cardiac Stem Cells and Their Cardiogenic Potential. In: Cohen, I., Gaudette, G. (eds) Regenerating the Heart. Stem Cell Biology and Regenerative Medicine. Humana Press. https://doi.org/10.1007/978-1-61779-021-8_10

Download citation

Publish with us

Policies and ethics