Skip to main content

Molecular Mechanisms Regulating Adult Stem Cell Self-Renewal

  • Chapter
  • First Online:

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

Stem cells have defining properties that are suited for tissue homeostasis and repair, but a central issue is how these cells generate mature cell types without exhausting their capacity for self-renewal. This chapter focuses on the central nervous system (CNS) to exemplify the regulation of adult stem cell self-renewal in the service of organ function. Topics will include conventional and novel methods used to distinguish stem cells from other proliferating cell types and the pitfalls in attempting to precisely characterize stem cell function. These methods reveal that stem cells interpret multiple signals to control the balance of self-renewal and quiescence. Among the emerging themes is that stem cell self-renewal is dynamically regulated throughout life, is integrally connected with lineage specification, and reflects a conservation of many intrinsic and extrinsic mechanisms from fetal development.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AraC:

Cytosine arabinoside

BMP:

Bone morphogenetic proteins

BrdU:

5-Bromo-2-deoxyuridine

EGF:

Epidermal growth factor

FGF2:

Fibroblast growth factor 2

Fox:

Forkhead winged helix family proteins

GFAP:

Glial fibrillary acidic protein

GFP:

Green fluorescent protein

IPC:

Intermediate progenitor cell

NB:

Neuroblast

NSC:

Neural stem cell

SVZ:

Subventricular zone

SGZ:

Subgranular zone

Shh:

Sonic hedgehog

Wnt:

Wingless/Int homolog proteins

References

  • Aguirre A, Dupree JL, Mangin JM et al (2007) A functional role for EGFR signaling in myelination and remyelination. Nat Neurosci 10:990–1002.

    CAS  PubMed  Google Scholar 

  • Ahn S, Joyner AL (2005) In vivo analysis of quiescent adult neural stem cells responding to Sonic hedgehog. Nature 437:894–897.

    CAS  PubMed  Google Scholar 

  • Alvarez-Buylla A, Kohwi M, Nguyen TM et al (2008) The heterogeneity of adult neural stem cells and the emerging complexity of their niche. Cold Spring Harb Symp Quant Biol 73:357–365.

    CAS  PubMed  Google Scholar 

  • Anderson DJ (2001) Stem cells and pattern formation in the nervous system: the possible versus the actual. Neuron 30:19–35.

    CAS  PubMed  Google Scholar 

  • Andreu-Agullo C, Morante-Redolat JM, Delgado AC et al (2009) Vascular niche factor PEDF modulates Notch-dependent stemness in the adult subependymal zone. Nat Neurosci 12:1514–1523.

    CAS  PubMed  Google Scholar 

  • Besson A, Dowdy SF, Roberts JM (2008) CDK inhibitors: cell cycle regulators and beyond. Dev Cell 14:159–169.

    CAS  PubMed  Google Scholar 

  • Bonaguidi MA, Peng CY, McGuire T et al (2008) Noggin expands neural stem cells in the adult hippocampus. J Neurosci 28:9194–9204.

    CAS  PubMed  Google Scholar 

  • Breunig JJ, Arellano JI, Macklis JD et al (2007a) Everything that glitters isn’t gold: a critical review of postnatal neural precursor analyses. Cell Stem Cell 1:612–627.

    CAS  PubMed  Google Scholar 

  • Breunig JJ, Silbereis J, Vaccarino FM et al (2007b) Notch regulates cell fate and dendrite morphology of newborn neurons in the postnatal dentate gyrus. Proc Natl Acad Sci USA 104:20558–20563.

    CAS  PubMed  Google Scholar 

  • Bruggeman SW, Valk-Lingbeek ME, van der Stoop PP et al (2005) Ink4a and Arf differentially affect cell proliferation and neural stem cell self-renewal in Bmi1-deficient mice. Genes Dev 19:1438–1443.

    CAS  PubMed  Google Scholar 

  • Bultje RS, Castaneda-Castellanos DR, Jan LY et al (2009) Mammalian Par3 regulates progenitor cell asymmetric division via notch signaling in the developing neocortex. Neuron 63:189–202.

    CAS  PubMed  Google Scholar 

  • Burrows RC, Wancio D, Levitt P et al (1997) Response diversity and the timing of progenitor cell maturation are regulated by developmental changes in EGFR expression in the cortex. Neuron 19:251–267.

    CAS  PubMed  Google Scholar 

  • Buszczak M, Spradling AC (2006) Searching chromatin for stem cell identity. Cell 125:233–236.

    CAS  PubMed  Google Scholar 

  • Carlen M, Meletis K, Goritz C et al (2009) Forebrain ependymal cells are Notch-dependent and generate neuroblasts and astrocytes after stroke. Nat Neurosci 12:259–267.

    CAS  PubMed  Google Scholar 

  • Carpenter MK, Inokuma MS, Denham J et al (2001) Enrichment of neurons and neural precursors from human embryonic stem cells. Exp Neurol 172:383–397.

    CAS  PubMed  Google Scholar 

  • Chambers I, Tomlinson SR (2009) The transcriptional foundation of pluripotency. Development 136:2311–2322.

    CAS  PubMed  Google Scholar 

  • Chen HL, Panchision DM (2007) Concise review: bone morphogenetic protein pleiotropism in neural stem cells and their derivatives – alternative pathways, convergent signals. Stem Cells 25:63–68.

    CAS  PubMed  Google Scholar 

  • Chen HL, Pistollato F, Hoeppner DJ et al (2007) Oxygen tension regulates survival and fate of mouse CNS precursors at multiple levels. Stem Cells 25:2291–2301.

    PubMed  Google Scholar 

  • Chen X, Vega VB, Ng HH (2008) Transcriptional regulatory networks in embryonic stem cells. Cold Spring Harb Symp Quant Biol 73:203–209.

    CAS  PubMed  Google Scholar 

  • Chojnacki AK, Mak GK, Weiss S (2009) Identity crisis for adult periventricular neural stem cells: subventricular zone astrocytes, ependymal cells or both? Nat Rev Neurosci 10:153–163.

    CAS  PubMed  Google Scholar 

  • Clelland CD, Choi M, Romberg C et al (2009) A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science 325:210–213.

    CAS  PubMed  Google Scholar 

  • Colucci-D’Amato L, Bonavita V, di Porzio U (2006) The end of the central dogma of neurobiology: stem cells and neurogenesis in adult CNS. Neurol Sci 27:266–270.

    PubMed  Google Scholar 

  • Corbin JG, Gaiano N, Juliano SL et al (2008) Regulation of neural progenitor cell development in the nervous system. J Neurochem 106:2272–2287.

    CAS  PubMed  Google Scholar 

  • Coskun V, Wu H, Blanchi B et al (2008) CD133+ neural stem cells in the ependyma of mammalian postnatal forebrain. Proc Natl Acad Sci USA 105:1026–1031.

    CAS  PubMed  Google Scholar 

  • Diaz-Flores L Jr, Madrid JF, Gutierrez R et al (2006) Adult stem and transit-amplifying cell location. Histol Histopathol 21:995–1027.

    PubMed  Google Scholar 

  • Doetsch F, Caille I, Lim DA et al (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97:703–716.

    CAS  PubMed  Google Scholar 

  • Doetsch F, Petreanu L, Caille I et al (2002) EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron 36:1021–1034.

    CAS  PubMed  Google Scholar 

  • Ellis P, Fagan BM, Magness ST et al (2004) SOX2, a persistent marker for multipotential neural stem cells derived from embryonic stem cells, the embryo or the adult. Dev Neurosci 26:148–165.

    CAS  PubMed  Google Scholar 

  • Fasano CA, Dimos JT, Ivanova NB et al (2007) shRNA knockdown of Bmi-1 reveals a critical role for p21-Rb pathway in NSC self-renewal during development. Cell Stem Cell 1:87–99.

    CAS  PubMed  Google Scholar 

  • Fasano CA, Phoenix TN, Kokovay E et al (2009) Bmi-1 cooperates with Foxg1 to maintain neural stem cell self-renewal in the forebrain. Genes Dev 23:561–574.

    CAS  PubMed  Google Scholar 

  • Favaro R, Valotta M, Ferri AL et al (2009) Hippocampal development and neural stem cell maintenance require Sox2-dependent regulation of Shh. Nat Neurosci 12:1248–1256.

    CAS  PubMed  Google Scholar 

  • Gama Sosa MA, De Gasperi R, Elder GA (2010) Animal transgenesis: an overview. Brain Struct Funct 214:91–109.

    CAS  PubMed  Google Scholar 

  • Ghashghaei HT, Weimer JM, Schmid RS et al (2007). Reinduction of ErbB2 in astrocytes promotes radial glial progenitor identity in adult cerebral cortex. Genes Dev 21:3258–3271.

    CAS  PubMed  Google Scholar 

  • Gonzalez-Perez O, Romero-Rodriguez R, Soriano-Navarro M et al (2009). Epidermal growth factor induces the progeny of subventricular zone type B cells to migrate and differentiate into oligodendrocytes. Stem Cells 27:2032–2043.

    CAS  PubMed  Google Scholar 

  • Gould, E. (2007). How widespread is adult neurogenesis in mammals? Nat Rev Neurosci 8:481–488.

    CAS  PubMed  Google Scholar 

  • Gustafsson MV, Zheng X, Pereira T et al (2005). Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev Cell 9:617–628.

    CAS  PubMed  Google Scholar 

  • Haydar TF (2005) Advanced microscopic imaging methods to investigate cortical development and the etiology of mental retardation. Ment Retard Dev Disabil Res Rev 11:303–316.

    PubMed  Google Scholar 

  • Hochedlinger K, Plath K (2009) Epigenetic reprogramming and induced pluripotency. Development 136:509–523.

    CAS  PubMed  Google Scholar 

  • Hodge RD, Kowalczyk TD, Wolf SA et al. (2008). Intermediate progenitors in adult hippocampal neurogenesis: Tbr2 expression and coordinate regulation of neuronal output. J Neurosci 28:3707–3717.

    CAS  PubMed  Google Scholar 

  • Imayoshi I, Sakamoto M, Ohtsuka T et al (2008). Roles of continuous neurogenesis in the structural and functional integrity of the adult forebrain. Nat Neurosci 11:1153–1161.

    CAS  PubMed  Google Scholar 

  • Jablonska B, Aguirre A, Vandenbosch R et al (2007). CDK2 is critical for proliferation and self-renewal of neural progenitor cells in the adult subventricular zone. J Cell Biol 179:1231–1245.

    CAS  PubMed  Google Scholar 

  • Jessberger S, Toni N, Clemenson GD et al (2008). Directed differentiation of hippocampal stem/progenitor cells in the adult brain. Nat Neurosci 11:888–893.

    CAS  PubMed  Google Scholar 

  • Jin K, Sun Y, Xie L et al (2003). Neurogenesis and aging: FGF-2 and HB-EGF restore neurogenesis in hippocampus and subventricular zone of aged mice. Aging Cell 2:175–183.

    CAS  PubMed  Google Scholar 

  • Kaestner KH, Knochel W, Martinez DE (2000) Unified nomenclature for the winged helix/forkhead transcription factors. Genes Dev 14:142–146.

    CAS  PubMed  Google Scholar 

  • Kenyon C (2005) The plasticity of aging: insights from long-lived mutants. Cell 120:449–460.

    CAS  PubMed  Google Scholar 

  • Kerosuo L, Piltti K, Fox H et al (2008). Myc increases self-renewal in neural progenitor cells through Miz-1. J Cell Sci 121:3941–3950.

    CAS  PubMed  Google Scholar 

  • Kim J-H, Panchision DM, Kittappa R et al (2003) Generating CNS neurons from embryonic, fetal and adult stem cells. Methods Enzymol 365:303–327.

    CAS  PubMed  Google Scholar 

  • Knoepfler PS, Kenney AM (2006) Neural precursor cycling at sonic speed: N-Myc pedals, GSK-3 brakes. Cell Cycle 5:47–52.

    CAS  PubMed  Google Scholar 

  • Kriegstein A, Alvarez-Buylla A (2009) The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci 32:149–184.

    CAS  PubMed  Google Scholar 

  • Kuhn HG, Winkler J, Kempermann G et al (1997) Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain. J Neurosci 17:5820–5829.

    CAS  PubMed  Google Scholar 

  • Kuwabara T, Hsieh J, Muotri A et al. (2009) Wnt-mediated activation of NeuroD1 and retro-elements during adult neurogenesis. Nat Neurosci 12:1097–1105.

    CAS  PubMed  Google Scholar 

  • Lee A, Kessler JD, Read TA et al. (2005) Isolation of neural stem cells from the postnatal cerebellum. Nat Neurosci 8:723–729.

    CAS  PubMed  Google Scholar 

  • Levi BP, Morrison SJ (2008) Stem cells use distinct self-renewal programs at different ages. Cold Spring Harb Symp Quant Biol 73:539–553.

    CAS  PubMed  Google Scholar 

  • Leychkis Y, Munzer SR, Richardson JL (2009) What is stemness? Stud Hist Philos Biol Biomed Sci 40:312–320.

    PubMed  Google Scholar 

  • Lie DC, Colamarino SA, Song HJ et al (2005) Wnt signalling regulates adult hippocampal neurogenesis. Nature 437:1370–1375.

    CAS  PubMed  Google Scholar 

  • Lim DA, Tramontin AD, Trevejo JM et al (2000) Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron 28:713–726.

    CAS  PubMed  Google Scholar 

  • Lindvall O, Kokaia Z, Martinez-Serrano A (2004) Stem cell therapy for human neurodegenerative disorders-how to make it work. Nat Med 10:S42–S50.

    PubMed  Google Scholar 

  • Little MT, Storb R (2002) History of haematopoietic stem-cell transplantation. Nat Rev Cancer 2:231–238.

    CAS  PubMed  Google Scholar 

  • Livet J, Weissman TA, Kang H et al (2007) Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450:56–62.

    CAS  PubMed  Google Scholar 

  • Lund AH, van Lohuizen M (2004) Polycomb complexes and silencing mechanisms. Curr Opin Cell Biol 16:239–246.

    CAS  PubMed  Google Scholar 

  • Luo L (2007) Fly MARCM and mouse MADM: genetic methods of labeling and manipulating single neurons. Brain Res Rev 55:220–227.

    CAS  PubMed  Google Scholar 

  • Malaterre J, Mantamadiotis T, Dworkin S et al. (2008) c-Myb is required for neural progenitor cell proliferation and maintenance of the neural stem cell niche in adult brain. Stem Cells 26:173–181.

    CAS  PubMed  Google Scholar 

  • McCulloch EA, Till JE (2005) Perspectives on the properties of stem cells. Nat Med 11:1026–1028.

    CAS  PubMed  Google Scholar 

  • Meletis K, Wirta V, Hede SM et al (2006) p53 suppresses the self-renewal of adult neural stem cells. Development 133:363–369.

    CAS  PubMed  Google Scholar 

  • Merkle FT, Tramontin AD, Garcia-Verdugo JM et al (2004) Radial glia give rise to adult neural stem cells in the subventricular zone. Proc Natl Acad Sci USA 101:17528–17532.

    CAS  PubMed  Google Scholar 

  • Merkle FT, Mirzadeh Z, Alvarez-Buylla A (2007) Mosaic organization of neural stem cells in the adult brain. Science 317:381–384.

    CAS  PubMed  Google Scholar 

  • Molofsky AV, Pardal R, Iwashita T et al (2003) Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature 425:962–967.

    CAS  PubMed  Google Scholar 

  • Molofsky AV, He S, Bydon M et al (2005) Bmi-1 promotes neural stem cell self-renewal and neural development but not mouse growth and survival by repressing the p16Ink4a and p19Arf senescence pathways. Genes Dev 19:1432–1437.

    CAS  PubMed  Google Scholar 

  • Molofsky AV, Slutsky SG, Joseph NM et al (2006) Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature 443:448–452.

    CAS  PubMed  Google Scholar 

  • Morrison SJ, White PM, Zock C et al (1999) Prospective identification, isolation by flow cytometry, and in vivo self-renewal of multipotent mammalian neural crest stem cells. Cell 96:737–749.

    CAS  PubMed  Google Scholar 

  • Morshead CM, Reynolds BA, Craig CG et al (1994) Neural stem cells in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells. Neuron 13:1071–1082.

    CAS  PubMed  Google Scholar 

  • Mujtaba T, Piper DR, Kalyani A et al (1999) Lineage-restricted neural precursors can be isolated from both the mouse neural tube and cultured ES cells. Dev Biol 214:113–127.

    CAS  PubMed  Google Scholar 

  • Muller FJ, Laurent LC, Kostka D et al (2008) Regulatory networks define phenotypic classes of human stem cell lines. Nature 455:401–405.

    PubMed  Google Scholar 

  • Muller-Sieburg CE, Sieburg HB (2006) Clonal diversity of the stem cell compartment. Curr Opin Hematol 13:243–248.

    PubMed  Google Scholar 

  • Muotri AR, Chu VT, Marchetto MC et al (2005) Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition. Nature 435:903–910.

    CAS  PubMed  Google Scholar 

  • Nagao M, Campbell K, Burns K et al. (2008) Coordinated control of self-renewal and differentiation of neural stem cells by Myc and the p19ARF-p53 pathway. J Cell Biol 183:1243–1257.

    CAS  PubMed  Google Scholar 

  • Nishino J, Kim I, Chada K et al (2008) Hmga2 promotes neural stem cell self-renewal in young but not old mice by reducing p16Ink4a and p19Arf Expression. Cell 135:227–239.

    CAS  PubMed  Google Scholar 

  • O’Leary DD, Sahara S (2008) Genetic regulation of arealization of the neocortex. Curr Opin Neurobiol 18:90–100.

    PubMed  Google Scholar 

  • Ohlstein B, Kai T, Decotto E et al (2004) The stem cell niche: theme and variations. Curr Opin Cell Biol 16:693–699.

    CAS  PubMed  Google Scholar 

  • Osumi N, Shinohara H, Numayama-Tsuruta K et al (2008) Concise review: Pax6 transcription factor contributes to both embryonic and adult neurogenesis as a multifunctional regulator. Stem Cells 26:1663–1672.

    CAS  PubMed  Google Scholar 

  • Paik JH, Ding Z, Narurkar R et al. (2009) FoxOs cooperatively regulate diverse pathways governing neural stem cell homeostasis. Cell Stem Cell 5:540–553.

    CAS  PubMed  Google Scholar 

  • Palma V, Lim DA, Dahmane N et al (2005) Sonic hedgehog controls stem cell behavior in the postnatal and adult brain. Development 132:335–344.

    CAS  PubMed  Google Scholar 

  • Palmer TD, Willhoite AR, Gage FH (2000) Vascular niche for adult hippocampal neurogenesis. J Comp Neurol 425:479–494.

    CAS  PubMed  Google Scholar 

  • Panchision DM (2009) The role of oxygen in regulating neural stem cells in development and disease. J Cell Physiol 220:562–568.

    CAS  PubMed  Google Scholar 

  • Panchision DM, McKay RD (2002) The control of neural stem cells by morphogenic signals. Curr Opin Genet Dev 12:478–487.

    CAS  PubMed  Google Scholar 

  • Pistollato F, Chen HL, Schwartz PH et al (2007) Oxygen tension controls the expansion of human CNS precursors and the generation of astrocytes and oligodendrocytes. Mol Cell Neurosci 35:424–435.

    CAS  PubMed  Google Scholar 

  • Qu Q, Sun G, Li W et al (2010) Orphan nuclear receptor TLX activates Wnt/beta-catenin signalling to stimulate neural stem cell proliferation and self-renewal. Nat Cell Biol 12:31–40; sup pp 31–39.

    CAS  PubMed  Google Scholar 

  • Quinones-Hinojosa A, Sanai N, Soriano-Navarro M et al (2006) Cellular composition and cytoarchitecture of the adult human subventricular zone: a niche of neural stem cells. J Comp Neurol 494:415–434.

    PubMed  Google Scholar 

  • Ramirez-Castillejo C, Sanchez-Sanchez F, Andreu-Agullo C et al (2006) Pigment epithelium-derived factor is a niche signal for neural stem cell renewal. Nat Neurosci 9:331–339.

    CAS  PubMed  Google Scholar 

  • Ravin R, Hoeppner DJ, Munno DM et al (2008) Potency and fate specification in CNS stem cell populations in vitro. Cell Stem Cell 3:670–680.

    CAS  PubMed  Google Scholar 

  • Renault VM, Rafalski VA, Morgan AA et al (2009) FoxO3 regulates neural stem cell homeostasis. Cell Stem Cell 5:527–539.

    CAS  PubMed  Google Scholar 

  • Rietze RL, Valcanis H, Brooker GF et al (2001) Purification of a pluripotent neural stem cell from the adult mouse brain. Nature 412:736–739.

    CAS  PubMed  Google Scholar 

  • Robin C, Ottersbach K, de Bruijn M et al (2003) Developmental origins of hematopoietic stem cells. Oncol Res 13:315–321.

    CAS  PubMed  Google Scholar 

  • Roy NS, Wang S, Harrison-Restelli C et al (1999) Identification, isolation, and promoter-defined separation of mitotic oligodendrocyte progenitor cells from the adult human subcortical white matter. J Neurosci 19:9986–9995.

    CAS  PubMed  Google Scholar 

  • Sahara S, O’Leary DD (2009) Fgf10 regulates transition period of cortical stem cell differentiation to radial glia controlling generation of neurons and basal progenitors. Neuron 63:48–62.

    CAS  PubMed  Google Scholar 

  • Salih DA, Brunet A (2008) FoxO transcription factors in the maintenance of cellular homeostasis during aging. Curr Opin Cell Biol 20:126–136.

    CAS  PubMed  Google Scholar 

  • Sanai N, Tramontin AD, Quinones-Hinojosa A et al (2004) Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 427:740–744.

    CAS  PubMed  Google Scholar 

  • Sanchez I, Dynlacht BD (2005) New insights into cyclins, CDKs, and cell cycle control. Semin Cell Dev Biol 16:311–321.

    CAS  PubMed  Google Scholar 

  • Sansom SN, Griffiths DS, Faedo A et al (2009) The level of the transcription factor Pax6 is essential for controlling the balance between neural stem cell self-renewal and neurogenesis. PLoS Genet 5:e1000511.

    PubMed  Google Scholar 

  • Schwartz PH, Brick DJ, Stover AE et al (2008) Differentiation of neural lineage cells from human pluripotent stem cells. Methods 45:142–158.

    CAS  PubMed  Google Scholar 

  • Shen Q, Goderie SK, Jin L et al (2004) Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 304:1338–1340.

    CAS  PubMed  Google Scholar 

  • Shen Q, Wang Y, Kokovay E et al (2008) Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell-cell interactions. Cell Stem Cell 3:289–300.

    CAS  PubMed  Google Scholar 

  • Singer BH, Jutkiewicz EM, Fuller CL et al (2009) Conditional ablation and recovery of forebrain neurogenesis in the mouse. J Comp Neurol 514:567–582.

    CAS  PubMed  Google Scholar 

  • Singh SK, Clarke ID, Hide T et al (2004) Cancer stem cells in nervous system tumors. Oncogene 23:7267–7273.

    CAS  PubMed  Google Scholar 

  • Suh H, Consiglio A, Ray J et al (2007) In vivo fate analysis reveals the multipotent and self-renewal capacities of Sox2+ neural stem cells in the adult hippocampus. Cell Stem Cell 1:515–528.

    CAS  PubMed  Google Scholar 

  • Sun Y, Goderie SK, Temple S (2005) Asymmetric distribution of EGFR receptor during mitosis generates diverse CNS progenitor cells. Neuron 45:873–886.

    CAS  PubMed  Google Scholar 

  • Surani MA, Durcova-Hills G, Hajkova P et al (2008) Germ line, stem cells, and epigenetic reprogramming. Cold Spring Harb Symp Quant Biol 73:9–15.

    CAS  PubMed  Google Scholar 

  • Uchida N, Buck DW, He D et al (2000) Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci USA 97:14720–14725.

    CAS  PubMed  Google Scholar 

  • Vandenbosch R, Borgs L, Beukelaers P et al (2007) CDK2 is dispensable for adult hippocampal neurogenesis. Cell Cycle 6:3065–3069.

    CAS  PubMed  Google Scholar 

  • Viswanathan S, Zandstra PW (2003) Towards predictive models of stem cell fate. Cytotechnology 41:75–92.

    CAS  PubMed  Google Scholar 

  • Viti J, Feathers A, Phillips J et al (2003) Epidermal growth factor receptors control competence to interpret leukemia inhibitory factor as an astrocyte inducer in developing cortex. J Neurosci 23:3385–3393.

    CAS  PubMed  Google Scholar 

  • Waclaw RR, Allen ZJ, Bell SM et al (2006) The zinc finger transcription factor Sp8 regulates the generation and diversity of olfactory bulb interneurons. Neuron 49:503–516.

    CAS  PubMed  Google Scholar 

  • Weickert CS, Webster MJ, Colvin SM et al (2000) Localization of epidermal growth factor receptors and putative neuroblasts in human subependymal zone. J Comp Neurol 423:359–372.

    CAS  PubMed  Google Scholar 

  • Windrem MS, Roy NS, Wang J et al (2002) Progenitor cells derived from the adult human subcortical white matter disperse and differentiate as oligodendrocytes within demyelinated lesions of the rat brain. J Neurosci Res 69:966–975.

    CAS  PubMed  Google Scholar 

  • Yoon KJ, Koo BK, Im SK et al (2008) Mind bomb 1-expressing intermediate progenitors generate notch signaling to maintain radial glial cells. Neuron 58:519–531.

    CAS  PubMed  Google Scholar 

  • Young KM, Fogarty M, Kessaris N et al (2007) Subventricular zone stem cells are heterogeneous with respect to their embryonic origins and neurogenic fates in the adult olfactory bulb. J Neurosci 27:8286–8296.

    CAS  PubMed  Google Scholar 

  • Zhao M, Li D, Shimazu K et al (2007) Fibroblast growth factor receptor-1 is required for long-term potentiation, memory consolidation, and neurogenesis. Biol Psychiatry 62:381–390.

    CAS  PubMed  Google Scholar 

  • Zhao C, Deng W, Gage FH (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132:645–660.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Panchision .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Panchision, D.M. (2011). Molecular Mechanisms Regulating Adult Stem Cell Self-Renewal. In: Phinney, D. (eds) Adult Stem Cells. Stem Cell Biology and Regenerative Medicine. Humana Press. https://doi.org/10.1007/978-1-61779-002-7_1

Download citation

Publish with us

Policies and ethics