Skip to main content

Opioid Receptors: The Early Years

  • Chapter
  • First Online:
The Opiate Receptors

Part of the book series: The Receptors ((REC))

Abstract

Opioid receptors were first demonstrated long after they were proposed. Pharmacological studies of opiates in patients and animal models have typically predicted concepts subsequently confirmed at the molecular level. The initial ­binding of opiates, the identification of the opioid peptides and the concept of opioid receptor multiplicity are excellent examples. This review will discuss many of these early studies in the context of our current understanding of opioid action.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pert CB, Snyder SH (1973) Opiate receptor: demonstration in nervous tissue. Science 179:1011–1014

    Article  PubMed  CAS  Google Scholar 

  2. Terenius L (1973) Stereospecific interaction between narcotic analgesics and a synaptic plasma membrane fraction of rat cerebral cortex. Acta Pharmacol Toxicol (Copenh) 32:317–320

    Article  CAS  Google Scholar 

  3. Simon EJ, Hiller JM, Edelman I (1973) Stereospecific binding of the potent narcotic analgesic [3H]etorphine to rat-brain homogenate. Proc Natl Acad Sci USA 70:1947–1949

    Article  PubMed  CAS  Google Scholar 

  4. Evans CJ, Keith DE Jr, Morrison H et al (1992) Cloning of a delta opioid receptor by functional expression. Science 258:1952–1955

    Article  PubMed  CAS  Google Scholar 

  5. Kieffer BL, Befort K, Gaveriaux-Ruff C et al (1992) The δ-opioid receptor: isolation of a cDNA by expression cloning and pharmacological characterization. Proc Natl Acad Sci USA 89:12048–12052

    Article  PubMed  CAS  Google Scholar 

  6. Martin WR, Eades CG, Thompson JA et al (1976) The effects of morphine and nalorphine-like drugs in the nondependent and morphine-dependent chronic spinal dog. J Pharmacol Exp Ther 197:517–532

    PubMed  CAS  Google Scholar 

  7. Lord JAH, Waterfield AA, Hughes J et al (1977) Endogenous opioid peptides: multiple agonists and receptors. Nature 267:495–499

    Article  PubMed  CAS  Google Scholar 

  8. Zukin RS, Eghbali M, Olive D et al (1988) Characterization and visualization of rat and guinea pig brain kappa opioid receptors: evidence for kapp a1 and kappa2 opioid receptors. Proc Natl Acad Sci USA 85:4061–4065

    Article  PubMed  CAS  Google Scholar 

  9. Clark JA, Liu L, Price M et al (1989) Kappa opiate receptor multiplicity: evidence for two U50, 488-sensitive kapp a1 subtypes and a novel kappa3 subtype. J Pharmacol Exp Ther 251:461–468

    PubMed  CAS  Google Scholar 

  10. Rothman RB, Bykov V, Xue BG et al (1992) Interaction of opioid peptides and other drugs with multiple kappa receptors in rat and human brain. Evidence for species differences. Peptides 13:977–987

    Article  PubMed  CAS  Google Scholar 

  11. Wolozin BL, Pasternak GW (1981) Classification of multiple morphine and enkephalin binding sites in the central nervous system. Proc Natl Acad Sci USA 78:6181–6185

    Article  PubMed  CAS  Google Scholar 

  12. Langley, JN. On the contraction of muscle, chiefly in relation to the presence of; receptive’ substances: part IV. The effect of curari and of some other substances on the nicotine response of the sartorius and gastrocnemius muscles of the frog (1909) J Physiol 39:235–295

    Google Scholar 

  13. Ehrlich P (1913) Chemotherapeutics: scientific principles, methods and results. Lancet 2:445–451

    Google Scholar 

  14. Clark AJ (1933) The mode of action of drugs on cells. Lippincott Williams & Wilkins, Baltimore

    Google Scholar 

  15. Gaddum JH (1937) The quantitative effects of antagonistic drugs. J Physiol 89:7p–9p

    Google Scholar 

  16. de Stevens G (1965) Analgetics. Academic Press, New York

    Google Scholar 

  17. Janssen PA, Hellerback J, Schnider O et al (1960) Diphenylpropylamines, morphinans. Synthetic analgesics, part I. Pergamon Press, New York

    Google Scholar 

  18. Janssen PA, Hellerback J, Schnider O et al (1966) Diphenylpropylamines, morphinans. Synthetic analgesics part II. Pergamon, New York

    Google Scholar 

  19. Jacobson AE, May EL, Sargent LJ (1970) Analgetics. In: Burger A (ed) Medicinal chemistry (part II), 3rd edn. Wiley Interscience, New York

    Google Scholar 

  20. Portoghese PS (1966) Stereochemical factors and receptor interactions associated with narcotic analgesics. J Pharm Sci 55:865–887

    Article  PubMed  CAS  Google Scholar 

  21. Portoghese PS (1970) Relationships between stereostructure and pharmacological activities. Am Rev of Pharmacol 10:51–76

    Article  CAS  Google Scholar 

  22. Beckett AH, Casy AF (1965) Analgesics and their antagonists: biochemical aspects and structure-activity relationships. Prog Med Chem 4:171–218

    Article  PubMed  CAS  Google Scholar 

  23. Beckett AH, Casy AF, Harper NJ (1956) Analgesics and their antagonists: some steric and chemical considerations. III. The influence of the basic group on the biological response. J Pharm Pharmacol 8:874–883

    Article  PubMed  CAS  Google Scholar 

  24. Beckett AH, Casy AF (1954) Synthetic analgesics: sterochemical considerations. J Pharm Pharmacol 6:986–1001

    Article  PubMed  CAS  Google Scholar 

  25. Beckett AH (1956) Analgesics and their antagonists: some steric and chemical considerations. I. The dissociation constants of some tertiary amines and synthetic analgesics, the conformations of methadone-type compounds. J Pharm Pharmacol 8:848–859

    Article  PubMed  CAS  Google Scholar 

  26. Beckett AH, Casy AF, Harper NJ et al (1956) Analgesics and their antagonists: some steric and chemical considerations. II. The influence of the basic group on physico-chemical properties and the activity of methadone and thiambutene-type compounds. J Pharm Pharmacol 8:860–873

    Article  PubMed  CAS  Google Scholar 

  27. Chernov HI, Woods LA (1965) Central nervous system distribution and metabolism of C14-morphine during morphine-induced feline mania. J Pharmacol Exp Ther 149:146–155

    PubMed  CAS  Google Scholar 

  28. Ingoglia NA, Dole VP (1970) Localization of d- and l-mathadone after intraventricular injection into rat brains. J Pharmacol Exp Ther 175:84–87

    PubMed  CAS  Google Scholar 

  29. Goldstein A, Lowney LI, Pal BK (1971) Stereospecific and nonspecific interactions of the morphine congener levorphanol in subcellular fractions of mouse brain. Proc Natl Acad Sci USA 68:1742–1747

    Article  PubMed  CAS  Google Scholar 

  30. Van PD, Simon EJ (1966) Studies on the intracellular distribution and tissue binding of dihydromorphine-7, 8–H3 in the rat. Proc Soc Exp Biol Med 122:6–11

    Article  Google Scholar 

  31. Berkowitz BA, Way EL (1971) Analgesic activity and central nervous system distribution of the optical isomers of pentazocine in the rat. J Pharmacol Exp Ther 177:500–508

    PubMed  CAS  Google Scholar 

  32. Clouet DH, Williams N (1973) Localization in brain particulate fractions of narcotic analgesic drugs administered intracisternally to rats. Biochem Pharmacol 22:1283–1293

    Article  PubMed  CAS  Google Scholar 

  33. Hug CC Jr, Oka T (1971) Uptake of dihydromorphine-3H by synaptosomes. Life Sci I 10:201–213

    Article  PubMed  CAS  Google Scholar 

  34. Navon S, Lajtha A (1970) Uptake of morphine in particulate fractions from rat brain. Brain Res 24:534–536

    Article  PubMed  CAS  Google Scholar 

  35. Seeman P, Chau-Wong M, Moyyen S (1972) The membrane binding of morphine, diphenylhydantoin, and tetrahydrocannabinol. Can J Physiol Pharmacol 50:1193–1200

    Article  PubMed  CAS  Google Scholar 

  36. Pert CB, Pasternak GW, Snyder SH (1973) Opiate agonists and antagonists discriminated by receptor binding in brain. Science 182:1359–1361

    Article  PubMed  CAS  Google Scholar 

  37. Pasternak GW, Snyder SH (1974) Opiate receptor binding: effects of enzymatic treatments. Mol Pharmacol 10:183–193

    PubMed  CAS  Google Scholar 

  38. Pasternak GW, Snyder SH (1975) Opiate receptor binding: enzymatic treatments and discrimination between agonists and antagonists. Mol Pharmacol 11:735–744

    PubMed  CAS  Google Scholar 

  39. Pasternak GW, Wilson HA, Snyder SH (1975) Differential effects of protein-modifying reagants on receptor binding of opiate agonists and antagonists. Mol Pharmacol 11:340–351

    PubMed  CAS  Google Scholar 

  40. Wilson HA, Pasternak GW, Snyder SH (1975) Differentiation of opiate agonist and antagonist receptor binding by protein-modifying reagants. Nature 256:448–450

    Article  Google Scholar 

  41. Pasternak GW, Snyder SH (1974) The effect of enzymatic treatments on 3H-Naloxone binding. Proc Comm Drug Dependence 370–375

    Google Scholar 

  42. Abood LG, Salem N, MacNeil M et al (1978) Phospholipid changes in synaptic membranes by lipolytic enzymes and subsequent restoration of opiate binding with phosphatidylserine. Biochim Biophys Acta 530:35–46

    Article  PubMed  CAS  Google Scholar 

  43. Lin H-K, Simon EJ (1978) Phospholipase A inhibition of opiate receptor binding can be reversed by albumin. Nature 271:383–384

    Article  PubMed  CAS  Google Scholar 

  44. Law PY, Harris RA, Loh HH et al (1978) Evidence for the involvement of cerebroside sulfate in opiate receptor binding: studies with azure A and jimpy mutant mice. J Pharmacol Exp Ther 207:458–468

    PubMed  CAS  Google Scholar 

  45. Law PY, Fischer G, Loh HH et al (1979) Inhibition of specific opiate binding to synaptic membrane by cerebroside sulfatase. Biochem Pharmacol 28:2557–2562

    Article  PubMed  CAS  Google Scholar 

  46. Pert CB, Snowman AM, Snyder SH (1974) Localization of opiate receptor binding in synaptic membranes of rat brain. Brain Res 70:184–188

    Article  PubMed  CAS  Google Scholar 

  47. Mule SJ, Casella G, Clouet DH (1975) The specificity of binding of the narcotic agonist etorphine in synaptic membranes of rat brain in vivo. Psychopharmacologia 44:125–129

    Article  PubMed  CAS  Google Scholar 

  48. Lamotte C, Pert CB, Snyder SH (1976) Opiate receptor binding in primate spinal cord: distribution and changes after dorsal root section. Brain Res 112:407–412

    Article  PubMed  CAS  Google Scholar 

  49. Young WS, Wamsley JK, Zarbin MA et al (1980) Opioid receptors undergo axonal flow. Science 210:76–78

    Article  PubMed  CAS  Google Scholar 

  50. Zieglgansberger W, Fry JP (1976) Actions of enkephalin on cortical and striatl neurons of naive adn morphine tolerant/dependent rats. In: Kosterlitz HW (ed) Opiates and endogenous opioid peptides. Elsevier, Amerstdam

    Google Scholar 

  51. Kuhar MJ, Pert CB, Snyder SH (1973) Regional distribution of opiate receptor binding in monkey and human brain. Nature 245:447–450

    Article  PubMed  CAS  Google Scholar 

  52. Hiller JM, Pearson J, Simon EJ (1973) Distribution of stereospecific binding of the potent narcotic analgesic etorphine in the human brain: predominance in the limbic system. Res Commun Chem Pathol Pharmacol 6:1052–1062

    PubMed  CAS  Google Scholar 

  53. Lee CY, Akera T, Stolman S et al (1975) Saturable binding of dihydromorphine and naloxone to rat brain tissue in vitro. J Pharmacol Exp Ther 194:583–592

    PubMed  CAS  Google Scholar 

  54. Wong DT, Horng JS (1973) Stereospecific interaction of opiate narcotics in binding of 3H-dihydromorphine to membranes of rat brain. Life Sci 13:1543–1556

    Article  PubMed  CAS  Google Scholar 

  55. Pert A, Yaksh TL (1974) Sites of morphine induced analgesia in primate brain: relation to pain pathways. Brain Res 80:135–140

    Article  PubMed  CAS  Google Scholar 

  56. Herz A, Albus K, Metys J et al (1970) On the central sites for the antinociceptive action of morphine and fentanyl 1. Neuropharmacology 9:539–551

    Article  PubMed  CAS  Google Scholar 

  57. Pert CB, Kuhar MJ, Snyder SH (1975) Autoradiographic localization of the opiate receptor in rat brain. Life Sci 16:1849–1853

    Article  PubMed  CAS  Google Scholar 

  58. Pert CB, Kuhar MJ, Snyder SH (1976) Opiate receptor: autoradiographic localization in rat brain. Proc Natl Acad Sci USA 73:3729–3733

    Article  PubMed  CAS  Google Scholar 

  59. Atweh SF, Kuhar MJ (1977) Autoradiographic localization of opiate receptors in rat brain. III. The telencephalon. Brain Res 134:393–405

    Article  PubMed  CAS  Google Scholar 

  60. Atweh SF, Kuhar MJ (1977) Autoradiographic localization of opiate receptors in rat brain. I. Spinal cord and lower medulla. Brain Res 124:53–67

    Article  PubMed  CAS  Google Scholar 

  61. Atweh SF, Kuhar MJ (1977) Autoradiographic localization of opiate receptors in rat brain. II. The brain stem. Brain Res 129:1–12

    Article  PubMed  CAS  Google Scholar 

  62. Young WS III, Kuhar MJ (1979) A new method for receptor autoradiography: [3H]opioid receptors in rat brain. Brain Res 179:255–270

    Article  PubMed  CAS  Google Scholar 

  63. Schubert P, Hollt V, Herz A (1975) Autoradiographic evaluation of the intracerebral distribution of 3-H-etorphine in the mouse brain. Life Sci 16:1855–1856

    Article  PubMed  CAS  Google Scholar 

  64. Goodman RR, Snyder SH, Kuhar MJ et al (1980) Differentiation of delta and mu opiate receptor localizations by light microscopic autoradiography. Proc Natl Acad Sci USA 77:6239–6243

    Article  PubMed  CAS  Google Scholar 

  65. Duka T, Wuster M, Schubert P et al (1981) Selective localization of different types of opiate receptors in hippocampus as revealed by in vitro autoradiography. Brain Res 205:181–186

    Article  PubMed  CAS  Google Scholar 

  66. Foote RW, Maurer R (1982) Autoradiographic localization of opiate kappa-receptors in the guinea-pig brain. Eur J Pharmacol 85:99–103

    Article  PubMed  CAS  Google Scholar 

  67. Goodman RR, Snyder SH (1982) Autoradiographic localization of kappa opiate receptors to deep layers of the cerebral cortex may explain unique sedative and analgesic effects. Life Sci 31:1291–1294

    Article  PubMed  CAS  Google Scholar 

  68. Goodman RR, Snyder SH (1982) Kappa opiate receptors localized by autoradiography to deep layers of cerebral cortex: relation to sedative effects. Proc Natl Acad Sci USA 79:5703–5707

    Article  PubMed  CAS  Google Scholar 

  69. Wamsley JK, Zarbin MA, Young WS et al (1982) Distribution of opiate receptors in the monkey brain: an autoradiographic study. Neuroscience 7:595–613

    Article  PubMed  CAS  Google Scholar 

  70. Maurer R, Cortes R, Probst A et al (1983) Multiple opiate receptor in human brain: an autoradiographic investigation. Life Sci 33:231–234

    Article  PubMed  CAS  Google Scholar 

  71. Mansour A, Khachaturian H, Lewis ME et al (1987) Autoradiographic differentiation of mu, delta, and kappa opioid receptors in the rat forebrain and midbrain. J Neurosci 7:2445–2464

    PubMed  CAS  Google Scholar 

  72. Palacios JM, Niehoff DL, Kuhar MJ (1981) Receptor autoradiography with tritium-sensitive film: potential for computerized densitometry. Neurosci Lett 25:101–105

    Article  PubMed  CAS  Google Scholar 

  73. Goodman RR, Pasternak GW (1985) Visualization of mu1 opiate receptors in rat brain using a computerized autoradiographic subtraction technique. Proc Natl Acad Sci USA 82:6667–6671

    Article  PubMed  CAS  Google Scholar 

  74. Mansour A, Fox CA, Burke S et al (1994) Mu, delta, and kappa opioid receptor mRNA expression in the rat CNS: an in situ hybridization study. J Comp Neurol 350:412–438

    Article  PubMed  CAS  Google Scholar 

  75. Mansour A, Fox CA, Burke S et al (1994) Immunohistochemical localization of the mu opioid receptors. Regul Pept 54:179–180

    Article  CAS  Google Scholar 

  76. Arvidsson U, Dado RJ, Riedl M et al (1995) δ-Opioid receptor immunoreactivity: distribution in brainstem and spinal cord, and relationship to biogenic amines and enkephalin. J Neurosci 15:1215–1235

    PubMed  CAS  Google Scholar 

  77. Arvidsson U, Riedl M, Chakrabarti S et al (1995) Distribution and targeting of a μ-opioid receptor (MOR1) in brain and spinal cord. J Neurosci 15:3328–3341

    PubMed  CAS  Google Scholar 

  78. Ji RR, Zhang Q, Law PY et al (1995) Expression of μ-, δ-, and kappa-opioid receptor-like immunoreactivities in rat dorsal root ganglia after carrageenan-induced inflammation. J Neurosci 15:8156–8166

    PubMed  CAS  Google Scholar 

  79. Clendeninn NJ, Petraitis M, Simon EJ (1976) Ontological development of opiate receptors in rodent brain. Brain Res 118:157–160

    Article  PubMed  CAS  Google Scholar 

  80. Coyle JT, Pert CB (1976) Ontogenetic development of [3H]naloxone binding in rat brain. Neuropharmacology 15:555–560

    Article  PubMed  CAS  Google Scholar 

  81. Garcin F, Coyle JT (1977) Effects of perinatal 6-hydroxydopamine treatment on opiate receptor distribution in adult brain. Commun Psychopharmacol 1:283–290

    PubMed  CAS  Google Scholar 

  82. Zhang A-Z, Pasternak GW (1981) Ontogeny of opioid pharmacology and receptors: high and low affinity site differences. Eur J Pharmacol 73:29–40

    Article  PubMed  CAS  Google Scholar 

  83. Kupferberg HJ, Way EL (1963) Pharmacologic basis for the increased sensitivity of the newborn rat to morphine. J Pharmacol Exp Ther 141:105–112

    PubMed  CAS  Google Scholar 

  84. Pasternak GW, Childers SR, Snyder SH (1980) Naloxazone, a long-acting opiate antagonist: effects on analgesia in intact animals and on opiate receptor binding in vitro. J Pharmacol Exp Ther 214:455–462

    PubMed  CAS  Google Scholar 

  85. Pasternak GW, Hahn EF (1980) Long-acting opiate agonists and antagonists: 14-hydroxydihydromorphinone hydrazones. J Med Chem 23:674–677

    Article  PubMed  CAS  Google Scholar 

  86. Pasternak GW, Childers SR, Snyder SH (1980) Opiate analgesia: evidence for mediation by a subpopulation of opiate receptors. Science 208:514–516

    Article  PubMed  CAS  Google Scholar 

  87. Pasternak GW (1981) Opiate, enkephalin and endorphin analgesia: relations to a single subpopulation of opiate receptors. Neurology 31:1311–1315

    Article  PubMed  CAS  Google Scholar 

  88. Pert CB, Aposhian D, Snyder SH (1974) Phylogenetic distribution of opiate receptor binding. Brain Res 75:356–361

    Article  PubMed  CAS  Google Scholar 

  89. Stefano GB, Kream RM, Zukin RS (1980) Demonstration of stereospecific opiate binding in the nervous tissue of the marine mollusc Mytilus edulis. Brain Res 181:440–445

    Article  PubMed  CAS  Google Scholar 

  90. Stefano GB, Scharrer B, Assanah P (1982) Demonstration, characterization and localization of opioid binding sites in the midgut of the insect Leucophaea maderae (Blattaria). Brain Res 253:205–212

    Article  PubMed  CAS  Google Scholar 

  91. Baron A, Shuster L, Elefterhiou BE et al (1975) Opiate receptors in mice: genetic differences. Life Sci 17:633–640

    Article  Google Scholar 

  92. Moskowitz AS, Goodman RR (1985) Autoradiographic distribution of μ1 and μ2 opioid binding in the mouse central nervous system. Brain Res 360:117–129

    Article  PubMed  CAS  Google Scholar 

  93. Moskowitz AS, Goodman RR (1985) Autoradiographic analysis of mu1, mu2, and delta opioid binding in the central nervous of C57BL/6BY and CXBK (opioid receptor-deficient) mice. Brain Res 360:108–116

    Article  PubMed  CAS  Google Scholar 

  94. Creese I, Snyder SH (1975) Receptor binding and pharmacological activity of opiates in the guinea-pig intestine. J Pharmacol Exp Ther 194:205–219

    PubMed  CAS  Google Scholar 

  95. Schaumann W (1955) The paralysing action of morphine on the guinea-pig ileum. Br J Pharmacol 10:456–461

    CAS  Google Scholar 

  96. Kosterlitz HW, Robinson JA (1957) Inhibition of the peristaltic reflex of the isolated guinea-pig ileum 4. J Physiol 136:249–262

    PubMed  CAS  Google Scholar 

  97. Paton WDM (1957) The action of morphine and related substances on contraction and on acetylcholine output of coaxially stimulated guinea-pig ileum. Br J Pharmacol 12:119–124

    CAS  Google Scholar 

  98. Pasternak GW, Snowman AS, Snyder SH (1975) Selective enhancement of [3H]opiate agonist binding by divalent cations. Mol Pharmacol 11:478–484

    CAS  Google Scholar 

  99. Creese I, Pasternak GW, Pert CB et al (1975) Discrimination by temperature of opiate agonist and antagonist receptor binding. Life Sci 16:1837–1842

    Article  PubMed  CAS  Google Scholar 

  100. Blume AJ, Lichtstein D, Boone G (1979) Coupling of opiate receptors to adenylate cyclase: requirements for Na+ and GTP. Proc Natl Acad Sci USA 76:5626–5630

    Article  PubMed  CAS  Google Scholar 

  101. Blume AJ (1978) Interaction of ligands with the opiate receptors of brain membranes: regulation by ions and nucleotides. Proc Natl Acad Sci USA 75:1713–1717

    Article  PubMed  CAS  Google Scholar 

  102. Blume AJ (1978) Opiate binding to membrane preparations of neuroblastoma X glioma hybrid cells NG108-15: effects of ions and nucleotides. Life Sci 22:1843–1852

    Article  PubMed  CAS  Google Scholar 

  103. Childers SR, Snyder SH (1978) Guanine nucleotides differentiate agonist and antagonist interactions with opiate receptors. Life Sci 23:759–762

    Article  PubMed  CAS  Google Scholar 

  104. Pasternak GW, Snyder SH (1975) Identification of a novel high affinity opiate receptor binding in rat brain. Nature 253:563–565

    Article  PubMed  CAS  Google Scholar 

  105. Lefkowitz RJ, Mullikin D, Caron MG (1976) Regulation of beta-adrenergic receptors by guanyl-5′-yl imidodiphosphate and other purine nucleotides. J Biol Chem 251:4686–4692

    PubMed  CAS  Google Scholar 

  106. Lefkowitz RJ, Caron MG, Michel T et al (1982) Mechanisms of hormone receptor-effector coupling: the beta-adrenergic receptor and adenylate cyclase. Fed Proc 41:2664–2670

    PubMed  CAS  Google Scholar 

  107. Lefkowitz RJ, Caron MG, Stiles GL (1984) Mechanisms of membrane-receptor regulation. N Engl J Med 310:1570–1579

    Article  PubMed  CAS  Google Scholar 

  108. Snyder SH, Matthysse S (1975) Opiate Receptor Mechanisms. MIT Press, Boston

    Google Scholar 

  109. Hughes J, Smith TW, Kosterlitz HW et al (1975) Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature 258:577–579

    Article  PubMed  CAS  Google Scholar 

  110. Pasternak GW, Goodman R, Snyder SH (1975) An endogenous morphine like factor in mammalian brain. Life Sci 16:1765–1769

    Article  PubMed  CAS  Google Scholar 

  111. Terenius L, Wahlstrom A (1975) Search for an endogenous ligand for the opiate receptor. Acta Physiol Scand 94:74–81

    Article  PubMed  CAS  Google Scholar 

  112. Hughes J (1975) Isolation of an endogenous compound from the brain with pharmacological properties similar to morphine. Brain Res 88:295–308

    Article  PubMed  CAS  Google Scholar 

  113. Cox BM, Opheim KE, Teschemacher H et al (1975) A peptide-like substance from pituitary that acts like morphine. 2. Purification and properties 2. Life Sci 16:1777–1782

    Article  PubMed  CAS  Google Scholar 

  114. Goldstein A (1976) Opioid peptides (endorphins) in pituitary and brain. Science 193:1081–1086

    Article  PubMed  CAS  Google Scholar 

  115. Goldstein A, Tachibana S, Lowney LI et al (1979) Dynorphin-(1-13), an extraordinarily potent opioid peptide. Proc Natl Acad Sci USA 76:6666–6670

    Article  PubMed  CAS  Google Scholar 

  116. Birdsall NJM, Hulme EC (1976) C fragment of lipotropin has a high affinity for brain opiate receptors. Nature 260:793–795

    Article  PubMed  CAS  Google Scholar 

  117. Li CH, Chung D, Doneen BA (1976) Isolation, characterization and opiate activity of beta-endorphin from human pituitary glands. Biochem Biophys Res Commun 72:1542–1547

    Article  PubMed  CAS  Google Scholar 

  118. Baird A, Ling N, Bohlen P et al (1982) Molecular forms of the putative enkephalin precursor BAM-12P in bovine adrenal, pituitary, and hypothalamus. Proc Natl Acad Sci USA 79:2023–2025

    Article  PubMed  CAS  Google Scholar 

  119. Hong Y, Dai P, Jiang J et al (2004) Dual effects of intrathecal BAM22 on nociceptive responses in acute and persistent pain-potential function of a novel receptor. Br J Pharmacol 141:423–430

    Article  PubMed  CAS  Google Scholar 

  120. Grazzini E, Puma C, Roy MO et al (2004) Sensory neuron-specific receptor activation elicits central and peripheral nociceptive effects in rats. Proc NatlAcad Sci USA 101:7175–7180

    Article  CAS  Google Scholar 

  121. Lembo PM, Grazzini E, Groblewski T et al (2002) Proenkephalin A gene products activate a new family of sensory neuron – specific GPCRs. Nat Neurosci 5:201–209

    Article  PubMed  CAS  Google Scholar 

  122. Zadina JE, Hackler L, Ge LJ et al (1997) A potent and selective endogenous agonist for the μ-opiate receptor. Nature 386:499–502

    Article  PubMed  CAS  Google Scholar 

  123. Gintzler AR, Levy A, Spector S (1976) Antibodies as a means of isolating and characterizing biologically active substances: presence of a non-peptide, morphine-like compound in the central nervous system. Proc Natl Acad Sci USA 73:2132–2136

    Article  PubMed  CAS  Google Scholar 

  124. Gintzler AR, Gershon MD, Spector S (1978) A nonpeptide morphine-like compound: immunocytochemical localization in the mouse brain. Science 199:447–448

    Article  PubMed  CAS  Google Scholar 

  125. Weitz CJ, Faull KF, Goldstein A (1997) Synthesis of the skeleton of the morphine molecule by mammalian liver. Nature 330:674–677

    Article  Google Scholar 

  126. Hazum E, Sabatka JJ, Chang K-J et al (1981) Morphine in cow and human milk: could dietary morphine constitute a ligand for specific morphine (μ) receptors? Science 213:1010–1012

    Article  PubMed  CAS  Google Scholar 

  127. Kodaira H, Spector S (1988) Transformation of thebaine to oripavine, codeine, and morphine by rat liver, kidney, and brain microsomes. Proc Natl Acad Sci USA 85:1267–1271

    Article  PubMed  CAS  Google Scholar 

  128. Boettcher C, Fellermeier M, Boettcher C et al (2005) How human neuroblastoma cells make morphine. Proc Natl Acad Sci USA 102:8495–8500

    Article  PubMed  CAS  Google Scholar 

  129. Martin WR (1967) Opioid antagonists. Pharmacol Rev 19:463–521

    PubMed  CAS  Google Scholar 

  130. Houde RW, Wallenstein SL (1956) Clinical studies of morphine-nalorphine combinations. Fed Proc 15:440–441

    Google Scholar 

  131. Lasagna L, Beecher HK (1954) Analgesic effectiveness of nalorphine and nalorphine-morphine combinations in man. J Pharmacol Exp Ther 112:356–363

    PubMed  CAS  Google Scholar 

  132. Matsumoto RR (2007) Sigma receptors: historical perspective and background. In: Matsumoto RR, Bowen WD, Su T-P (eds) Sigma receptors: chemistry, cell biology and clinical implications. Springer, New York, pp 1–24

    Chapter  Google Scholar 

  133. Pasternak GW (2007) Sigma1 receptors and the modulation of opioid analgesia. In: Matsumoto RR, Bowen WD, Su T-P (eds) Sigma receptors: chemistry, cell biology and clinical implications. Springer, New York, pp 337–350

    Chapter  Google Scholar 

  134. Hayashi T, Su T (2005) The sigma receptor: evolution of the concept in neuropsychopharmacology. Curr Neuropharmacol 3:267–280

    Article  PubMed  CAS  Google Scholar 

  135. Bowen WD (2000) Sigma receptors: recent advances and new clinical potentials. Pharm Acta Helv 74:211–218

    Article  PubMed  CAS  Google Scholar 

  136. Kim FJ, Kovalyshyn I, Burgman M et al (2010) Sigma 1 receptor modulation of G-protein-coupled receptor signaling: potentiation of opioid transduction independent from receptor binding. Mol Pharmacol 77:695–703

    Article  PubMed  CAS  Google Scholar 

  137. Mogil JS, Kest B, Sadowski B et al (1996) Differential genetic mediation of sensitivity to morphine in genetic models of opiate antinociception: influence of nociceptive assay. J Pharmacol Exp Ther 276:532–544

    PubMed  CAS  Google Scholar 

  138. Reith MEA, Sershen H, Vadasz C et al (1981) Strain differences in opiate receptors in mouse brain. Eur J Pharmacol 74:377–380

    Article  PubMed  CAS  Google Scholar 

  139. Pick CG, Nejat R, Pasternak GW (1993) Independent expression of two pharmacologically distinct supraspinal mu analgesic systems in genetically different mouse strains. J Pharmacol Exp Ther 2265:166–171

    Google Scholar 

  140. Chang A, Emmel DW, Rossi GC et al (1998) Methadone analgesia in morphine-insensitive CXBK mice. Eur J Pharmacol 351:189–191

    Article  PubMed  CAS  Google Scholar 

  141. Chang K-J, Cooper BR, Hazum E et al (1979) Multiple opiate receptors: different regional distribution in the brain and differential binding of opiates and opioid peptides. Mol Pharmacol 16:91–104

    PubMed  CAS  Google Scholar 

  142. Chang K-J, Cuatrecasas P (1979) Multiple opiate receptors. J Biol Chem 254:2610–2618

    PubMed  CAS  Google Scholar 

  143. Kosterlitz HW, Lord JAH, Paterson SJ et al (1980) Effects of changes in the structure of enkephalins and of narcotic analgesic drugs on their interactions with μ- and δ-receptors. Br J Pharmacol 68:333–342

    Article  PubMed  CAS  Google Scholar 

  144. Lord JAH, Waterfield AA, Hughes J et al (1976) Multiple opiate receptors. In: Kosterlitz HW (ed) eds. North-Holland, Amsterdam, pp 275–280

    Google Scholar 

  145. Gillan MGC, Kosterlitz HW, Paterson SJ (1979) Comparison of the binding characteristics of tritiated opiates and opioid peptides. Br J Pharmacol 66:86P–87P

    Article  PubMed  CAS  Google Scholar 

  146. Romer D, Buscher H, Hill RC et al (1980) Bremazocine: a potent, long-acting opiate kappa-agonist. Life Sci 27:971–978

    Article  PubMed  CAS  Google Scholar 

  147. Chavkin C, Goldstein A (1981) Specific receptor for the opioid peptide dynorphin: structure-activity relationships. Proc Natl Acad Sci USA 78:6543–6547

    Article  PubMed  CAS  Google Scholar 

  148. Pfeiffer A, Herz A (1981) Demonstration and distribution of an opiate binding site in rat brain with high affinity for ethylketocyclazocine and SKF 10, 047. Biochem Biophys Res Commun 101:38–44

    Article  PubMed  CAS  Google Scholar 

  149. Wood PL, Charleson SE, Lane D et al (1981) Multiple opiate receptors: differential binding of μ, k and δ agonists. Neuropharmacology

    Google Scholar 

  150. Wolozin BL, Nishimura S, Pasternak GW (1982) The binding of kappa and sigma opiates in rat brain. J Neurosci 2:708–713

    PubMed  CAS  Google Scholar 

  151. VonVoightlander PF, Lahti RA, Ludens JH (1983) U50, 488: a selective and structurally novel non-mu (kappa) opioid agonist. J Pharmacol Exp Ther 224:7–12

    Google Scholar 

  152. Bare LA, Mansson E, Yang D (1994) Expression of two variants of the human μ opioid receptor mRNA in SK-N-SH cells and human brain. FEBS Lett 354:213–216

    Article  PubMed  CAS  Google Scholar 

  153. Zimprich A, Simon T, Hollt V (1995) Cloning and expression of an isoform of the rat μ opioid receptor (rMOR 1 B) which differs in agonist induced desensitization from rMOR1. FEBS Lett 359:142–146

    Article  PubMed  CAS  Google Scholar 

  154. Pan YX, Xu J, Bolan EA et al (1999) Identification and characterization of three new alternatively spliced mu opioid receptor isoforms. Mol Pharmacol 56:396–403

    PubMed  CAS  Google Scholar 

  155. Pan Y-X, Xu J, Rossi GC et al (2000) Identification and characterization of a novel promoter of a mouse mu opioid receptor gene (MOR-1) that directs alternative splicing and differential expression of eight new variants. Soc Neurosci 26:2097

    Google Scholar 

  156. Pan YX, Xu J, Bolan E et al (2000) Isolation and expression of a novel alternatively spliced mu opioid receptor isoform, MOR-1F. FEBS Lett 466:337–340

    Article  PubMed  CAS  Google Scholar 

  157. Pan Y-X, Xu J, Mahurter L et al (2001) Generation of the mu opioid receptor (MOR-1) protein by three new splice variants of the Oprm gene. Proc Natl Acad Sci USA 98:14084–14089

    Article  PubMed  CAS  Google Scholar 

  158. Pasternak GW (2001) Insights into mu opioid pharmacology – the role of mu opioid receptor subtypes. Life Sci 68:2213–2219

    Article  PubMed  CAS  Google Scholar 

  159. Hazum E, Chang KJ, Cuatrescasas P et al (1981) Naloxazone irreversibly inhibits the high affinity binding of [125I]D-ala2-D-leu5-enkephalin. Life Sci 29:843–851

    Article  Google Scholar 

  160. Hahn EF, Carroll-Buatti M, Pasternak GW (1982) Irreversible opiate agonists and antagonists: the 14-hydroxydihydromorphinone azines. J Neurosci 2:572–576

    PubMed  CAS  Google Scholar 

  161. Ling GSF, Spiegel K, Nishimura S et al (1983) Dissociation of morphine’s analgesic and respiratory depressant actions. Eur J Pharmacol 86:487–488

    Article  PubMed  CAS  Google Scholar 

  162. Ling GSF, Spiegel K, Lockhart SH et al (1985) Separation of opioid analgesia from respiratory depression: evidence for different receptor mechanisms. J Pharmacol Exp Ther 232:149–155

    PubMed  CAS  Google Scholar 

  163. Heyman JS, Williams CL, Burks TF et al (1988) Dissociation of opioid antinociception and central gastrointestinal propulsion in the mouse: studies with naloxonazine. J Pharmacol Exp Ther 245:238–243

    PubMed  CAS  Google Scholar 

  164. Paul D, Pasternak GW (1988) Differential blockade by naloxonazine of two μ opiate actions: analgesia and inhibition of gastrointestinal transit. Eur J Pharmacol 149:403–404

    Article  PubMed  CAS  Google Scholar 

  165. Ling GSF, MacLeod JM, Lee S et al (1984) Separation of morphine analgesia from physical dependence. Science 226:462–464

    Article  PubMed  CAS  Google Scholar 

  166. Paul D, Bodnar RJ, Gistrak MA et al (1989) Different μ receptor subtypes mediate spinal and supraspinal analgesia in mice. Eur J Pharmacol 168:307–314

    Article  PubMed  CAS  Google Scholar 

  167. Spiegel K, Kourides IA, Pasternak GW (1982) Different receptors mediate morphine-induced prolactin and growth hormone release. Life Sci 31:2177–2180

    Article  PubMed  CAS  Google Scholar 

  168. Spiegel K, Kourides I, Pasternak GW (1982) Prolactin and growth hormone release by morphine in the rat: different receptor mechanisms. Science 217:745–747

    Article  PubMed  CAS  Google Scholar 

  169. Wood PL, Pasternak GW (1983) Specific mu2 opioid isoreceptor regulation of nigrostraital neurons: in vivo evidence with naloxonazine. Neurosci Lett 37:291–293

    Article  PubMed  CAS  Google Scholar 

  170. Ling GSF, Simantov R, Clark JA et al (1986) Naloxonazine actions in vivo. Eur J Pharmacol 129:33–38

    Article  PubMed  CAS  Google Scholar 

  171. Bodnar RJ, Williams CL, Lee SJ et al (1988) Role of mu 1-opiate receptors in supraspinal opiate analgesia: a microinjection study. Brain Res 447:25–34

    Article  PubMed  CAS  Google Scholar 

  172. Janik J, Callahan P, Rabii J (1992) The role of the mu1 opioid receptor subtype in the regulation of prolactin and growth hormone secretion by beta-endorphin in female rats: studies with naloxonazine. J Neuroendocrinol 4:701–708

    Article  PubMed  CAS  Google Scholar 

  173. Cheng PY, Wu D, Soong Y et al (1993) Role of μ1- and δ-opioid receptors in modulation of fetal EEG and respiratory activity. Am J Physiol Regul Integr Comp Physiol 265:R433–R438

    CAS  Google Scholar 

  174. Eisenberg RM (1993) DAMGO stimulates the hypothalamo-pituitary-adrenal axis through a Mu-2 opioid receptor. J Pharmacol Exp Ther 266:985–991

    PubMed  CAS  Google Scholar 

  175. Kamei J, Iwamoto Y, Kawashima N et al (1993) Possible involvement of μ2-mediated mechanisms in μ-mediated antitussive activity in the mouse. Neurosci Lett 149:169–172

    Article  PubMed  CAS  Google Scholar 

  176. Negus S, Henriksen SJ, Mattox A et al (1993) Effect of antagonists selective for mu, delta and kappa opioid receptors on the reinforcing effects of heroin in rats. J Pharmacol Exp Ther 265:1245–1252

    PubMed  CAS  Google Scholar 

  177. Holaday JW, Pasternak GW, D’Amato RJ et al (1983) Naloxazone lacks therapeutic effect in endotoxic shock yet blocks the effects of naloxone. Eur J Pharmacol 89:293–296

    Article  PubMed  CAS  Google Scholar 

  178. Holaday JW, Pasternak GW, Faden AI (1983) Naloxazone pretreatment modifies cardiorespiratory and behavioral effects of morphine. Neurosci Lett 37:199–204

    Article  PubMed  CAS  Google Scholar 

  179. Ward SJ, Portoghese PS,Takemori AE (1982) Pharmacological characterization in vivo of the novel opiate, β-funaltrexamine. J Pharmacol Exp Ther 220:494–498

    Google Scholar 

  180. Ward SJ, Portoghese PS, Takemori AE (1982) Pharmacological profiles of β-funaltrexamine (β-FNA) and β-chlornaltrexamine (β-CNA) on the mouse vas deferens preparation. Eur J Pharmacol 80:377–384

    Article  PubMed  CAS  Google Scholar 

  181. Ward SJ, Portoghese PS, Takemori AE (1982) Pharmacological characterization in vivo of the novel opiate, β-funaltrexamine. J Pharmacol Exp Ther 220:494–498

    PubMed  CAS  Google Scholar 

  182. Ward SJ, Takemori AE (1983) Determination of the relative involvment of μ-opioid receptors in opioid-induced depression of respiratory rate by use of β-funaltrexamine. Eur J Pharmacol 87:1–6

    Article  PubMed  CAS  Google Scholar 

  183. Pick CG, Paul D, Pasternak GW (1991) Comparison of naloxonazine and β-funaltrexamine antagonism of μ1 and μ2 opioid actions. Life Sci 48:2005–2011

    Article  PubMed  CAS  Google Scholar 

  184. Zhang A-Z, Pasternak GW (1981) The actions of naloxazone on the binding and analgesic properties of morphiceptin (NH2-Tyr-Pro-Phe-Pro-CONH2), a selective mu-receptor ligand. Life Sci 28:2829–2836

    Article  PubMed  CAS  Google Scholar 

  185. Pasternak GW, Gintzler AR, Houghten RA et al (1983) Biochemical and pharmacological evidence for opioid receptor multiplicity in the central nervous system. Life Sci 33(Suppl 1):167–173

    Article  PubMed  CAS  Google Scholar 

  186. Pasternak GW (2001) Incomplete cross tolerance and multiple mu opioid peptide receptors. Trends Pharmacol Sci 22:67–70

    Article  PubMed  CAS  Google Scholar 

  187. Pasternak GW (2010) Molecular insights into mu opioid pharmacology: from the clinic to the bench. Clin J Pain 26(Suppl 10):S3–S9

    Article  PubMed  Google Scholar 

  188. Pasternak GW (1986) Multiple mu opiate receptors: biochemical and pharmacological evidence for multiplicity. Biochem Pharmacol 35:361–364

    Article  PubMed  CAS  Google Scholar 

  189. Pasternak GW (2004) Multiple opiate receptors: deja vu all over again. Neuropharmacology 47(Suppl 1):312–323

    Article  PubMed  CAS  Google Scholar 

  190. Pasternak GW (1993) Pharmacological mechanisms of opioid analgesics. Clin Neuropharmacol 16:1–18

    Article  PubMed  CAS  Google Scholar 

  191. Pasternak GW (2001) The pharmacology of mu analgesics: from patients to genes. Neuroscientist 7:220–231

    Article  PubMed  CAS  Google Scholar 

  192. Rothman RB, Westfall TC (1982) Interaction of naloxone with the opioid receptor complex in vitro. Neurochem Res 7:1375–1384

    Article  PubMed  CAS  Google Scholar 

  193. Rothman RB, Westfall TC (1982) Allosteric coupling between morphine and enkephalin receptors in vitro. Mol Pharmacol 21:548–557

    PubMed  CAS  Google Scholar 

  194. Rothman RB, Bowen WD, Schumacher UK et al (1983) Effect of β-FNA on opiate receptor binding: preliminary evidence for two types of μ receptors. Eur J Pharmacol 95:147–148

    Article  PubMed  CAS  Google Scholar 

  195. Shimomura K, Kamata O, Ueki S et al (1971) Analgesic effect of morphine glucuronides. Tohoku J Exp Med 105:45–52

    Article  PubMed  CAS  Google Scholar 

  196. Christensen CB, Jorgensen LN (1987) Morphine-6-glucuronide has high affinity for the opioid receptor. Pharmacol Toxicol 60:75–76

    Article  PubMed  CAS  Google Scholar 

  197. Pasternak GW, Bodnar RJ, Clark JA et al (1987) Morphine-6-glucuronide, a potent mu agonist. Life Sci 41:2845–2849

    Article  PubMed  CAS  Google Scholar 

  198. Paul D, Standifer KM, Inturrisi CE et al (1989) Pharmacological characterization of morphine-6β-glucuronide, a very potent morphine metabolite. J Pharmacol Exp Ther 251:477–483

    PubMed  CAS  Google Scholar 

  199. Tiseo PJ, Thaler HT, Lapin J et al (1995) Morphine-6-glucuronide concentrations and opioid-related side effects: a survey in cancer patients. Pain 61:47–54

    Article  PubMed  CAS  Google Scholar 

  200. Inturrisi CE, Yoburn BC, Portenoy RK et al (1996) Species dependent formation of morphine-6-glucuronide (M-6-G) from morphine (MOR). Committee Problems Drug Dependence 174: 157

    Google Scholar 

  201. Brown GP, Yang K, King MA et al (1997) 3-Methoxynaltrexone, a selective heroin/morphine-6β-glucuronide antagonist. FEBS Lett 412:35–38

    Article  PubMed  CAS  Google Scholar 

  202. Walker JR, King M, Izzo E et al (1999) Antagonism of heroin and morphine self-administration in rats by the morphine-6-glucuronide antagonist 3-0-methylnaltrexone. Eur J Pharmacol 383:115–119

    Article  PubMed  CAS  Google Scholar 

  203. Schuller AG, King MA, Zhang J et al (1999) Retention of heroin and morphine-6 beta-glucuronide analgesia in a new line of mice lacking exon 1 of MOR-1. Nat Neurosci 2:151–156

    Article  PubMed  CAS  Google Scholar 

  204. Jiang Q, Takemori AE, Sultana M et al (1991) Differential antagonism of opiate delta antinociception by [D-Ala2, Cys6]enkaphalin and naltrindole-5′-iosothiocyanate: evidence for subtypes. J Pharmacol Exp Ther 257:1069–1075

    PubMed  CAS  Google Scholar 

  205. Portoghese PS, Sultana M, Takemori AE (1990) Naltrindole 5′-isothiocyanate: a nonequilibrium, highly selective delta opioid receptor antagonist. J Med Chem 33:1547–1548

    Article  PubMed  CAS  Google Scholar 

  206. Bowen WD, Hellewell SB, Kelemen M et al (1987) Affinity labeling of δ-opiate receptors using [D-Ala2, Leu5, Cys6]Enkephalin. J Biol Chem 262:13434–13439

    PubMed  CAS  Google Scholar 

  207. Buzas B, Izenqasser S, Portoghese PS et al (1994) Evidence for delta opioid receptor subtypes regulating adenylyl cyclase activity in rat brain. Life Sci 54:101–106

    Article  Google Scholar 

  208. Mattia A, Vanderah T, Mosberg HI et al (1991) Lack of antinociceptive cross tolerance between [D-Pen2, D-Pen5]enkephalin and [D-Ala2]deltorphin II in mice: evidence for delta receptor subtypes. J Pharmacol Exp Ther 258:583–587

    PubMed  CAS  Google Scholar 

  209. Vanderah T, Takemori AE, Sultana M et al (1994) Interaction of [D-Pen2, D-Pen5]enkephalin and [D-Ala2, Glu4]deltorphin with δ-opioid receptor subtypes in vivo. Eur J Pharmacol 252:133–137

    Article  PubMed  CAS  Google Scholar 

  210. Cha XY, Xu H, Ni Q et al (1995) Opioid peptide receptor studies. 4. Antisense oligodeoxynucleotide to the delta opioid receptor delineates opioid receptor subtypes. Regul Pept 59:247–253

    Article  PubMed  CAS  Google Scholar 

  211. Cha XY, Xu H, Rice KC et al (1995) Opioid peptide receptor studies. 1. Identification of a novel δ-opioid receptor binding site in rat brain membranes. Peptides 16:191–198

    Article  PubMed  CAS  Google Scholar 

  212. Rossi GC, Su W, Leventhal L et al (1997) Antisense mapping DOR-1 in mice: further support for delta receptor subtypes. Brain Res 753:176–179

    Article  PubMed  CAS  Google Scholar 

  213. Hammond DL, Wang HL, Nakashima N et al (1998) Differential effects of intrathecally administered delta and mu opioid receptor agonists on formalin-evoked nociception and on the expression of Fos-like immunoreactivity in the spinal cord of the rat. J Pharmacol Exp Ther 284:378–387

    PubMed  CAS  Google Scholar 

  214. Ossipov MH, Kovelowski CJ, Nichols ML et al (1995) Characterization of supraspinal antinociceptive actions of opioid delta agonists in the rat. Pain 62:287–293

    Article  PubMed  CAS  Google Scholar 

  215. Ragnauth A, Moroz M, Bodnar RJ (2000) Multiple opioid receptors mediate feeding elicited by mu and delta opioid receptor subtype agonists in the nucleus accumbens shell in rats. Brain Res 876:76–87

    Article  PubMed  CAS  Google Scholar 

  216. Koch JE, Bodnar RJ (1994) Selective alterations in macronutrient intake of food-deprived or glucoprivic rats by centrally-administered opioid receptor subtype antagonists in rats. Brain Res 657:191–201

    Article  PubMed  CAS  Google Scholar 

  217. Zhu YX, King MA, Schuller AGP et al (1999) Retention of supraspinal delta-like analgesia and loss of morphine tolerance in δ opioid receptor knockout mice. Neuron 24:243–252

    Article  PubMed  CAS  Google Scholar 

  218. Gilbert PE, Martin WR (1976) The effects of morphine and nalorphine-like drugs in the nondependent, morphine-dependent and cyclazocine-dependent chronic spinal dog. J Pharmacol Exp Ther 198:66–82

    PubMed  CAS  Google Scholar 

  219. Hiller JM, Simon EJ (1979) 3H-ethylketocylazocine binding: lack of evidence for a separate kappa receptor in rats CNS. Eur J Pharmacol 60:389–390

    Article  PubMed  CAS  Google Scholar 

  220. Chang K-J, Hazum E, Cuatrecasas P (1981) Novel opiate binding sites selective for benzomorphan drugs. Proc Natl Acad Sci USA 78:4141–4145

    Article  PubMed  CAS  Google Scholar 

  221. Kosterlitz HW, Paterson SJ, Robson LE (1981) Characterization of the kappa-subtype of the opiate receptor in the guinea-pig brain. Br J Pharmacol 73:939–949

    Article  PubMed  CAS  Google Scholar 

  222. Zukin RS, Zukin SR (1981) Demonstration of [3H]cyclazocine binding to multiple opiate receptor sites. Mol Pharmacol 20:246–254

    PubMed  CAS  Google Scholar 

  223. Jordan BA, Devi LA (1999) G-protein-coupled receptor heterodimerization modulates receptor function. Nature 399:697–700

    Article  PubMed  CAS  Google Scholar 

  224. Luke MC, Hahn EF, Price M et al (1988) Irreversible opiate agonists and antagonists: V. Hydrazone and acylhydrazone derivatives of naltrexone. Life Sci 43:1249–1256

    Article  PubMed  CAS  Google Scholar 

  225. Gistrak MA, Paul D, Hahn EF et al (1989) Pharmacological actions of a novel mixed opiate agonist/antagonist: naloxone benzoylhydrazone. J Pharmacol Exp Ther 251:469–476

    PubMed  CAS  Google Scholar 

  226. Paul D, Levison JA, Howard DH et al (1990) Naloxone benzoylhydrazone (NalBzoH) analgesia. J Pharmacol Exp Ther 255:769–774

    PubMed  CAS  Google Scholar 

  227. Price M, Gistrak MA, Itzhak Y et al (1989) Receptor binding of 3H-naloxone benzoylhydrazone: a reversible kappa and slowly dissociable μ opiate. Mol Pharmacol 35:67–74

    PubMed  CAS  Google Scholar 

  228. Paul D, Pick CG, Tive LA et al (1991) Pharmacological characterization of nalorphine, a kapp a3 analgesic. J Pharmacol Exp Ther 257:1–7

    PubMed  CAS  Google Scholar 

  229. Tive LA, Ginsberg K, Pick CG et al (1992) Kapp a3 receptors and levorphanol-induced analgesia. Neuropharmacology 31:851–856

    Article  PubMed  CAS  Google Scholar 

  230. Pick CG, Paul D, Pasternak GW (1992) Nalbuphine, a mixed kapp a1 and kappa3 analgesic in mice. J Pharmacol Exp Ther 262:1044–1050

    PubMed  CAS  Google Scholar 

  231. Moulin DE, Ling GSF, Pasternak GW (1988) Unidirectional analgesic cross-tolerance between morphine and levorphanol in the rat. Pain 33:233–239

    Article  PubMed  CAS  Google Scholar 

  232. Rowbotham MC, Twilling L, Davies PS et al (2003) Oral opioid therapy for chronic peripheral and central neuropathic pain. N Engl J Med 348:1223–1232

    Article  PubMed  CAS  Google Scholar 

  233. Cox V, Clarke S, Czyzyk T et al (2005) Autoradiography in opioid triple knockout mice reveals opioid and opioid receptor like binding of naloxone benzoylhydrazone. Neuropharmacology 48:228–235

    Article  PubMed  CAS  Google Scholar 

  234. Connor M, Kitchen I (2006) Has the sun set on kappa 3-opioid receptors? Br J Pharmacol 147:349–350

    Article  PubMed  CAS  Google Scholar 

  235. Hazum E, Chang K-J, Cuatrecasas P (1979) Interaction of iodinated human [D-Ala2]β-endorphin with opiate receptors. J Biol Chem 254:1765–1767

    PubMed  CAS  Google Scholar 

  236. Hazum E, Chang K-J, Cuatrecasas P (1979) Specific nonopiate receptors for β-endorphin. Science 205:1033–1035

    Article  CAS  PubMed  Google Scholar 

  237. Mogil JS, Pasternak GW (2001) The molecular and behavioral pharmacology of the orphanin FQ/nociceptin peptide and receptor family. Pharmacol Rev 53:381–415

    PubMed  CAS  Google Scholar 

  238. Keith D Jr, Maung T, Anton B et al (1994) Isolation of cDNA clones homologous to opioid receptors. Regul Pept 54:143–144

    Article  CAS  Google Scholar 

  239. Pan Y-X, Cheng J, Xu J et al (1994) Cloning, expression and classification of a kapp a3-related opioid receptor using antisense oligodeoxynucleotides. Regul Pept 54:217–218

    Article  CAS  Google Scholar 

  240. Bunzow JR, Saez C, Mortrud M et al (1994) Molecular cloning and tissue distribution of a putative member of the rat opioid receptor gene family that is not a μ, δ or kappa opioid receptor type. FEBS Lett 347:284–288

    Article  PubMed  CAS  Google Scholar 

  241. Chen Y, Fan Y, Liu J et al (1994) Molecular cloning, tissue distribution and chromosomal localization of a novel member of the opioid receptor gene family. FEBS Lett 347:279–283

    Article  PubMed  CAS  Google Scholar 

  242. Fukuda K, Kato S, Mori K et al (1994) cDNA cloning and regional distribution of a novel member of the opioid receptor family. FEBS Lett 343:42–46

    Article  PubMed  CAS  Google Scholar 

  243. Mollereau C, Parmentier M, Mailleux P et al (1994) ORL-1, a novel member of the opioid family: cloning, functional expression and localization. FEBS Lett 341:33–38

    Article  PubMed  CAS  Google Scholar 

  244. Uhl GR, Childers S, Pasternak GW (1994) An opiate-receptor gene family reunion. Trends Neurosci 17:89–93

    Article  PubMed  CAS  Google Scholar 

  245. Wang JB, Johnson PS, Imai Y et al (1994) cDNA cloning of an orphan opiate receptor gene family member and its splice variant. FEBS Lett 348:75–79

    Article  PubMed  CAS  Google Scholar 

  246. Wick MJ, Minnerath SR, Lin X et al (1994) Isolation of a novel cDNA encoding a putative membrane receptor with high homology to the cloned μ, δ, and kappa opioid receptors. Mol Brain Res 27:37–44

    Article  PubMed  CAS  Google Scholar 

  247. Pan Y-X, Cheng J, Xu J et al (1995) Cloning and functional characterization through antisense mapping of a kapp a3-related opioid receptor. Mol Pharmacol 47:1180–1188

    PubMed  CAS  Google Scholar 

  248. Reinscheid RK, Nothacker HP, Bourson A et al (1995) Orphanin FQ: a neuropeptide that activates an opioidlike G protein-coupled receptor. Science 270:792–794

    Article  PubMed  CAS  Google Scholar 

  249. Meunier JC, Mollereau C, Toll L et al (1995) Isolation and structure of the endogenous agonist of the opioid receptor like ORL1 receptor. Nature 377:532–535

    Article  PubMed  CAS  Google Scholar 

  250. Zagon IS, Goodman SR, McLaughlin PJ (1989) Characterization of zeta (zeta): a new opioid receptor involved in growth. Brain Res 482:297–305

    Article  PubMed  CAS  Google Scholar 

  251. Zagon IS, Gibo D, McLaughlin PJ (1990) Expression of zeta (zeta), a growth-related opioid receptor, in metastatic adenocarcinoma of the human cerebellum. J Natl Cancer Inst 82:325–327

    Article  PubMed  CAS  Google Scholar 

  252. Zagon IS, Gibo DM, McLaughlin PJ (1992) Ontogeny of zeta (zeta), the opioid growth factor receptor, in the rat brain. Brain Res 596:149–156

    Article  CAS  PubMed  Google Scholar 

  253. Zagon IS, Sassani JW, Allison G et al (1995) Conserved expression of the opioid growth factor, [Met5]enkephalin, and the zeta opioid receptor in vertebrate cornea. Brain Res 671:105–111

    Article  PubMed  CAS  Google Scholar 

  254. Zagon IS, Wu Y, McLaughlin PJ (1996) The opioid growth factor, [Met5]-enkephalin, and the zeta (Zeta) opioid receptor are present in human and mouse skin and tonically act to inhibit DNA synthesis in the epidermis. J Investig Dermatol 106:490–497

    Article  CAS  PubMed  Google Scholar 

  255. Zagon IS, Hytrek SD, McLaughlin PJ (1996) Opioid growth factor tonically inhibits human colon cancer cell proliferation in tissue culture. Am J Physiol Regul Integr Comp Physiol 271:R511–R518

    CAS  Google Scholar 

  256. Zagon IS, Hytrek SD, Smith JP et al (1997) Opioid growth factor (OGF) inhibits human pancreatic cancer transplanted into nude mice. Cancer Lett 112:167–175

    Article  PubMed  CAS  Google Scholar 

  257. Zagon IS, Sassani JW, McLaughlin PJ (1998) Re-epithelialization of the rabbit cornea is regulated by opioid growth factor. Brain Res 803:61–68

    Article  PubMed  CAS  Google Scholar 

  258. Bisignani GJ, McLaughlin PJ, Ordille SD et al (1999) Human renal cell cancer proliferation in tissue culture is tonically inhibited by opioid growth factor. J Urol 162:2186–2191

    Article  PubMed  CAS  Google Scholar 

  259. Blebea J, Mazo JE, Kihara TK et al (2000) Opioid growth factor modulates angiogenesis. J Vasc Surg 32:364–373

    Article  PubMed  CAS  Google Scholar 

  260. Zagon IS, Verderame MF, McLaughlin PJ (2002) The biology of the opioid growth factor receptor (OGFr). Brain Res Brain Res Rev 38:351–376

    Article  PubMed  CAS  Google Scholar 

  261. Breit A, Gagnidze K, Devi LA et al (2006) Simultaneous activation of the delta opioid receptor (deltaOR)/sensory neuron-specific receptor-4 (SNSR-4) hetero-oligomer by the mixed bivalent agonist bovine adrenal medulla peptide 22 activates SNSR-4 but inhibits deltaOR signaling. Mol Pharmacol 70:686–696

    Article  PubMed  CAS  Google Scholar 

  262. Chen H, Ikeda SR (2004) Modulation of ion channels and synaptic transmission by a human sensory neuron-specific G-protein-coupled receptor, SNSR4/mrgX1, heterologously expressed in cultured rat neurons. J Neurosci 24:5044–5053

    Article  PubMed  CAS  Google Scholar 

  263. Chen T, Cai Q, Hong Y (2006) Intrathecal sensory neuron-specific receptor agonists bovine adrenal medulla 8-22 and (Tyr6)-gamma2-MSH-6-12 inhibit formalin-evoked nociception and neuronal Fos-like immunoreactivity in the spinal cord of the rat. Neuroscience 141:965–975

    Article  PubMed  CAS  Google Scholar 

  264. Pan Y-X, Bolan E, Pasternak GW (2002) Dimerization of morphine and orphanin FQ/­nociceptin receptors: generation of a novel opioid receptor subtype. Biochem Biophys Res Commun 297:659–663

    Article  PubMed  CAS  Google Scholar 

  265. Snyder SH (1975) Opiate receptor in normal and drug altered brain function. Nature 257:185–189

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gavril W. Pasternak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Pasternak, G.W. (2011). Opioid Receptors: The Early Years. In: Pasternak, G. (eds) The Opiate Receptors. The Receptors. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-993-2_4

Download citation

Publish with us

Policies and ethics