Skip to main content

Delta Opioid Receptor Function

  • Chapter
  • First Online:
The Opiate Receptors

Part of the book series: The Receptors ((REC))

Abstract

Delta (δ) opioid receptors (DORs) are part of circuits involved in many physiological functions including the modulation of pain. Activation of DORs appears to mediate antinociception and antihyperalgesia in many conditions including stress, chronic pain, opioid-induced hyperalgesia (OIH), and opiate tolerance. δ Opioid signaling also extensively interacts with the mu (μ) opioid system, resulting in modulation of pain transmission. Multiple mechanisms may underlie DOR modulation of pain including the synergistic interaction between μ and δ opioid receptors and between spinal and supraspinal sites of action, enhanced endogenous enkephalinergic tone, potential μ-δ oligomers and modulation of plasma membrane receptor trafficking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Evans CJ, Keith DE Jr, Morrison H, Magendzo K, Edwards RH (1992) Cloning of a delta opioid receptor by functional expression. Science 258(5090):1952–1955

    PubMed  CAS  Google Scholar 

  2. Kieffer BL, Befort K, Gaveriaux-Ruff C, Hirth CG (1992) The delta-opioid receptor: isolation of a cDNA by expression cloning and pharmacological characterization. Proc Natl Acad Sci USA 89(24):12048–12052

    PubMed  CAS  Google Scholar 

  3. Kieffer BL, Befort K, Gaveriaux-Ruff C, Hirth CG (1994) The delta-opioid receptor: isolation of a cDNA by expression cloning and pharmacological characterization. Proc Natl Acad Sci USA 91(3):1193

    PubMed  CAS  Google Scholar 

  4. Knapp RJ, Malatynska E, Fang L et al (1994) Identification of a human delta opioid receptor: cloning and expression. Life Sci 54(25):PL463–PL469

    PubMed  CAS  Google Scholar 

  5. Quirion R, Zajac JM, Morgat JL, Roques BP (1983) Autoradiographic distribution of mu and delta opiate receptors in rat brain using highly selective ligands. Life Sci 33(suppl 1):227–230

    PubMed  CAS  Google Scholar 

  6. Mansour A, Khachaturian H, Lewis ME, Akil H, Watson SJ (1987) Autoradiographic differentiation of mu, delta, and kappa opioid receptors in the rat forebrain and midbrain. J Neurosci 7(8):2445–2464

    PubMed  CAS  Google Scholar 

  7. Mansour A, Thompson RC, Akil H, Watson SJ (1993) Delta opioid receptor mRNA distribution in the brain: comparison to delta receptor binding and proenkephalin mRNA. J Chem Neuroanat 6(6):351–362

    PubMed  CAS  Google Scholar 

  8. Mansour A, Fox CA, Burke S et al (1994) Mu, delta, and kappa opioid receptor mRNA expression in the rat CNS: an in situ hybridization study. J Comp Neurol 350(3):412–438

    PubMed  CAS  Google Scholar 

  9. Arvidsson U, Dado RJ, Riedl M et al (1995) delta-Opioid receptor immunoreactivity: distribution in brainstem and spinal cord, and relationship to biogenic amines and enkephalin. J Neurosci 15(2):1215–1235

    PubMed  CAS  Google Scholar 

  10. Besse D, Lombard MC, Besson JM (1991) Autoradiographic distribution of mu, delta and kappa opioid binding sites in the superficial dorsal horn, over the rostrocaudal axis of the rat spinal cord. Brain Res 548(1–2):287–291

    PubMed  CAS  Google Scholar 

  11. Besse D, Lombard MC, Zajac JM, Roques BP, Besson JM (1990) Pre- and postsynaptic distribution of mu, delta and kappa opioid receptors in the superficial layers of the cervical dorsal horn of the rat spinal cord. Brain Res 521(1–2):15–22

    PubMed  CAS  Google Scholar 

  12. Lai J, Riedl M, Stone LS et al (1996) Immunofluorescence analysis of antisense oligodeoxynucleotide-mediated “knock-down” of the mouse delta opioid receptor in vitro and in vivo. Neurosci Lett 213(3):205–208

    PubMed  CAS  Google Scholar 

  13. Mansour A, Fox CA, Akil H, Watson SJ (1995) Opioid-receptor mRNA expression in the rat CNS: anatomical and functional implications. Trends Neurosci 18(1):22–29

    PubMed  CAS  Google Scholar 

  14. Dado RJ, Law PY, Loh HH, Elde R (1993) Immunofluorescent identification of a delta (delta)-opioid receptor on primary afferent nerve terminals. Neuroreport 5(3):341–344

    PubMed  CAS  Google Scholar 

  15. Ji RR, Zhang Q, Law PY, Low HH, Elde R, Hokfelt T (1995) Expression of mu-, delta-, and kappa-opioid receptor-like immunoreactivities in rat dorsal root ganglia after carrageenan-induced inflammation. J Neurosci 15(12):8156–8166

    PubMed  CAS  Google Scholar 

  16. Belanger S, Ma W, Chabot JG, Quirion R (2002) Expression of calcitonin gene-related peptide, substance P and protein kinase C in cultured dorsal root ganglion neurons following chronic exposure to mu, delta and kappa opiates. Neuroscience 115(2):441–453

    PubMed  CAS  Google Scholar 

  17. Riedl MS, Schnell SA, Overland AC et al (2009) Coexpression of alpha 2A-adrenergic and delta-opioid receptors in substance P-containing terminals in rat dorsal horn. J Comp Neurol 513(4):385–398

    PubMed  CAS  Google Scholar 

  18. Heyman JS, Mulvaney SA, Mosberg HI, Porreca F (1987) Opioid delta-receptor involvement in supraspinal and spinal antinociception in mice. Brain Res 420(1):100–108

    PubMed  CAS  Google Scholar 

  19. Scherrer G, Tryoen-Toth P, Filliol D et al (2006) Knockin mice expressing fluorescent delta-opioid receptors uncover G protein-coupled receptor dynamics in vivo. Proc Natl Acad Sci USA 103(25):9691–9696

    PubMed  CAS  Google Scholar 

  20. Scherrer G, Imamachi N, Cao YQ et al (2009) Dissociation of the opioid receptor mechanisms that control mechanical and heat pain. Cell 137(6):1148–1159

    PubMed  CAS  Google Scholar 

  21. Townsend Dt, Brown DR (2003) Characterization of specific delta-opioid binding sites in the distal small intestine of swine. Eur J Pharmacol 482(1–3):111–116

    PubMed  CAS  Google Scholar 

  22. Gaveriaux C, Peluso J, Simonin F, Laforet J, Kieffer B (1995) Identification of kappa- and delta-opioid receptor transcripts in immune cells. FEBS Lett 369(2–3):272–276

    PubMed  CAS  Google Scholar 

  23. Wittert G, Hope P, Pyle D (1996) Tissue distribution of opioid receptor gene expression in the rat. Biochem Biophys Res Commun 218(3):877–881

    PubMed  CAS  Google Scholar 

  24. Macdonald RL, Nelson PG (1978) Specific-opiate-induced depression of transmitter release from dorsal root ganglion cells in culture. Science 199(4336):1449–1451

    PubMed  CAS  Google Scholar 

  25. Sanchez-Blazquez P, Juarros JL, Martinez-Pena Y, Castro MA, Garzon J (1993) Gx/z and Gi2 transducer proteins on mu/delta opioid-mediated supraspinal antinociception. Life Sci 53(23):PL381–PL386

    PubMed  CAS  Google Scholar 

  26. Sanchez-Blazquez P, Garzon J (1993) Delta-opioid supraspinal antinociception in mice is mediated by Gi3 transducer proteins. Life Sci 53(7):PL129–PL134

    PubMed  CAS  Google Scholar 

  27. Garzon J, Garcia-Espana A, Sanchez-Blazquez P (1997) Opioids binding mu and delta receptors exhibit diverse efficacy in the activation of Gi2 and G(x/z) transducer proteins in mouse periaqueductal gray matter. J Pharmacol Exp Ther 281(1):549–557

    PubMed  CAS  Google Scholar 

  28. Sanchez-Blazquez P, Garcia-Espana A, Garzon J (1995) In vivo injection of antisense oligodeoxynucleotides to G alpha subunits and supraspinal analgesia evoked by mu and delta opioid agonists. J Pharmacol Exp Ther 275(3):1590–1596

    PubMed  CAS  Google Scholar 

  29. Standifer KM, Rossi GC, Pasternak GW (1996) Differential blockade of opioid analgesia by antisense oligodeoxynucleotides directed against various G protein alpha subunits. Mol Pharmacol 50(2):293–298

    PubMed  CAS  Google Scholar 

  30. Kieffer BL (1995) Recent advances in molecular recognition and signal transduction of active peptides: receptors for opioid peptides. Cell Mol Neurobiol 15(6):615–635

    PubMed  CAS  Google Scholar 

  31. Izenwasser S, Buzas B, Cox BM (1993) Differential regulation of adenylyl cyclase activity by mu and delta opioids in rat caudate putamen and nucleus accumbens. J Pharmacol Exp Ther 267(1):145–152

    PubMed  CAS  Google Scholar 

  32. Costa T, Wuster M, Gramsch C, Herz A (1985) Multiple states of opioid receptors may modulate adenylate cyclase in intact neuroblastoma X glioma hybrid cells. Mol Pharmacol 28(2):146–154

    PubMed  CAS  Google Scholar 

  33. Malatynska E, Wang Y, Knapp RJ et al (1995) Human delta opioid receptor: a stable cell line for functional studies of opioids. Neuroreport 6(4):613–616

    PubMed  CAS  Google Scholar 

  34. Lou LG, Pei G (1997) Modulation of protein kinase C and cAMP-dependent protein kinase by delta-opioid. Biochem Biophys Res Commun 236(3):626–629

    PubMed  CAS  Google Scholar 

  35. Burt AR, Carr IC, Mullaney I, Anderson NG, Milligan G (1996) Agonist activation of p42 and p44 mitogen-activated protein kinases following expression of the mouse delta opioid receptor in Rat-1 fibroblasts: effects of receptor expression levels and comparisons with G-protein activation. Biochem J 320(pt 1):227–235

    PubMed  CAS  Google Scholar 

  36. Piros ET, Prather PL, Law PY, Evans CJ, Hales TG (1996) Voltage-dependent inhibition of Ca2+ channels in GH3 cells by cloned mu- and delta-opioid receptors. Mol Pharmacol 50(4):947–956

    PubMed  CAS  Google Scholar 

  37. Allouche S, Polastron J, Jauzac P (1996) The delta-opioid receptor regulates activity of ryanodine receptors in the human neuroblastoma cell line SK-N-BE. J Neurochem 67(6):2461–2470

    PubMed  CAS  Google Scholar 

  38. Tang T, Kiang JG, Cote T, Cox BM (1995) Opioid-induced increase in [Ca2+]i in ND8-47 neuroblastoma x dorsal root ganglion hybrid cells is mediated through G protein-coupled delta-opioid receptors and desensitized by chronic exposure to opioid. J Neurochem 65(4):1612–1621

    PubMed  CAS  Google Scholar 

  39. Borgland SL (2001) Acute opioid receptor desensitization and tolerance: is there a link? Clin Exp Pharmacol Physiol 28(3):147–154

    PubMed  CAS  Google Scholar 

  40. von Zastrow M (2004) A cell biologist’s perspective on physiological adaptation to opiate drugs. Neuropharmacology 47(suppl 1):286–292

    Google Scholar 

  41. von Zastrow M (2004) Opioid receptor regulation. Neuromolecular Med 5(1):51–58

    Google Scholar 

  42. von Zastrow M, Svingos A, Haberstock-Debic H, Evans C (2003) Regulated endocytosis of opioid receptors: cellular mechanisms and proposed roles in physiological adaptation to opiate drugs. Curr Opin Neurobiol 13(3):348–353

    Google Scholar 

  43. Varga EV, Yamamura HI, Rubenzik MK, Stropova D, Navratilova E, Roeske WR (2003) Molecular mechanisms of excitatory signaling upon chronic opioid agonist treatment. Life Sci 74(2–3):299–311

    PubMed  CAS  Google Scholar 

  44. Yue X, Varga EV, Stropova D, Vanderah TW, Yamamura HI, Roeske WR (2006) Chronic morphine-mediated adenylyl cyclase superactivation is attenuated by the Raf-1 inhibitor, GW5074. Eur J Pharmacol 540(1–3):57–59

    PubMed  CAS  Google Scholar 

  45. Rubenzik M, Varga E, Stropova D, Roeske WR, Yamamura HI (2001) Expression of alpha-transducin in Chinese hamster ovary cells stably transfected with the human delta-opioid receptor attenuates chronic opioid agonist-induced adenylyl cyclase superactivation. Mol Pharmacol 60(5):1076–1082

    PubMed  CAS  Google Scholar 

  46. Stewart PE, Hammond DL (1993) Evidence for delta opioid receptor subtypes in rat spinal cord: studies with intrathecal naltriben, cyclic[d-Pen2, d-Pen5] enkephalin and [d-Ala2, Glu4]deltorphin. J Pharmacol Exp Ther 266(2):820–828

    PubMed  CAS  Google Scholar 

  47. Yaksh TL, Huang SP, Rudy TA (1977) The direct and specific opiate-like effect of met5-enkephalin and analogues on the spinal cord. Neuroscience 2(4):593–596

    PubMed  CAS  Google Scholar 

  48. Khan GM, Li DP, Chen SR, Pan HL (2002) Role of spinal nitric oxide in the inhibitory effect of [d-Pen2,d-Pen5]-enkephalin on ascending dorsal horn neurons in normal and diabetic rats. J Pharmacol Exp Ther 303(3):1021–1028

    PubMed  CAS  Google Scholar 

  49. Bilsky EJ, Wang T, Lai J, Porreca F (1996) Selective blockade of peripheral delta opioid agonist induced antinociception by intrathecal administration of delta receptor antisense oligodeoxynucleotide. Neurosci Lett 220(3):155–158

    PubMed  CAS  Google Scholar 

  50. Kovelowski CJ, Bian D, Hruby VJ, Lai J, Ossipov MH, Porreca F (1999) Selective opioid delta agonists elicit antinociceptive supraspinal/spinal synergy in the rat. Brain Res 843(1–2):12–17

    PubMed  CAS  Google Scholar 

  51. Harasawa I, Fields HL, Meng ID (2000) Delta opioid receptor mediated actions in the rostral ventromedial medulla on tail flick latency and nociceptive modulatory neurons. Pain 85(1–2):255–262

    PubMed  CAS  Google Scholar 

  52. Ossipov MH, Kovelowski CJ, Nichols ML, Hruby VJ, Porreca F (1995) Characterization of supraspinal antinociceptive actions of opioid delta agonists in the rat. Pain 62(3):287–293

    PubMed  CAS  Google Scholar 

  53. Fields HL, Heinricher MM, Mason P (1991) Neurotransmitters in nociceptive modulatory circuits. Annu Rev Neurosci 14:219–245

    PubMed  CAS  Google Scholar 

  54. Piccini P, Weeks RA, Brooks DJ (1997) Alterations in opioid receptor binding in Parkinson’s disease patients with levodopa-induced dyskinesias. Ann Neurol 42(5):720–726

    PubMed  CAS  Google Scholar 

  55. Fernandez A, de Ceballos ML, Jenner P, Marsden CD (1994) Neurotensin, substance P, delta and mu opioid receptors are decreased in basal ganglia of Parkinson’s disease patients. Neuroscience 61(1):73–79

    PubMed  CAS  Google Scholar 

  56. Samadi P, Bedard PJ, Rouillard C (2006) Opioids and motor complications in Parkinson’s disease. Trends Pharmacol Sci 27(10):512–517

    PubMed  CAS  Google Scholar 

  57. Hille CJ, Fox SH, Maneuf YP, Crossman AR, Brotchie JM (2001) Antiparkinsonian action of a delta opioid agonist in rodent and primate models of Parkinson’s disease. Exp Neurol 172(1):189–198

    PubMed  CAS  Google Scholar 

  58. Hudzik TJ, Howell A, Payza K, Cross AJ (2000) Antiparkinson potential of delta-opioid receptor agonists. Eur J Pharmacol 396(2–3):101–107

    PubMed  CAS  Google Scholar 

  59. Gaveriaux-Ruff C, Kieffer BL (2002) Opioid receptor genes inactivated in mice: the highlights. Neuropeptides 36(2–3):62–71

    PubMed  CAS  Google Scholar 

  60. Caballero-Hernandez D, Weber RJ, Hicks ME et al (2005) Potentiation of rat lymphocyte proliferation by novel non-peptidic synthetic opioids. Int Immunopharmacol 5(7–8):1271–1278

    PubMed  CAS  Google Scholar 

  61. Bell SP, Sack MN, Patel A, Opie LH, Yellon DM (2000) Delta opioid receptor stimulation mimics ischemic preconditioning in human heart muscle. J Am Coll Cardiol 36(7):2296–2302

    PubMed  CAS  Google Scholar 

  62. Patel HH, Head BP, Petersen HN et al (2006) Protection of adult rat cardiac myocytes from ischemic cell death: role of caveolar microdomains and delta-opioid receptors. Am J Physiol Heart Circ Physiol 291(1):H344–H350

    PubMed  CAS  Google Scholar 

  63. Fallon JH, Leslie FM (1986) Distribution of dynorphin and enkephalin peptides in the rat brain. J Comp Neurol 249(3):293–336

    PubMed  CAS  Google Scholar 

  64. Hurd YL (1996) Differential messenger RNA expression of prodynorphin and proenkephalin in the human brain. Neuroscience 72(3):767–783

    PubMed  CAS  Google Scholar 

  65. Pitcher GM, Yashpal K, Coderre TJ, Henry JL (1995) mu-, delta- and kappa-Opiate receptors mediate antinociception in the rat tail flick test following noxious thermal stimulation of one hindpaw. J Pharmacol Exp Ther 273(3):1428–1433

    PubMed  CAS  Google Scholar 

  66. Ossipov MH, Kovelowski CJ, Wheeler-Aceto H et al (1996) Opioid antagonists and antisera to endogenous opioids increase the nociceptive response to formalin: demonstration of an opioid kappa and delta inhibitory tone. J Pharmacol Exp Ther 277(2):784–788

    PubMed  CAS  Google Scholar 

  67. Ossipov MH, Kovelowski CJ, Porreca F (1995) The increase in morphine antinociceptive potency produced by carrageenan-induced hindpaw inflammation is blocked by naltrindole, a selective delta-opioid antagonist. Neurosci Lett 184(3):173–176

    PubMed  CAS  Google Scholar 

  68. Hurley RW, Hammond DL (2001) Contribution of endogenous enkephalins to the enhanced analgesic effects of supraspinal mu opioid receptor agonists after inflammatory injury. J Neurosci 21(7):2536–2545

    PubMed  CAS  Google Scholar 

  69. Dumont EC, Kinkead R, Trottier JF, Gosselin I, Drolet G (2000) Effect of chronic psychogenic stress exposure on enkephalin neuronal activity and expression in the rat hypothalamic paraventricular nucleus. J Neurochem 75(5):2200–2211

    PubMed  CAS  Google Scholar 

  70. Collin E, Mauborgne A, Bourgoin S, Chantrel D, Hamon M, Cesselin F (1991) In vivo tonic inhibition of spinal substance P (-like material) release by endogenous opioid(s) acting at delta receptors. Neuroscience 44(3):725–731

    PubMed  CAS  Google Scholar 

  71. Zachariou V, Goldstein BD (1996) delta-Opioid receptor modulation of the release of substance P-like immunoreactivity in the dorsal horn of the rat following mechanical or thermal noxious stimulation. Brain Res 736(1–2):305–314

    PubMed  CAS  Google Scholar 

  72. Mosberg HI, Hurst R, Hruby VJ et al (1983) Bis-penicillamine enkephalins possess highly improved specificity toward delta opioid receptors. Proc Natl Acad Sci USA 80(19):5871–5874

    PubMed  CAS  Google Scholar 

  73. Mosberg HI, Hurst R, Hruby VJ et al (1982) [d-Pen2,l-Cys5]enkephalinamide and [d-Pen2,d-Cys5] enkephalinamide, conformationally constrained cyclic enkephalinamide analogs with delta receptor specificity. Biochem Biophys Res Commun 106(2):506–512

    PubMed  CAS  Google Scholar 

  74. Porreca F, Mosberg HI, Hurst R, Hruby VJ, Burks TF (1984) Roles of mu, delta and kappa opioid receptors in spinal and supraspinal mediation of gastrointestinal transit effects and hot-plate analgesia in the mouse. J Pharmacol Exp Ther 230(2):341–348

    PubMed  CAS  Google Scholar 

  75. Porreca F, Mosberg HI, Hurst R, Hruby VJ, Burks TF (1983) A comparison of the analgesic and gastrointestinal transit effects of [d-Pen2,l-Cys5]enkephalin after intracerebroventricular and intrathecal administration to mice. Life Sci 33(suppl 1):457–460

    PubMed  CAS  Google Scholar 

  76. Jiang Q, Takemori AE, Sultana M et al (1991) Differential antagonism of opioid delta antinociception by [d-Ala2,Leu5,Cys6]enkephalin and naltrindole 5′-isothiocyanate: evidence for delta receptor subtypes. J Pharmacol Exp Ther 257(3):1069–1075

    PubMed  CAS  Google Scholar 

  77. Zhu Y, King MA, Schuller AG et al (1999) Retention of supraspinal delta-like analgesia and loss of morphine tolerance in delta opioid receptor knockout mice. Neuron 24(1):243–252

    PubMed  CAS  Google Scholar 

  78. Dickenson AH, Sullivan AF, Knox R, Zajac JM, Roques BP (1987) Opioid receptor subtypes in the rat spinal cord: electrophysiological studies with mu- and delta-opioid receptor agonists in the control of nociception. Brain Res 413(1):36–44

    PubMed  CAS  Google Scholar 

  79. Hassan AH, Ableitner A, Stein C, Herz A (1993) Inflammation of the rat paw enhances axonal transport of opioid receptors in the sciatic nerve and increases their density in the inflamed tissue. Neuroscience 55(1):185–195

    PubMed  CAS  Google Scholar 

  80. Hunt SP, Mantyh PW (2001) The molecular dynamics of pain control. Nat Rev Neurosci 2(2):83–91

    PubMed  CAS  Google Scholar 

  81. Furst S (1999) Transmitters involved in antinociception in the spinal cord. Brain Res Bull 48(2):129–141

    PubMed  CAS  Google Scholar 

  82. Ueda M, Sugimoto K, Oyama T, Kuraishi Y, Satoh M (1995) Opioidergic inhibition of capsaicin-evoked release of glutamate from rat spinal dorsal horn slices. Neuropharmacology 34(3):303–308

    PubMed  CAS  Google Scholar 

  83. Pohl M, Mauborgne A, Bourgoin S, Benoliel JJ, Hamon M, Cesselin F (1989) Neonatal capsaicin treatment abolishes the modulations by opioids of substance P release from rat spinal cord slices. Neurosci Lett 96(1):102–107

    PubMed  CAS  Google Scholar 

  84. Pohl M, Lombard MC, Bourgoin S et al (1989) Opioid control of the in vitro release of calcitonin gene-related peptide from primary afferent fibres projecting in the rat cervical cord. Neuropeptides 14(3):151–159

    PubMed  CAS  Google Scholar 

  85. Liu H, Mantyh PW, Basbaum AI (1997) NMDA-receptor regulation of substance P release from primary afferent nociceptors. Nature 386(6626):721–724

    PubMed  CAS  Google Scholar 

  86. Kanjhan R (1995) Opioids and pain. Clin Exp Pharmacol Physiol 22(6–7):397–403

    PubMed  CAS  Google Scholar 

  87. Stamford JA (1995) Descending control of pain. Br J Anaesth 75(2):217–227

    PubMed  CAS  Google Scholar 

  88. Pertovaara A, Wei H, Hamalainen MM (1996) Lidocaine in the rostroventromedial medulla and the periaqueductal gray attenuates allodynia in neuropathic rats. Neurosci Lett 218(2):127–130

    PubMed  CAS  Google Scholar 

  89. Urban MO, Gebhart GF (1999) Central mechanisms in pain. Med Clin North Am 83(3):585–596

    PubMed  CAS  Google Scholar 

  90. Porreca F, Ossipov MH, Gebhart GF (2002) Chronic pain and medullary descending facilitation. Trends Neurosci 25(6):319–325

    PubMed  CAS  Google Scholar 

  91. Llewelyn MB, Azami J, Roberts MH (1986) Brainstem mechanisms of antinociception. Effects of electrical stimulation and injection of morphine into the nucleus raphe magnus. Neuropharmacology 25(7):727–735

    PubMed  CAS  Google Scholar 

  92. Hack SP, Bagley EE, Chieng BC, Christie MJ (2005) Induction of delta-opioid receptor function in the midbrain after chronic morphine treatment. J Neurosci 25(12):3192–3198

    PubMed  CAS  Google Scholar 

  93. Kiefel JM, Rossi GC, Bodnar RJ (1993) Medullary mu and delta opioid receptors modulate mesencephalic morphine analgesia in rats. Brain Res 624(1–2):151–161

    PubMed  CAS  Google Scholar 

  94. Hirakawa N, Tershner SA, Fields HL (1999) Highly delta selective antagonists in the RVM attenuate the antinociceptive effect of PAG DAMGO. Neuroreport 10(15):3125–3129

    PubMed  CAS  Google Scholar 

  95. Hammond DL, Stewart PE, Littell L (1995) Antinociception and delta-1 opioid receptors in the rat spinal cord: studies with intrathecal 7-benzylidenenaltrexone. J Pharmacol Exp Ther 274(3):1317–1324

    PubMed  CAS  Google Scholar 

  96. Hammond DL, Wang H, Nakashima N, Basbaum AI (1998) Differential effects of intrathecally administered delta and mu opioid receptor agonists on formalin-evoked nociception and on the expression of Fos-like immunoreactivity in the spinal cord of the rat. J Pharmacol Exp Ther 284(1):378–387

    PubMed  CAS  Google Scholar 

  97. Gendron L, Esdaile MJ, Mennicken F et al (2007) Morphine priming in rats with chronic inflammation reveals a dichotomy between antihyperalgesic and antinociceptive properties of deltorphin. Neuroscience 144(1):263–274

    PubMed  CAS  Google Scholar 

  98. Kabli N, Cahill CM (2007) Anti-allodynic effects of peripheral delta opioid receptors in neuropathic pain. Pain 127(1–2):84–93

    PubMed  CAS  Google Scholar 

  99. Cahill CM, Morinville A, Lee MC, Vincent JP, Collier B, Beaudet A (2001) Prolonged morphine treatment targets delta opioid receptors to neuronal plasma membranes and enhances delta-mediated antinociception. J Neurosci 21(19):7598–7607

    PubMed  CAS  Google Scholar 

  100. Hope PJ, Fleetwood-Walker SM, Mitchell R (1990) Distinct antinociceptive actions mediated by different opioid receptors in the region of lamina I and laminae III–V of the dorsal horn of the rat. Br J Pharmacol 101(2):477–483

    PubMed  CAS  Google Scholar 

  101. Go VL, Yaksh TL (1987) Release of substance P from the cat spinal cord. J Physiol 391:141–167

    PubMed  CAS  Google Scholar 

  102. Overland AC, Kitto KF, Chabot-Dore AJ et al (2009) Protein kinase C mediates the synergistic interaction between agonists acting at alpha2-adrenergic and delta-opioid receptors in spinal cord. J Neurosci 29(42):13264–13273

    PubMed  CAS  Google Scholar 

  103. Miaskowski C, Taiwo YO, Levine JD (1993) Antinociception produced by receptor selective opioids. Modulation of supraspinal antinociceptive effects by spinal opioids. Brain Res 608(1):87–94

    PubMed  CAS  Google Scholar 

  104. Miaskowski C, Levine JD (1992) Inhibition of spinal opioid analgesia by supraspinal administration of selective opioid antagonists. Brain Res 596(1–2):41–45

    PubMed  CAS  Google Scholar 

  105. Grabow TS, Hurley RW, Banfor PN, Hammond DL (1999) Supraspinal and spinal delta(2) opioid receptor-mediated antinociceptive synergy is mediated by spinal alpha(2) adrenoceptors. Pain 83(1):47–55

    PubMed  CAS  Google Scholar 

  106. Jensen TS, Yaksh TL (1986) Comparison of the antinociceptive action of mu and delta opioid receptor ligands in the periaqueductal gray matter, medial and paramedial ventral medulla in the rat as studied by the microinjection technique. Brain Res 372(2):301–312

    PubMed  CAS  Google Scholar 

  107. Hurley RW, Grabow TS, Tallarida RJ, Hammond DL (1999) Interaction between medullary and spinal delta1 and delta2 opioid receptors in the production of antinociception in the rat. J Pharmacol Exp Ther 289(2):993–999

    PubMed  CAS  Google Scholar 

  108. Hurley RW, Banfor P, Hammond DL (2003) Spinal pharmacology of antinociception produced by microinjection of mu or delta opioid receptor agonists in the ventromedial medulla of the rat. Neuroscience 118(3):789–796

    PubMed  CAS  Google Scholar 

  109. Roerig SC, Fujimoto JM (1989) Multiplicative interaction between intrathecally and intracerebroventricularly administered mu opioid agonists but limited interactions between delta and kappa agonists for antinociception in mice. J Pharmacol Exp Ther 249(3):762–768

    PubMed  CAS  Google Scholar 

  110. Roerig SC, Hoffman RG, Takemori AE, Wilcox GL, Fujimoto JM (1991) Isobolographic analysis of analgesic interactions between intrathecally and intracerebroventricularly administered fentanyl, morphine and d-Ala2-d-Leu5-enkephalin in morphine-tolerant and nontolerant mice. J Pharmacol Exp Ther 257(3):1091–1099

    PubMed  CAS  Google Scholar 

  111. Heyman JS, Vaught JL, Mosberg HI, Haaseth RC, Porreca F (1989) Modulation of mu-mediated antinociception by delta agonists in the mouse: selective potentiation of morphine and normorphine by [d-Pen2,d-Pen5]enkephalin. Eur J Pharmacol 165(1):1–10

    PubMed  CAS  Google Scholar 

  112. Heyman JS, Jiang Q, Rothman RB, Mosberg HI, Porreca F (1989) Modulation of mu-mediated antinociception by delta agonists: characterization with antagonists. Eur J Pharmacol 169(1):43–52

    PubMed  CAS  Google Scholar 

  113. Qi JN, Mosberg HI, Porreca F (1990) Modulation of the potency and efficacy of mu-mediated antinociception by delta agonists in the mouse. J Pharmacol Exp Ther 254(2):683–689

    PubMed  CAS  Google Scholar 

  114. Porreca F, Takemori AE, Sultana M, Portoghese PS, Bowen WD, Mosberg HI (1992) Modulation of mu-mediated antinociception in the mouse involves opioid delta-2 receptors. J Pharmacol Exp Ther 263(1):147–152

    PubMed  CAS  Google Scholar 

  115. Gomes I, Jordan BA, Gupta A, Trapaidze N, Nagy V, Devi LA (2000) Heterodimerization of mu and delta opioid receptors: a role in opiate synergy. J Neurosci 20(22):RC110

    PubMed  CAS  Google Scholar 

  116. George SR, Fan T, Xie Z et al (2000) Oligomerization of mu- and delta-opioid receptors. Generation of novel functional properties. J Biol Chem 275(34):26128–26135

    PubMed  CAS  Google Scholar 

  117. Gomes I, Gupta A, Filipovska J, Szeto HH, Pintar JE, Devi LA (2004) A role for heterodimerization of mu and delta opiate receptors in enhancing morphine analgesia. Proc Natl Acad Sci USA 101(14):5135–5139

    PubMed  CAS  Google Scholar 

  118. Miller DB, O’Callaghan JP (2002) Neuroendocrine aspects of the response to stress. Metabolism 51(6 suppl 1):5–10

    PubMed  CAS  Google Scholar 

  119. Drolet G, Dumont EC, Gosselin I, Kinkead R, Laforest S, Trottier JF (2001) Role of endogenous opioid system in the regulation of the stress response. Prog Neuropsychopharmacol Biol Psychiatry 25(4):729–741

    PubMed  CAS  Google Scholar 

  120. Killian P, Holmes BB, Takemori AE, Portoghese PS, Fujimoto JM (1995) Cold water swim stress- and delta-2 opioid-induced analgesia are modulated by spinal gamma-aminobutyric acidA receptors. J Pharmacol Exp Ther 274(2):730–734

    PubMed  CAS  Google Scholar 

  121. LaBuda CJ, Sora I, Uhl GR, Fuchs PN (2000) Stress-induced analgesia in mu-opioid receptor knockout mice reveals normal function of the delta-opioid receptor system. Brain Res 869(1–2):1–5

    PubMed  CAS  Google Scholar 

  122. Contet C, Gaveriaux-Ruff C, Matifas A, Caradec C, Champy MF, Kieffer BL (2006) Dissociation of analgesic and hormonal responses to forced swim stress using opioid receptor knockout mice. Neuropsychopharmacology 31(8):1733–1744

    PubMed  CAS  Google Scholar 

  123. Vanderah TW, Wild KD, Takemori AE et al (1993) Modulation of morphine antinociception by swim-stress in the mouse: involvement of supraspinal opioid delta-2 receptors. J Pharmacol Exp Ther 267(1):449–455

    PubMed  CAS  Google Scholar 

  124. Kamei J, Iwamoto Y, Hitosugi H, Misawa M, Nagase H, Kasuya Y (1994) Differential mediation of cold water swim stress-induced antinociception by delta-opioid receptor subtypes in diabetic mice. Life Sci 54(23):PL425–PL430

    PubMed  CAS  Google Scholar 

  125. Kamei J, Kawashima N, Ohhashi Y, Kasuya Y (1992) Effects of diabetes on stress-induced analgesia in mice. Brain Res 580(1–2):180–184

    PubMed  CAS  Google Scholar 

  126. Hurley RW, Hammond DL (2000) The analgesic effects of supraspinal mu and delta opioid receptor agonists are potentiated during persistent inflammation. J Neurosci 20(3):1249–1259

    PubMed  CAS  Google Scholar 

  127. Fraser GL, Gaudreau GA, Clarke PB, Menard DP, Perkins MN (2000) Antihyperalgesic effects of delta opioid agonists in a rat model of chronic inflammation. Br J Pharmacol 129(8):1668–1672

    PubMed  CAS  Google Scholar 

  128. Cahill CM, Morinville A, Hoffert C, O’Donnell D, Beaudet A (2003) Up-regulation and trafficking of delta opioid receptor in a model of chronic inflammation: implications for pain control. Pain 101(1–2):199–208

    PubMed  CAS  Google Scholar 

  129. Sykes KT, White SR, Hurley RW, Mizoguchi H, Tseng LF, Hammond DL (2007) Mechanisms responsible for the enhanced antinociceptive effects of micro-opioid receptor agonists in the rostral ventromedial medulla of male rats with persistent inflammatory pain. J Pharmacol Exp Ther 322(2):813–821

    PubMed  CAS  Google Scholar 

  130. Stanfa L, Dickenson A (1995) Spinal opioid systems in inflammation. Inflamm Res 44(6):231–241

    PubMed  CAS  Google Scholar 

  131. Iadarola MJ, Brady LS, Draisci G, Dubner R (1988) Enhancement of dynorphin gene expression in spinal cord following experimental inflammation: stimulus specificity, behavioral parameters and opioid receptor binding. Pain 35(3):313–326

    PubMed  CAS  Google Scholar 

  132. Noguchi K, Dubner R, Ruda MA (1992) Preproenkephalin mRNA in spinal dorsal horn neurons is induced by peripheral inflammation and is co-localized with Fos and Fos-related proteins. Neuroscience 46(3):561–570

    PubMed  CAS  Google Scholar 

  133. Przewlocka B, Lason W, Przewlocki R (1992) Time-dependent changes in the activity of opioid systems in the spinal cord of monoarthritic rats – a release and in situ hybridization study. Neuroscience 46(1):209–216

    PubMed  CAS  Google Scholar 

  134. Williams FG, Mullet MA, Beitz AJ (1995) Basal release of Met-enkephalin and neurotensin in the ventrolateral periaqueductal gray matter of the rat: a microdialysis study of antinociceptive circuits. Brain Res 690(2):207–216

    PubMed  CAS  Google Scholar 

  135. Stein C, Schafer M, Hassan AH (1995) Peripheral opioid receptors. Ann Med 27(2):219–221

    PubMed  CAS  Google Scholar 

  136. Gendron L, Lucido AL, Mennicken F et al (2006) Morphine and pain-related stimuli enhance cell surface availability of somatic delta-opioid receptors in rat dorsal root ganglia. J Neurosci 26(3):953–962

    PubMed  CAS  Google Scholar 

  137. Cahill CM, Holdridge SV, Morinville A (2007) Trafficking of delta-opioid receptors and other G-protein-coupled receptors: implications for pain and analgesia. Trends Pharmacol Sci 28(1):23–31

    PubMed  CAS  Google Scholar 

  138. Patwardhan AM, Berg KA, Akopain AN et al (2005) Bradykinin-induced functional competence and trafficking of the delta-opioid receptor in trigeminal nociceptors. J Neurosci 25(39):8825–8832

    PubMed  CAS  Google Scholar 

  139. Herrero JF, Cervero F (1996) Changes in nociceptive reflex facilitation during carrageenan-induced arthritis. Brain Res 717(1–2):62–68

    PubMed  CAS  Google Scholar 

  140. Wei F, Ren K, Dubner R (1998) Inflammation-induced Fos protein expression in the rat spinal cord is enhanced following dorsolateral or ventrolateral funiculus lesions. Brain Res 782(1–2):136–141

    PubMed  CAS  Google Scholar 

  141. Kovelowski CJ, Ossipov MH, Sun H, Lai J, Malan TP, Porreca F (2000) Supraspinal cholecystokinin may drive tonic descending facilitation mechanisms to maintain neuropathic pain in the rat. Pain 87(3):265–273

    PubMed  CAS  Google Scholar 

  142. Ossipov MH, Porreca F (2005) Challenges in the development of novel treatment strategies for neuropathic pain. NeuroRx 2(4):650–661

    PubMed  Google Scholar 

  143. Rowbotham MC, Twilling L, Davies PS, Reisner L, Taylor K, Mohr D (2003) Oral opioid therapy for chronic peripheral and central neuropathic pain. N Engl J Med 348(13):1223–1232

    PubMed  CAS  Google Scholar 

  144. Mika J, Przewlocki R, Przewlocka B (2001) The role of delta-opioid receptor subtypes in neuropathic pain. Eur J Pharmacol 415(1):31–37

    PubMed  CAS  Google Scholar 

  145. Nichols ML, Bian D, Ossipov MH, Lai J, Porreca F (1995) Regulation of morphine antiallodynic efficacy by cholecystokinin in a model of neuropathic pain in rats. J Pharmacol Exp Ther 275(3):1339–1345

    PubMed  CAS  Google Scholar 

  146. Holdridge SV, Cahill CM (2007) Spinal administration of a delta opioid receptor agonist attenuates hyperalgesia and allodynia in a rat model of neuropathic pain. Eur J Pain 11(6):685–693

    PubMed  CAS  Google Scholar 

  147. Shinoda K, Hruby VJ, Porreca F (2007) Antihyperalgesic effects of loperamide in a model of rat neuropathic pain are mediated by peripheral delta-opioid receptors. Neurosci Lett 411(2):143–146

    PubMed  CAS  Google Scholar 

  148. Lee YW, Chaplan SR, Yaksh TL (1995) Systemic and supraspinal, but not spinal, opiates suppress allodynia in a rat neuropathic pain model. Neurosci Lett 199(2):111–114

    PubMed  CAS  Google Scholar 

  149. Liu CN, Wall PD, Ben-Dor E, Michaelis M, Amir R, Devor M (2000) Tactile allodynia in the absence of C-fiber activation: altered firing properties of DRG neurons following spinal nerve injury. Pain 85(3):503–521

    PubMed  CAS  Google Scholar 

  150. Michaelis M, Liu X, Janig W (2000) Axotomized and intact muscle afferents but no skin afferents develop ongoing discharges of dorsal root ganglion origin after peripheral nerve lesion. J Neurosci 20(7):2742–2748

    PubMed  CAS  Google Scholar 

  151. Liu CN, Raber P, Ziv-Sefer S, Devor M (2001) Hyperexcitability in sensory neurons of rats selected for high versus low neuropathic pain phenotype. Neuroscience 105(1):265–275

    PubMed  CAS  Google Scholar 

  152. Vera-Portocarrero LP, Zhang ET, Ossipov MH et al (2006) Descending facilitation from the rostral ventromedial medulla maintains nerve injury-induced central sensitization. Neuroscience 140(4):1311–1320

    PubMed  CAS  Google Scholar 

  153. Ossipov MH, Hong Sun T, Malan P Jr, Lai J, Porreca F (2000) Mediation of spinal nerve injury induced tactile allodynia by descending facilitatory pathways in the dorsolateral funiculus in rats. Neurosci Lett 290(2):129–132

    PubMed  CAS  Google Scholar 

  154. Porreca F, Burgess SE, Gardell LR et al (2001) Inhibition of neuropathic pain by selective ablation of brainstem medullary cells expressing the mu-opioid receptor. J Neurosci 21(14):5281–5288

    PubMed  CAS  Google Scholar 

  155. Stanfa L, Dickenson A, Xu XJ, Wiesenfeld-Hallin Z (1994) Cholecystokinin and morphine analgesia: variations on a theme. Trends Pharmacol Sci 15(3):65–66

    PubMed  CAS  Google Scholar 

  156. Stanfa LC, Dickenson AH (1993) Cholecystokinin as a factor in the enhanced potency of spinal morphine following carrageenin inflammation. Br J Pharmacol 108(4):967–973

    PubMed  CAS  Google Scholar 

  157. Nichols ML, Bian D, Ossipov MH, Malan TP Jr, Porreca F (1996) Antiallodynic effects of a CCKB antagonist in rats with nerve ligation injury: role of endogenous enkephalins. Neurosci Lett 215(3):161–164

    PubMed  CAS  Google Scholar 

  158. Nadal X, Banos JE, Kieffer BL, Maldonado R (2006) Neuropathic pain is enhanced in delta-opioid receptor knockout mice. Eur J Neurosci 23(3):830–834

    PubMed  Google Scholar 

  159. Hao JX, Yu W, Xu XJ (1998) Evidence that spinal endogenous opioidergic systems control the expression of chronic pain-related behaviors in spinally injured rats. Exp Brain Res 118(2):259–268

    PubMed  CAS  Google Scholar 

  160. Stone LS, Vulchanova L, Riedl MS, Williams FG, Wilcox GL, Elde R (2004) Effects of peripheral nerve injury on delta opioid receptor (DOR) immunoreactivity in the rat spinal cord. Neurosci Lett 361(1–3):208–211

    PubMed  CAS  Google Scholar 

  161. Ossipov MH, Lai J, King T et al (2004) Antinociceptive and nociceptive actions of opioids. J Neurobiol 61(1):126–148

    PubMed  CAS  Google Scholar 

  162. King T, Ossipov MH, Vanderah TW, Porreca F, Lai J (2005) Is paradoxical pain induced by sustained opioid exposure an underlying mechanism of opioid antinociceptive tolerance? Neurosignals 14(4):194–205

    PubMed  CAS  Google Scholar 

  163. Larcher A, Laulin JP, Celerier E, Le Moal M, Simonnet G (1998) Acute tolerance associated with a single opiate administration: involvement of N-methyl-d-aspartate-dependent pain facilitatory systems. Neuroscience 84(2):583–589

    PubMed  CAS  Google Scholar 

  164. Celerier E, Rivat C, Jun Y et al (2000) Long-lasting hyperalgesia induced by fentanyl in rats: preventive effect of ketamine. Anesthesiology 92(2):465–472

    PubMed  CAS  Google Scholar 

  165. Celerier E, Laulin J, Larcher A, Le Moal M, Simonnet G (1999) Evidence for opiate-activated NMDA processes masking opiate analgesia in rats. Brain Res 847(1):18–25

    PubMed  CAS  Google Scholar 

  166. Vanderah TW, Suenaga NM, Ossipov MH, Malan TP Jr, Lai J, Porreca F (2001) Tonic descending facilitation from the rostral ventromedial medulla mediates opioid-induced abnormal pain and antinociceptive tolerance. J Neurosci 21(1):279–286

    PubMed  CAS  Google Scholar 

  167. Vanderah TW, Gardell LR, Burgess SE et al (2000) Dynorphin promotes abnormal pain and spinal opioid antinociceptive tolerance. J Neurosci 20(18):7074–7079

    PubMed  CAS  Google Scholar 

  168. Gardell LR, King T, Ossipov MH et al (2006) Opioid receptor-mediated hyperalgesia and antinociceptive tolerance induced by sustained opiate delivery. Neurosci Lett 396(1):44–49

    PubMed  CAS  Google Scholar 

  169. Waxman AR, Arout C, Caldwell M, Dahan A, Kest B (2009) Acute and chronic fentanyl administration causes hyperalgesia independently of opioid receptor activity in mice. Neurosci Lett 462(1):68–72

    PubMed  CAS  Google Scholar 

  170. Juni A, Klein G, Pintar JE, Kest B (2007) Nociception increases during opioid infusion in opioid receptor triple knock-out mice. Neuroscience 147(2):439–444

    PubMed  CAS  Google Scholar 

  171. Benoliel JJ, Mauborgne A, Bourgoin S, Legrand JC, Hamon M, Cesselin F (1992) Opioid control of the in vitro release of cholecystokinin-like material from the rat substantia nigra. J Neurochem 58(3):916–922

    PubMed  CAS  Google Scholar 

  172. Benoliel JJ, Collin E, Mauborgne A et al (1994) Mu and delta opioid receptors mediate opposite modulations by morphine of the spinal release of cholecystokinin-like material. Brain Res 653(1–2):81–91

    PubMed  CAS  Google Scholar 

  173. Xie Y, Vanderah TW, Ossipov MH, Lai J, Porreca F (2002) In: 10th World Congress on Pain, 2002. IASP, San Diego, CA, p 452

    Google Scholar 

  174. Becker C, Hamon M, Cesselin F, Benoliel JJ (1999) Delta(2)-opioid receptor mediation of morphine-induced CCK release in the frontal cortex of the freely moving rat. Synapse 34(1):47–54

    PubMed  CAS  Google Scholar 

  175. Morinville A, Cahill CM, Aibak H et al (2004) Morphine-induced changes in delta opioid receptor trafficking are linked to somatosensory processing in the rat spinal cord. J Neurosci 24(24):5549–5559

    PubMed  CAS  Google Scholar 

  176. Lucido AL, Morinville A, Gendron L, Stroh T, Beaudet A (2005) Prolonged morphine treatment selectively increases membrane recruitment of delta-opioid receptors in mouse basal ganglia. J Mol Neurosci 25(3):207–214

    PubMed  CAS  Google Scholar 

  177. Ma J, Zhang Y, Kalyuzhny AE, Pan ZZ (2006) Emergence of functional {delta}-opioid receptors induced by long-term treatment with morphine. Mol Pharmacol 69(4):1137–1145

    PubMed  CAS  Google Scholar 

  178. Morinville A, Cahill CM, Esdaile MJ et al (2003) Regulation of delta-opioid receptor trafficking via mu-opioid receptor stimulation: evidence from mu-opioid receptor knock-out mice. J Neurosci 23(12):4888–4898

    PubMed  CAS  Google Scholar 

  179. Urban MO, Gebhart GF (1999) Supraspinal contributions to hyperalgesia. Proc Natl Acad Sci USA 96(14):7687–7692

    PubMed  CAS  Google Scholar 

  180. Ossipov MH, Lai J, Malan TP Jr, Porreca F (2000) Spinal and supraspinal mechanisms of neuropathic pain. Ann N Y Acad Sci 909:12–24

    PubMed  CAS  Google Scholar 

  181. Gardell LR, Wang R, Burgess SE et al (2002) Sustained morphine exposure induces a spinal dynorphin-dependent enhancement of excitatory transmitter release from primary afferent fibers. J Neurosci 22(15):6747–6755

    PubMed  CAS  Google Scholar 

  182. Gardell LR, Ibrahim M, Wang R et al (2004) Mouse strains that lack spinal dynorphin upregulation after peripheral nerve injury do not develop neuropathic pain. Neuroscience 123(1):43–52

    PubMed  CAS  Google Scholar 

  183. King T, Gardell LR, Wang R et al (2005) Role of NK-1 neurotransmission in opioid-induced hyperalgesia. Pain 116(3):276–288

    PubMed  CAS  Google Scholar 

  184. Vera-Portocarrero LP, Zhang ET, King T et al (2007) Spinal NK-1 receptor expressing neurons mediate opioid-induced hyperalgesia and antinociceptive tolerance via activation of descending pathways. Pain 129(1–2):35–45

    PubMed  CAS  Google Scholar 

  185. Hall RA, Lefkowitz RJ (2002) Regulation of G protein-coupled receptor signaling by scaffold proteins. Circ Res 91(8):672–680

    PubMed  CAS  Google Scholar 

  186. Daaka Y, Luttrell LM, Lefkowitz RJ (1997) Switching of the coupling of the beta2-­adrenergic receptor to different G proteins by protein kinase A. Nature 390(6655):88–91

    PubMed  CAS  Google Scholar 

  187. Guan JS, Xu ZZ, Gao H et al (2005) Interaction with vesicle luminal protachykinin regulates surface expression of delta-opioid receptors and opioid analgesia. Cell 122(4):619–631

    PubMed  CAS  Google Scholar 

  188. Petaja-Repo UE, Hogue M, Bhalla S, Laperriere A, Morello JP, Bouvier M (2002) Ligands act as pharmacological chaperones and increase the efficiency of delta opioid receptor maturation. EMBO J 21(7):1628–1637

    PubMed  CAS  Google Scholar 

  189. Zhang X, Bao L, Guan JS (2006) Role of delivery and trafficking of delta-opioid peptide receptors in opioid analgesia and tolerance. Trends Pharmacol Sci 27(6):324–329

    PubMed  CAS  Google Scholar 

  190. Walwyn W, Maidment NT, Sanders M, Evans CJ, Kieffer BL, Hales TG (2005) Induction of delta opioid receptor function by up-regulation of membrane receptors in mouse primary afferent neurons. Mol Pharmacol 68(6):1688–1698

    PubMed  CAS  Google Scholar 

  191. Morinville A, Cahill CM, Kieffer B, Collier B, Beaudet A (2004) Mu-opioid receptor knockout prevents changes in delta-opioid receptor trafficking induced by chronic inflammatory pain. Pain 109(3):266–273

    PubMed  CAS  Google Scholar 

  192. Li J, Xiang B, Su W, Zhang X, Huang Y, Ma L (2003) Agonist-induced formation of opioid receptor-G protein-coupled receptor kinase (GRK)-G beta gamma complex on membrane is required for GRK2 function in vivo. J Biol Chem 278(32):30219–30226

    PubMed  CAS  Google Scholar 

  193. Quock RM, Burkey TH, Varga E et al (1999) The delta-opioid receptor: molecular pharmacology, signal transduction, and the determination of drug efficacy. Pharmacol Rev 51(3):503–532

    PubMed  CAS  Google Scholar 

  194. Tanowitz M, von Zastrow M (2003) A novel endocytic recycling signal that distinguishes the membrane trafficking of naturally occurring opioid receptors. J Biol Chem 278(46):45978–45986

    PubMed  CAS  Google Scholar 

  195. Gage RM, Kim KA, Cao TT, von Zastrow M (2001) A transplantable sorting signal that is sufficient to mediate rapid recycling of G protein-coupled receptors. J Biol Chem 276(48):44712–44720

    PubMed  CAS  Google Scholar 

  196. Chaturvedi K, Bandari P, Chinen N, Howells RD (2001) Proteasome involvement in agonist-induced down-regulation of mu and delta opioid receptors. J Biol Chem 276(15):12345–12355

    PubMed  CAS  Google Scholar 

  197. Danielsson I, Gasior M, Stevenson GW, Folk JE, Rice KC, Negus SS (2006) Electroencephalographic and convulsant effects of the delta opioid agonist SNC80 in rhesus monkeys. Pharmacol Biochem Behav 85(2):428–434

    PubMed  CAS  Google Scholar 

  198. Yajima Y, Narita M, Takahashi-Nakano Y et al (2000) Effects of differential modulation of mu-, delta- and kappa-opioid systems on bicuculline-induced convulsions in the mouse. Brain Res 862(1–2):120–126

    PubMed  CAS  Google Scholar 

  199. Hruby VJ, Porreca F, Yamamura HI et al (2006) New paradigms and tools in drug design for pain and addiction. AAPS J 8(3):E450–E460

    PubMed  CAS  Google Scholar 

  200. Agnes RS, Ying J, Kover KE et al (2008) Structure-activity relationships of bifunctional cyclic disulfide peptides based on overlapping pharmacophores at opioid and cholecystokinin receptors. Peptides 29(8):1413–1423

    PubMed  CAS  Google Scholar 

  201. Hruby VJ, Agnes RS, Davis P et al (2003) Design of novel peptide ligands which have opioid agonist activity and CCK antagonist activity for the treatment of pain. Life Sci 73(6):699–704

    PubMed  CAS  Google Scholar 

  202. Yamamoto T, Nair P, Davis P et al (2007) Design, synthesis, and biological evaluation of novel bifunctional C-terminal-modified peptides for delta/mu opioid receptor agonists and neurokinin-1 receptor antagonists. J Med Chem 50(12):2779–2786

    PubMed  CAS  Google Scholar 

  203. Yamamoto T, Nair P, Vagner J et al (2008) A structure-activity relationship study and combinatorial synthetic approach of C-terminal modified bifunctional peptides that are delta/mu opioid receptor agonists and neurokinin 1 receptor antagonists. J Med Chem 51(5):1369–1376

    PubMed  CAS  Google Scholar 

  204. Bausch SB, Garland JP, Yamada J (2005) The delta opioid receptor agonist, SNC80, has complex, dose-dependent effects on pilocarpine-induced seizures in Sprague-Dawley rats. Brain Res 1045(1–2):38–44

    PubMed  CAS  Google Scholar 

  205. Jutkiewicz EM, Rice KC, Traynor JR, Woods JH (2005) Separation of the convulsions and antidepressant-like effects produced by the delta-opioid agonist SNC80 in rats. Psychopharmacology (Berl) 182(4):588–596

    CAS  Google Scholar 

Download references

Acknowledgment

This chapter is fondly dedicated to the memory of our dear friend and colleague, Henry I. Yamamura who spent a lifetime contributing to the advancement of science. Supported by P01DA06284.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Porreca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Navratilova, E., Hruby, V.J., Porreca, F. (2011). Delta Opioid Receptor Function. In: Pasternak, G. (eds) The Opiate Receptors. The Receptors. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-993-2_12

Download citation

Publish with us

Policies and ethics