Skip to main content

Opioid-Coupled Second Messenger Systems

  • Chapter
The Opiate Receptors

Part of the book series: The Receptors ((REC))

Abstract

Receptors are normally considered as composed of two separate parts: a specific ligand binding site and an effector component that causes a specific biological response subsequent to agonist binding. Historically, neurotransmitter receptors have been identifed by both properties. For example, opioid receptors have been described by both specific radioligand binding assays (Pert and Snyder, 1973; Terenius, 1973; Simon et al., 1973) and bioassays measuring opioid inhibition of smooth muscle contraction in the guinea pig ileum and the mouse vas deferens (Kosterlitz and Waterfield, 1975). Connecting these two aspects of receptor function is the second messenger system. For the purposes of this review, a second messenger system can be defined as the event(s) that occurs distal to ligand binding and initiates the sequence of events that lead to the biological response. For opiates, several biological responses have been measured, from inhibition of neurotransmitter release (Mudge et al., 1979), to modulation of pituitary hormone release (Grossman, 1983), to changes in cell firing rates (Duggan and North, 1983). All of these responses presumably are associated with receptor-coupled second messenger systems, but the nature of these systems has yet to be firmly established.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barchfeld, C. C., Maassen, Z., and Medzihradsky, F. (1982) Receptor-related interactions of opiates with PGE-induced adenylate cyclase in brain. Life Sci. 31, 1661–1665.

    Article  PubMed  CAS  Google Scholar 

  • Barchfeld, C. C. and Medzihradsky, F. (1984) Receptor-mediated stimulation of brain GTPase by opiates in normal and dependent rats. Biochem. Biophys. Res. Commun. 121, 641–648.

    Article  PubMed  CAS  Google Scholar 

  • Barg, J., Levy, R., and Simantov, R. (1984) Up-regulation of opiate receptors by opiate antagonists in neuroblastoma-glioma cell culture: The possibility of interaction with guanosine triphosphate-binding proteins. Neurosci. Lett. 50, 133–137.

    Article  PubMed  CAS  Google Scholar 

  • Barr, E. and Leslie, S. W. (1985) Opioid peptides increase calcium uptake by synaptosomes from brain regions. Brain Res. 329, 280–284.

    Article  PubMed  CAS  Google Scholar 

  • Blume, A. J. (1978a) Opiate binding to membrane preparations of neuroblastoma-glioma hybrid cells NG108–15: Effects of ions and nucleotides. Life Sci. 22, 1843–1852.

    Article  PubMed  CAS  Google Scholar 

  • Blume, A. J. (1978b) Interactions of ligands with opiate receptors of brain membranes: Regulation by ions and nucleotides. Proc. Natl. Acad. Sci. USA 75, 1713–1717.

    Article  PubMed  CAS  Google Scholar 

  • Blume, A. J., Lichtshtein, L., and Boone, G. (1979) Coupling of opiate receptors to adenylate cyclase: Requirement for sodium and GTP. Proc. Natl. Acad. Sci. USA 76, 5626–5630.

    Article  PubMed  CAS  Google Scholar 

  • Cassel, D. and Selinger, Z. (1976) Catecholamine-stimulated GTPase activity in turkey erythrocyte membranes. Biochim. Biophys. Acta 452, 538–551.

    Article  PubMed  CAS  Google Scholar 

  • Cerione, R. A., Codina, J., Benovic, J. L., Lefkowitz, R. J., Birnbaumer, L., and Caron, M. G. (1984) The mammalian beta-adrenergic receptor: Reconstitution of functional interactions between pure receptor and pure stimulatory guanine nucleotide binding protein of the adenylate cyclase system. Biochemistry 23, 4519–4525.

    Article  PubMed  CAS  Google Scholar 

  • Cerione, R. A., Regan, J. W., Nakata, H., Codina, J., Benovic, J. L., Geirschik, P., Somers, R. L., Spiegel, A. M., Birnbaumer, L., Lefkowitz, R. J., and Caron, M. G. (1986) Functional reconstitution of alpha(2)-adrenergic receptors with guanine nucleotide regulatory proteins in phospholipid vesicles. J. Biol. Chem. 261, 3901–3909.

    PubMed  CAS  Google Scholar 

  • Chang, K. J. and Cuatrecasas, P. (1979) Multiple opiate receptors: Enkephalins and morphine bind to receptors of different specificity. J. Biol. Chem. 254, 2610–2618.

    PubMed  CAS  Google Scholar 

  • Chang, K. J., Miller, R. J., and Cuatrecasas, P. (1978) Interaction of enkephalin with opiate receptors in intact cultured cells. Mol. Pharmacol. 14, 961–970.

    PubMed  CAS  Google Scholar 

  • Chang, K. J., Hazum, E., Killian, A., and Cuatrecasas, P. (1981) Interactions of ligands with morphine and enkephalin receptors are differentially affected by guanine nucleotides. Mol. Pharmacol. 20, 1–7.

    PubMed  CAS  Google Scholar 

  • Childers, S. R. (1984) Interaction of opiate receptor binding sites and guanine nucleotide regulatory sites: Selective protection from N-ethylmaleimide. J. Pharmacol. Exp. Ther. 230, 684–691.

    PubMed  CAS  Google Scholar 

  • Childers, S. R. and Jackson, J. L. (1984) pH Selectivity of N-ethylmaleimide reactions with opiate receptor complexes in rat brain membranes. J. Neurochem. 43, 1163–1170.

    Google Scholar 

  • Childers, S. R. and LaRiviere, G. (1984) Modification of guanine nucleotide regulatory components in brain membranes. II. Relationship of guanosine-5’triphosphate effects on opiate receptor binding and coupling receptors with adenylate cyclase. J. Neurosci. 4, 2764–2771.

    PubMed  CAS  Google Scholar 

  • Childers, S. R. and Pasternak, G. W. (1982) Naloxazone, a novel opiate antagonist: Irreversible blockade of rat brain opiate receptors in vitro. Cell. Mol. Neurobiol. 2, 93–103.

    Article  CAS  Google Scholar 

  • Childers, S. R. and Snyder, S. H. (1979) Guanine nucleotides differentiate agonist and antagonist interactions with opiate receptors. Life Sci. 23, 759–762.

    Article  Google Scholar 

  • Childers, S. R. and Snyder, S. H. (1980a) Differential regulation by guanine nucleotide of opiate agonist and antagonist receptor interactions. J. Neurochem. 34, 583–593.

    Article  PubMed  CAS  Google Scholar 

  • Childers, S. R. and Snyder, S. H. (1980b) Characterization of [3H]-guanine nucleotide binding sites in brain membranes. J. Neurochem. 35, 183–192.

    Article  PubMed  CAS  Google Scholar 

  • Childers, S. R., Nijssen, P., Nadeau, P., Buckhannan, P., Li, P.-V., and Harris, J. (1986) Opiate-inhibited adenylate cyclase in mammalian brain membranes. NIDA Monographs 71, 65–80.

    CAS  Google Scholar 

  • Childers, S. R., Lambert, S. M., and LaRiviere, G. (1983) Selective alterations in guanine nucleotide regulation of opiate receptor binding and coupling with adenylate cyclase. Life Sci. 33, (suppl. I), 215–218.

    Article  PubMed  CAS  Google Scholar 

  • Chou, W. S., Ho, A. K. S., and Loh, H. H. (1971) Effect of acute and chronic morphine and norepinephrine on brain adenylate cyclase activity. Proc. West. Pharmacol. Soc. 14, 42–46.

    CAS  Google Scholar 

  • Cockcroft, S. and Gomperts, B. D. (1985) Role of guanine nucleotide binding protein in the activation of polyphosphinositide phosphodiesterase. Nature 314, 534–536.

    Article  PubMed  CAS  Google Scholar 

  • Collier, H. O. J. and Roy, A. C. (1974) Morphine-like drugs inhibit the stimulation by E prostaglandins of cyclic AMP formation by rat brain homogenates. Nature 248, 24–27.

    CAS  Google Scholar 

  • Cooper, D. M. F., Londos, C., Gill, D. L., and Rodbell, M. (1982) Opiate receptor-mediated inhibition of adenylate cyclase in rat striatal plasma membranes. J. Neurochem. 38, 1164–1167.

    Article  PubMed  CAS  Google Scholar 

  • Costa, T., Wuster, M., Gramsch, C., and Herz, A. (1985) Multiple states of opioid receptors may modulate adenylate cyclase in intact neuroblastoma x glioma hybrid cells. Mol. Pharmacol. 28, 146–154.

    PubMed  CAS  Google Scholar 

  • De Lean, A., Stadel, J. M., and Lefkowitz, R. J. (1980) A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled beta-adrenergic receptor. J. Biol. Chem. 255, 1108–1111.

    Google Scholar 

  • Duggan, A. W. and North, R. A. (1983) Electrophysiology of opioids. Pharmacol. Rev. 35, 219–281.

    PubMed  CAS  Google Scholar 

  • Ehrlich, Y. H., Bonnet, K. A., Davis, L. G., and Brunngraber, E. G. (1978) Decreased phosphorylation of specific proteins in neostriatal membranes from rats after long-term narcotics exposure. Life Sci. 23, 137–146.

    Article  PubMed  CAS  Google Scholar 

  • End, D. W., Carchman, R. A., and Dewey, W. L. (1981) Interactions of narcotics with synaptosomal calcium transport. Biochem. Pharmacol. 30, 674–676.

    Article  PubMed  CAS  Google Scholar 

  • Evans, T., Martin, H. W., Hughes, A. R., and Harden, T. K. (1985) Guanine nucleotide-sensitive high affinity binding of carbachol to muscarinic cholinergic receptors of 1321n1 astrocytoma cells is insensitive to pertussis toxin. Mol. Pharmacol. 27, 32–37.

    PubMed  CAS  Google Scholar 

  • Fantozzi, R., Mullikin-Kirkpatrick, D., and Blume, A. J. (1981) Irreversible inactivation of the opiate receptors in neuroblastoma x glioma hybrid NG108–15 cells by chlornaltrexamine. Mol. Pharmacol. 20, 8–15.

    PubMed  CAS  Google Scholar 

  • Florio, V. A. and Sternweis, P. C. (1985) Reconstitution of resolved muscarinic cholinergic receptors with purified GTP-binding proteins. J. Biol. Chem. 260, 3477–3483.

    PubMed  CAS  Google Scholar 

  • Franklin, P. H. and Ross, W. (1984) Opiates stimulate low Km GTPase in brain. J. Neurochem. 43, 1132–1135.

    Article  PubMed  CAS  Google Scholar 

  • Frey, A. and Kebabian, J. W. (1984) IL-Opiate receptor in 7315c tumor tissue mediates inhibition of immunoreactive prolactin release and adenylate cyclase activity. Endocrinology 115, 1797–1804.

    Article  PubMed  CAS  Google Scholar 

  • Fung, B. K.-K. and Stryer, L. (1980) Photolyzed rhodopsin catalyzes the exchange of GTP for bound GDP in retinal rod outer segments. Proc. Natl. Acad. Sci. USA 77, 2500–2504.

    Article  CAS  Google Scholar 

  • Giedroc, D. P. and Puett, D. (1985) Binding of a synthetic beta-endorphin peptide to calmodulin. Mol. Pharmacol. 28, 588–593.

    PubMed  CAS  Google Scholar 

  • Gilbert, J. A. and Richelson, E. (1983) Function of delta opioid receptors in cultured cells. Mol. Cell. Biochem. 55, 83–91.

    Article  PubMed  CAS  Google Scholar 

  • Gilman, A. G. (1984) G proteins and dual control of adenylate cyclase. Cell 36, 577–579.

    Article  PubMed  CAS  Google Scholar 

  • Gonzales, R. A. and Crews, F. T. (1985) Guanine nucleotides stimulate production of inositol triphosphate in rat cortical membranes. Biochem. J. 232, 799–804.

    PubMed  CAS  Google Scholar 

  • Greenspan, D. L. and Mussachio, J. M. (1984) The effect of tolerance on opiate dependence as measured by the adenylate cyclase rebound response in the NG108–15 model system. Neuropeptides 5, 41–44.

    Article  PubMed  CAS  Google Scholar 

  • Griffin, M. T., Law, P. Y., and Loh, H. H. (1983) Modulation of adenylate cyclase by a cytosolic factor following chronic opiate exposure in neuro-blastoma cells. Life Sci. 33, (suppl. I), 365–368.

    Article  PubMed  CAS  Google Scholar 

  • Grossman, A. (1983) Brain opiates and neuroendocrine function. Clin. Endocrinol. Metab. 12, 725–746.

    Article  PubMed  CAS  Google Scholar 

  • Guerrero-Munoz, F., Guerrero, M. L., and Way, E. L. (1979) Effect of beta-endorphin on calcium uptake in the brain. Science 206, 89–91.

    Article  PubMed  CAS  Google Scholar 

  • Gullis, R. J. (1977) Statement. Nature 265, 764.

    PubMed  Google Scholar 

  • Gwynn, C. J. and Costa, E. (1983) Opioids regulate cyclic GMP formation in cloned neuroblastoma cells. Proc. Natl. Acad. Sci USA 79, 690–694.

    Article  Google Scholar 

  • Hamprecht, B. (1977) Structural, electrophysiological, biochemical, and pharmacological properties of neuroblastoma x glioma cell hybrids in cell culture. Int. Rev. Cytol. 49, 99–170.

    Article  PubMed  CAS  Google Scholar 

  • Harden, T. K., Meeker, R. B., and Martin, H. W. (1983) Interaction of a radiolabeled agonist with cardiac muscarinic cholinergic receptors. J. Pharmacol. Exp. Ther. 227, 570–577.

    PubMed  CAS  Google Scholar 

  • Harris, R. A., Loh, H. H., and Way, E. L. (1975) Effects of divalent cation chelators and an ionophore on morphine analgesia and tolerance. J. Pharmacol. Exp. Ther. 196, 288–297.

    Google Scholar 

  • Havemann, U. and Kushinsky, K. (1978) Interactions of opiates and prostaglandin E with regard to cyclic AMP in striatal tissue of rats in vitro. Arch. Pharmacol. 302, 103–106.

    CAS  Google Scholar 

  • Heidenreich, K. H., Weiland, G. A., and Molinoff, P. B. (1982) Effects of magnesium and N-ethylmaleimide on the binding of [3H]-hydroxybenzylisoproterenol to beta-adrenergic receptors. J. Biol. Chem. 257, 804–810.

    PubMed  CAS  Google Scholar 

  • Helmreich, E. J. M. and Pfeuffer, T. (1985) Regulation of signal transduction by beta-adrenergic hormone receptors. Trends Pharmacol. Sci. 6, 438–443.

    Article  CAS  Google Scholar 

  • Hsia, J. A., Moss, J., Hewlett, E. L., and Vaughan, M. (1984) ADP-ribosylation of adenylate cyclase by pertussis toxin: Effects on inhibitory agonist binding. J. Biol. Chem. 259, 1086–1090.

    PubMed  CAS  Google Scholar 

  • Jakobs, K. H. (1979) Inhibition of adenylate cyclase by hormones and neurotransmitters. Mol. Cell. Endocrinol. 16, 147–156.

    Article  PubMed  CAS  Google Scholar 

  • Jakobs, K. H. and Schultz, G. (1983) Occurrence of a homone-sensitive inhibitory component of the adenylate cyclase in S49 lymphoma cyc–variants. Proc. Natl. Acad. Sci. USA 80, 3899–3905.

    Article  PubMed  CAS  Google Scholar 

  • Katada, T. and Ui, M. (1982) Direct modification of the membrane adenylate cyclase system by islet-activating protein due to ADP-ribosylation of a membrane protein. Proc. Natl. Acad. Sci. USA 79, 3129–3133.

    Article  PubMed  CAS  Google Scholar 

  • Kent, R. S., De Lean, A., and Lefkowitz, R. J. (1980) A quantitative analysis of beta-adrenergic receptor interactions: Resolution of high and low affinity states of the receptor by computer modeling of ligand binding data. Mol. Pharmacol. 17, 14–23.

    PubMed  CAS  Google Scholar 

  • Korner, M., Gilon, C., and Schramm, M. (1982) Locking of hormone in the beta-adrenergic receptor by attack on a sulfhydryl in an associated component. J. Biol. Chem. 257, 3389–3397.

    PubMed  CAS  Google Scholar 

  • Koski, G. and Klee, W. A. (1981) Opiates inhibit adenylate cyclase by stimulating GTP hydrolysis. Proc. Natl. Acad. Sci USA 78, 4185–4189.

    Article  PubMed  CAS  Google Scholar 

  • Koski, G., Simonds, W. F., and Klee, W. A. (1980) Guanine nucleotides inhibit binding of agonists and antagonists to soluble opiate receptors. J. Biol. Chem. 256, 1536–1538.

    Google Scholar 

  • Kosterlitz, H. J. and Waterfield, A. A. (1975) In vitro models in the study of structure-activity relationships of narcotic analgesics. Ann. Rev. Pharmacol. Toxicol. 15, 29–47.

    Article  CAS  Google Scholar 

  • Lad, P. M., Preston, M. S., Welton, A. F., Nielsen, T. B., and Rodbell, M. (1979) Effects of phospholipase A2 and filipin on the activiation of adenylate cyclase. Biochim. Biophys. Acta 551, 368–381.

    PubMed  CAS  Google Scholar 

  • Lambert, S. M. and Childers, S. R. (1984) Modification of guanine nucleotide regulatory components in brain membranes. I. Changes in guanosine-5’triphosphate regulation of opiate receptor binding sites. J. Neurosci. 4, 2755–2763.

    PubMed  CAS  Google Scholar 

  • Larsen, N. E., Mullikin-Kirkpatrick, D., and Blume, A. J. (1981) Two different modifications of the neuroblastoma-glioma hybrid opiate receptors induced by N-ethylmaleimide. Mol. Pharmacol. 20, 255–262.

    PubMed  CAS  Google Scholar 

  • Law, P. Y., Wu, J., Koehler, J. E., and Loh, H. H. (1981) Demonstration and characterization of opiate inhibition of the striatal adenylate cyclase. J. Neurochem. 36, 1834–1846.

    Article  PubMed  CAS  Google Scholar 

  • Law, P. Y., Hom, D. S., and Loh, H. H. (1982) Loss of opiate receptor activity in neuroblastoma x glioma NG108–15 hybrid cells after chronic opiate treatment: A multi-step process. Mol. Pharmacol. 22, 1–4.

    Article  PubMed  CAS  Google Scholar 

  • Law, P. Y., Griffin, M. T., Koehler, J. E., and Loh, H. H. (1983) Attenuation of enkephalin activity in neuroblastoma x glioma NG108–15 hybrid cells by phospholipases. J. Neurochem. 40, 267–275.

    Article  PubMed  CAS  Google Scholar 

  • Law, P. Y., Hom, D. S., and Loh, H. H. (1985a) Multiple affinity states of opiate receptors in neuroblastoma x glioma NG108–15 hybrid cells: Opiate agonist association rate is a function of receptor occupancy. J. Biol. Chem. 260, 3561–3569.

    PubMed  CAS  Google Scholar 

  • Law, P. Y., Ungar, H. G., Horn, D. S., and Loh, H. H. (1985b) Effects of cycloheximide and tunicamycin on opiate receptor activities in neuro-blastoma x glioma NG108–15 hybrid cells. Biochem. Pharmacol. 34, 917.

    Article  Google Scholar 

  • Litosch, I., Lin, S.-H., and Fain, J. H. (1985) 5-Hydroxytryptamine stimulates inositol phosphate production in a cell-free system from blowfly salivary glands: Evidence for a role of GTP in coupling receptor activation to phosphoinositide breakdown. J. Biol. Chem. 260, 5464–5471.

    Google Scholar 

  • Lord, J. A. H., Waterfield, A. A., Hughes, J., and Kosterlitz, H. W. (1977) Endogenous opioid peptides: Multiple agonists and receptors. Nature 267, 495–500.

    Article  PubMed  CAS  Google Scholar 

  • Mack, K. J., Lee, M. F., and Wehenmeyer, J. A. (1985) Effects of guanine nucleotides and ions on kappa opioid binding. Brain Res. Bull. 14, 301–306.

    Article  PubMed  CAS  Google Scholar 

  • Manning, D. R. and Gilman, A. G. (1983) The regulatory components of adenylate cyclase and transducin: A family of structurally homologous guanine nucleotide binding proteins. J. Biol. Chem. 258, 7059–7063.

    PubMed  CAS  Google Scholar 

  • Manning, D. R., Fraser, B. A., Kahn, R. A., and Gilman, A. G. (1984) ADPribosylation of transducin by islet-activating protein: Identification of asparagine as the site of ADP-ribosylation. J. Biol. Chem. 259, 749–756.

    PubMed  CAS  Google Scholar 

  • McGrath, J. P., Capon, D. J., Goeddel, D. V., and Levinon, A. D. (1984) Comparative biochemical properties of normal and activated human ras p21 protein. Nature 310, 644–649.

    Article  PubMed  CAS  Google Scholar 

  • Minneman, K. P. and Iversen, L. L. (1976) Enkephalin and opiate narcotics increase cyclic GMP accumulation in slices of rat neostriatum. Nature 261, 313–314.

    Article  Google Scholar 

  • Mudge, A. W., Leeman, S. E., and Fischbach, G. D. (1979) Enkephalin inhibits release of substance P from sensory neurons and decreases action potential duration. Proc. Natl. Acad. Sci. USA 76, 526–530.

    Article  PubMed  CAS  Google Scholar 

  • Musacchio, J. M. and Schen, C. (1983) Failure of opiates to increase the hydrolysis of GTP in neuroblastoma x glioma NG108–15 cells. Life Sci. 33, 879–887.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura, T. and Ui, M. (1985) Simultaneous inhibitions of inositol-phospholipid breakdown, arachidonic acid release and histamine secretion in mast cells by islet activating protein, pertussis toxin: A possible involvement of the toxin-specific substrate in the calcium-mobilizing receptor-mediated biosignalling system. J. Biol. Chem. 260, 3584–3593.

    PubMed  CAS  Google Scholar 

  • Neer, E. J., Lok, J. M., and Wolf, L. G. (1984) Purification and properties of the inhibitory guanine nucleotide regulatory unit of brain adenylate cyclase. J. Biol. Chem. 259, 14222–14229.

    PubMed  CAS  Google Scholar 

  • Nehmad, R., Nadler, H., and Simantov, R. (1982) Effects of acute and chronic morphine treatment on calmodulin activity of rat brain. Mol. Pharmacol. 22, 389–394.

    PubMed  CAS  Google Scholar 

  • Nestler, E. J., Walaas, S. I., and Greengard, P. (1984) Neuronal phosphoproteins: Physiological and clinical implications. Science 225, 1357–1364.

    Article  PubMed  CAS  Google Scholar 

  • Nishizuka, Y. (1984) Turnover of inositol phospholipids and signal transduction. Science 225, 1365–1370.

    Article  PubMed  CAS  Google Scholar 

  • Northup, J. K., Sternweis, P. C., and Gilman, A. G. (1983a) The subunits of the stimulatory regulatory component of adenylate cyclase: Resolution, activity, and properties of the 35,000-dalton (beta) subunit. J. Biol. Chem. 258, 11361–11368.

    PubMed  CAS  Google Scholar 

  • Northup, J. K., Smigel, M. D., Sternweis, P. C., and Gilman, A. G. (1983b) The subunits of the stimulatory regulatory component of adenylate cyclase: Resolution of the activated 45,000-dalton (alpha) subunit. J. Biol. Chem. 258, 11369–11376.

    PubMed  CAS  Google Scholar 

  • Pasternak, G. W. and Snyder, S. H. (1975a) Identification of novel high affinity opiate receptor binding in rat brain. Nature 253, 563–565.

    Article  PubMed  CAS  Google Scholar 

  • Pasternak, G. W. and Snyder, S. H. (1975b) Opiate receptor binding: Enzymatic treatments that discriminate between agonist and antagonist interactions. Mol. Pharmacol. 11, 478–484.

    CAS  Google Scholar 

  • Pasternak, G. W., Snowman, A. M., and Snyder, S. H. (1975a) Selective enhancement of [3H]-opiate agonist binding by divalent cations. Mol. Pharmacol. 11, 735–744.

    PubMed  CAS  Google Scholar 

  • Pasternak, G. W., Wilson, H. A., and Snyder, S. H. (1975b) Differential effects of protein-modifying reagents on receptor binding of opiate agonists and antagonists. Mol. Pharmacol. 11, 340–351.

    PubMed  CAS  Google Scholar 

  • Pert, C. B., Pasternak, G. W., and Snyder, J. H. (1973) Opiate agonists and antagonists descriminated by receptor binding in brain. Science 182, 1359–1361.

    Article  PubMed  CAS  Google Scholar 

  • Pert, C. B. and Snyder, S. H. (1973) Opiate receptor: Demonstration in nervous tissue. Science 179, 1011–1014.

    Article  PubMed  CAS  Google Scholar 

  • Pert, C. B. and Snyder, S. H. (1974) Opiate receptor binding of agonists and antagonists affected differentially by sodium. Mol. Pharmacol. 10, 868–879.

    CAS  Google Scholar 

  • Pert, C. B. and Taylor, D. (1979) Type 1 and Type 2 Opiate Receptors: A Subclassification Scheme Based Upon GTP’s Differential Effects on Binding, in Endogenous and Exogenous Opiate Agonists and Antagonists ( Way, E. L., ed.) Pergamon, New York.

    Google Scholar 

  • Pfaffinger, P. J., Martin, J. M., Hunter, D., Nathanson, N. M., and Hille, B. (1985) GTP-binding proteins couple cardiac muscarinic receptors to a potassium channel. Nature 317, 536–538.

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer, A., Sadee, W., and Herz, A. (1982) Differential regulation of mu-, delta-, and kappa-opiate receptor subtypes by guanine nucleotides and metal ions. J. Neurosci. 2, 912–917.

    PubMed  CAS  Google Scholar 

  • Propst, F. and Hamprecht, B. (1981) Opioids, noradrenaline and GTP analogs inhibit cholera toxin activated adenylate cyclase in neuroblastoma x glioma hybrid cells. J. Neurochem. 36, 580–588.

    Article  PubMed  CAS  Google Scholar 

  • Puri, S. K., Cochin, J., and Volicer, L. (1975) Effect of morphine sulfate on adenylate cyclase and phosphodiesterase activities in rat corpus stria-turn. Life Sci. 16, 759–768.

    Article  PubMed  CAS  Google Scholar 

  • Rasenick, M. M., Wheeler, G. L., Bitensky, M. W., Kosack, C. M., Malina, R. L., and Stein, P. J. (1984) Photoaffinity identification of colchinesolublized regulatory subunit from rat brain adenylate cyclase. J. Neurochem. 43, 1447–1454.

    Article  PubMed  CAS  Google Scholar 

  • Rodbell, M. (1980) The role of hormone receptors and GTP-regulatory proteins in membrane transduction. Nature 284, 17–21.

    Article  PubMed  CAS  Google Scholar 

  • Ross, D. H. and Cardenas, H. L. (1977) Nerve cell calcium as a messenger for opiate and endorphin actions. Adv. Biochem. Psychopharm. 20, 301–336.

    Google Scholar 

  • Schramm, M. and Selinger, Z. (1984) Message transmission: Receptor-controlled adenylate cyclase system. Science 225, 1350–1356.

    Article  PubMed  CAS  Google Scholar 

  • Sellinger-Barnette, M. and Weiss, B. (1982) Interaction of beta-endorphin and other opioid peptides with calmodulin. Mol. Pharmacol. 21, 86–91.

    PubMed  CAS  Google Scholar 

  • Sharma, S. K., Niremberg, M., and Klee, W. (1975a) Morphine receptors as regulators of adenylate cyclase activity. Proc. Natl. Acad. Sci. USA 72, 590–594.

    Article  PubMed  CAS  Google Scholar 

  • Sharma, S. K., Klee, W. A., and Niremberg, M. (1975b) Dual regulation of adenylate cyclase accounts for narcotic dependence and tolerance. Proc. Natl. Acad. Sci. USA 72, 3092–3096.

    Article  PubMed  CAS  Google Scholar 

  • Sharma, S. K., Klee, W. A., and Niremberg, M. (1977) Opiate dependent modulation of adenylate cyclase activity. Proc. Natl. Acad. Sci. USA 74, 3365–3369.

    Article  PubMed  CAS  Google Scholar 

  • Simon, E. J. and Groth, H. (1975) Kinetics of opiate receptor inactivation by sulfhydryl reagents: Evidence for conformational change in the presence of sodium ions. Proc. Natl. Acad. Sci. USA 72, 2404–2407.

    Article  PubMed  CAS  Google Scholar 

  • Simon, E. J., Hiller, J. M., and Edelman, I. (1973) Stereospecific binding of the potent narcotic analgesic [3H]-etorphine to rat brain homogenates. Proc. Natl. Acad. Sci. USA 70, 1947–1949.

    Article  PubMed  CAS  Google Scholar 

  • Simon, E. J., Hiller, J. M., Groth, J., and Edelman, I. (1975) Further properties of stereospecific opiate binding sites in rat brain: On the nature of the sodium effect. J. Pharmacol. Exp. Ther. 192, 531–537.

    PubMed  CAS  Google Scholar 

  • Stadel, J. M. and Lefkowitz, R. J. (1981) Differential effects of cholera toxin on guanine nucleotide regulation of beta-adrenergic agonist high-affinity binding and adenylate cyclase activation in frog erythrocyte membranes. J. Cyc. Nuc. Res. 7, 363–374.

    CAS  Google Scholar 

  • Sternweis, P. C. and Robishaw, J. D. (1984) Isolation of two proteins with high affinity for guanine nucleotides from membranes of bovine brain. J. Biol. Chem. 259, 13806–13813.

    PubMed  CAS  Google Scholar 

  • Tell, G. P., Pasternak, G. W., and Cuatrecasas, P. (1975) Brain and caudate nucleus adenylate cyclase: Effects of dopamine, GTP, E prostaglandins and morphine. FEBS Lett. 51, 242–245.

    Article  CAS  Google Scholar 

  • Tempel, A., Gardner, E. L., and Zukin, R. S. (1985) Neurochemical and functional correlates of naltrexone-induced opiate receptor up-regulation. J. Pharmacol. Exp. Ther. 232, 439 444.

    Google Scholar 

  • Terenius, L. (1973) Characterisitcs of the ‘receptor’ for narcotic analgesics in synaptic plasma membrane fractions from rat brain. Acta Pharmacol. Toxicol. 33, 377–384.

    Article  CAS  Google Scholar 

  • Tocque, B., Albouz, S., Boutry, J.-M., Le Saux, F., Hauw, J.-J., Bourdon, R., Baumann, N., and Zalc, B. (1984) Desipramine elicits the expression of opiate receptors and sulfogalactosylceramide synthesis in rat C-6 glioma cells. J. Neurochem. 42, 1101–1106.

    Article  PubMed  CAS  Google Scholar 

  • Traber, J., Fischer, K., Latzin, S., and Hamprecht, B. (1975) Morphine antagonizes action of prostaglandin in neuroblastoma x glioma hybrid cells. Nature 253, 120–122.

    Article  PubMed  CAS  Google Scholar 

  • Tsang, D., Tan, A. T., Henry, J. L., and Lal, S. (1978) Effect of opioid peptides on noradrenaline-stimulated cyclic AMP formation in homogenates of rat cerebral cortex and hypothalamus. Brain Res. 152, 521–527.

    Article  PubMed  CAS  Google Scholar 

  • U’Prichard, D. C. and Snyder, S. H. (1980) Interactions of divalent cations and guanine nucleotides at alpha(2)-adrenergic receptor binding sites in bovine brain membranes. J. Neurochem. 34, 385–394.

    Article  PubMed  Google Scholar 

  • Van Inwegen, R. G., Strada, S. J., and Robison, G. A. (1975) Effects of prostaglandins and morphine on brain adenylate cyclase. Life Sci. 16, 1875–1876.

    Article  PubMed  Google Scholar 

  • Vauquelin, G. and Maguire, M. E. (1980) Inactivation of beta-adrenergic receptors by N-ethylmaleimide in S49 lymphoma cells: Agonist induction of functional receptor heterogeneity. Mol. Pharmacol. 18, 362–269.

    PubMed  CAS  Google Scholar 

  • Werz, M. A. and Macdonald, R. L. (1983) Opioid peptides with differential affinity for mu and delta receptors decrease sensory neuron calcium-dependent action potentials. J. Pharmacol. Exp. Ther. 227, 394–401.

    PubMed  CAS  Google Scholar 

  • Wheeler, G. L. and Bitensky, M. W. (1977) A light-activated GTPase in vertebrate photoreceptors: Regulation of light-activated cyclic GMP phosphodiesterase. Proc. Natl. Acad. Sci. USA 74, 4238–4242.

    Article  PubMed  CAS  Google Scholar 

  • Wilkening, D., Mishra, R. K., and Makman, M. H. (1976) Effects of morphine on dopamine-stimulated adenylate cyclase and on cyclic GMP formation in primate brain amygdaloid nucleus. Life Sci. 19, 1129–1138.

    Article  PubMed  CAS  Google Scholar 

  • Wolleman, M. (1981) Endogenous opioids and cyclic AMP. Prog. Neurobiol. 16, 145–154.

    Article  Google Scholar 

  • Wolozin, B. L. and Pasternak, G. W. (1981) Classification of multiple morphine and enkephalin binding sites in the central nervous system. Proc. Natl. Acad. Sci. USA 78, 6181–6185.

    Article  PubMed  CAS  Google Scholar 

  • Wuster, M., Costa, T., and Gramsch, C. (1983) Uncoupling of receptors is essential for opiate-induced desensitization (tolerance) in NG108–15 cells. Life Sci. 33, (suppl. I), 341–344.

    Article  PubMed  Google Scholar 

  • Wuster, M., Costa, T., Aktories, K., and Jakobs, K. H. (1984) Sodium regulation of opioid agonist binding is potentiated by pertussis toxin. Biochem. Biophys. Res. Commun. 123, 1107–1115.

    Article  PubMed  CAS  Google Scholar 

  • Yu, V. C., Richards, M. L., and Sadee, W. (1986) A human neuroblastoma cell line expresses mu and delta opioid receptor sites. J. Biol. Chem. 261, 1065–1070.

    PubMed  CAS  Google Scholar 

  • Zajac, J.-M. and Roques, B. P. (1985) Differences in binding properties of mu and delta opioid receptor subtypes from rat brain: Kinetic analysis and effects of ions and guanine nucleotides. J. Neurochem. 44, 1605–1614.

    Article  PubMed  CAS  Google Scholar 

  • Zukin, R. S., Wallczak, S., and Makman, M. H. (1980) GTP modulation of opiate receptors in regions of rat brain and possible mechanism of GTP action. Brain Res. 186, 238–244.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Childers, S.R. (1988). Opioid-Coupled Second Messenger Systems. In: Pasternak, G.W. (eds) The Opiate Receptors. The Receptors. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-990-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-990-1_8

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-6768-1

  • Online ISBN: 978-1-60761-990-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics