Skip to main content

The Opioid Peptides

  • Chapter
The Opiate Receptors

Part of the book series: The Receptors ((REC))

Abstract

The discovery of endogenous opioids has begun an intricate saga involving multiple ligands and multiple receptors that form an extensive neuronal network in both the central and peripheral nervous systems. This intricacy is reflected in the complex pharmacology and diverse physiological effects of opioids in mammals. The aim of this chapter is to consolidate the immense literature on endogenous opioid ligands and attempt to rationalize the multiple forms of these bioactive substances. A number of recent reviews on endogenous opioids reflect different perspectives to this extensive field (Weber et al., 1983b; Frederickson, 1984; Akil et al., 1984; Offermeier and Van Rooyen, 1984; Imura et al., 1985; Herbert et al., 1985; Barchas et al., 1986).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akil, H., Lin, H. L., Veda, Y., Knoblock, M., Watson, S. J., and Coy, D. (1983) Some of the alpha-NH2-acetylated beta-endorphin-like material in rat and monkey pituitary and brain is acetylated alpha-and beta-endorphin. Life Sci. 33 (suppl.), 9–12.

    PubMed  CAS  Google Scholar 

  • Akil, H., Watson, S. J., Young, E., Lewis, M. E., Khachaturian, H., and Walker, J. M. (1984) Endogenous opioids: Biology and function. Ann. Rev. Neurosci. 7, 223–255.

    PubMed  CAS  Google Scholar 

  • Baffle, C. A., McLaughlin, C. L., and Della-Fera, M. A. (1986) Role of cholecystokinin and opioid peptides in control of food intake. Physiol. Rev. 66, 172–234.

    Google Scholar 

  • Baird, A., Ling, N., Bohlen, P., Benoit, R., Klepper, R., and Guillemin, R. (1982) Molecular forms of the putative enkephalin precursor BAM-12P in bovine adrenal, pituitary, and hypothalamus. Proc. Natl. Acad. Sci. USA 79, 2023–2025.

    PubMed  CAS  Google Scholar 

  • Barchas, J. D., Evans, C. J., Elliott, G. R., and Berger, P. A. (1986) Peptide neuroregulators: The opioid system as a model. Yale J. Bio. Med. 58 579–596.

    Google Scholar 

  • Basbaum, A. I. and Fields, H. L. (1984) Endogenous pain control systems. Ann Rev. Neurosci. 7, 309–338.

    PubMed  CAS  Google Scholar 

  • Belcher, G., Smock, T., and Fields, H. L. (1982) Effects of intrathecal ACTH on opiate analgesia in the rat. Brain Res. 247, 373–377.

    PubMed  CAS  Google Scholar 

  • Bernton, E. W., Long, J. B., and Holaday, J. W. (1985) Opioids and neuropeptides: Mechanisms in circulatory shock. Fed. Proc. 44, 290–299.

    Google Scholar 

  • Berntson, G. G. and Walker, J. M. (1977) Effect of opiate receptor blockade on pain sensitivity in the rat. Brain Res. Bull. 2, 157–159.

    Google Scholar 

  • Bicknell, R. J. (1985) Endogenous opioid peptides and hypothalamic neuro-endocrine neurones. J. Endocrinol. 107, 437–446.

    Google Scholar 

  • Bloom, F. E., Battenberg, E., Rossier, J., Ling, N., and Guillemin, R. (1978a) Neurons containing 3-endorphin in rat brain exist separately from those containing enkephalin: Immunocytochemical studies. Proc. Natl. Acad. Sci. USA 75, 1591–1595.

    PubMed  CAS  Google Scholar 

  • Bloom, F. E., Rossier, J., Battenberg, E., Bayon, A., French, E., Henricksen, S. J., Siggins, G. R., Segal, D., Browne, R., Ling, N., and Guillemin, R. (1978b) Beta-endorphin: Cellular localization, electrophysiological and behavioral effects. Adv. Biochem. Psychopharmacol. Endorphins 18, 89–109.

    CAS  Google Scholar 

  • Bradbury, A. F., Smyth, D. G., and Snell, C. R. (1975) Peptides: Chemistry, Structure, and Biology Proceedings of the Fourth American Peptide Symposium (Walter, R. and Meienhofer, J., eds.) Ann Arbor Science, Ann Arbor, Michigan.

    Google Scholar 

  • Bradbury, A. F., Finnie, M. D. A., and Smyth, D. G. (1981) Mechanism of C-terminal amide formation by pituitary enzymes. Nature 298, 686–688.

    Google Scholar 

  • Buffa, R., Solcia, E., Magnoni, E., Rindi, G., Negri, L., and Melchiorri, P. (1982) Immunohistochemical demonstration of a dermorphin-like peptide in the rat brain. Histochemistry 76, 273–276.

    PubMed  CAS  Google Scholar 

  • Cesselin, F., Oliveras, J. L., Bourgoin, S., Sierralta, F., Michelot, R., Besson, J. M., and Hamon, M. (1982) Increased levels of met-enkephalin-like material in the CSF of anesthetized cats after tooth pulp stimulation. Brain Res. 237, 325–338.

    Google Scholar 

  • Cesselin, F., LeBars, D., Bourgoin, S., Artaud, F., Gozlan, H., Clot, A. M., Besson, J. M., and Hamon, M. (1985) Spontaneous and evoked release of methionine-enkephalin-like material from the rat spinal cord in vivo. Brain Res. 339, 305–313.

    PubMed  CAS  Google Scholar 

  • Chaillet P., Marcais-Collado, H., Costentin, J., Yi, C-C., de la Baume, S., and Schwartz, J.-C. (1983) Inhibition of enkephalin metabolism by, and antinociceptive activity of, bestatin, an aminopeptidase inhibitor. Eur. J. Pharmacol. 86, 329–336.

    Google Scholar 

  • Chaillet, P., Coulaud, A., Zajac, J-M., Fournie-Zaluski, M.-C., Costentin, J., and Roques, B. (1984) The rather than the 8 subtype of opioid receptors appears to be involved in enkephalin-induced analgesia. Eur. J. Pharmacol. 101, 83–90.

    PubMed  CAS  Google Scholar 

  • Chen, C.-L. C., Mather, J. P., Morris, P. L., and Bradin, C. W. (1984) Expression of pro-opiomelanocortin-like gene in the testis and epididymis. Proc. Natl. Acad. Sci. USA 81 (18), 5672–5675.

    PubMed  CAS  Google Scholar 

  • Chipkin, R. E., Latranyl, M. Z., lorio, L. C., and Barnett, A. (1982) Potentiation of [D-Ala2]enkephalinamide analgesia in rats by thiorphan. Eur. J. Pharmacol. 83, 283–288.

    PubMed  CAS  Google Scholar 

  • Cone, R. I., Weber, E., Barchas, J. D., and Goldstein, A. (1983) Regional distribution of dynorphin and neo-endorphin peptides in rat brain, spinal cord, and pituitary. J. Neurosci. 3, 2146–2152.

    PubMed  CAS  Google Scholar 

  • Cox, B. M., Opheim, K. E., Teschemacher, H., and Goldstein, A. (1975) A peptide like substance from pituitary that acts like morphine; Purification and properties. Life Sci. 16, 1777–1782.

    PubMed  CAS  Google Scholar 

  • De La Baume, S., Yi, C. C., Schwartz, J. C., Chaillet, P., Marcais-Collado, H., and Costentin, J. (1983) Participation of both enkephalinase and aminopeptidase activities in the metabolism of endogenous enkephalins. Neuroscience 8, 143–151.

    PubMed  Google Scholar 

  • Devi, L. and Goldstein, A. (1984) Dynorphin-converting enzyme with unusual specificity from rat brain. Proc. Natl. Acad. Sci. USA 81, 192–196.

    Google Scholar 

  • Donnerer, J., Oka, K., Brossi, A., Rice, K. C., and Spector, S. (1986) Presence and formation of codeine and morphine in the rat. J. Med. Chem. 83, 4556–4567.

    Google Scholar 

  • Eberwine, J. H. and Roberts, J. L. (1983) Analysis of pro-opiomelanocortin gene structure and function. dna 2, 1–8.

    Google Scholar 

  • Eipper, B. A. and Mains, R. E. (1980) Structure and function of preadrenocorticotropin/endorphin and related peptides. Endocr. Rev. 1, 247–262.

    Google Scholar 

  • El-Sobky, A., Dostrovsky, J. O., and Wall, P. D. (1976) Lack of effect of naloxone on pain perception in humans. Nature 263, 783–784.

    PubMed  CAS  Google Scholar 

  • Evans, C. J., Weber, E., and Barchas, J. D. (1981) Isolation and characterization of a-N-acetyl II-endorphin (1–26) from the rat posterior/intermediate pituitary lobe. Biophys. Res. Commun. 102, 897–904.

    Google Scholar 

  • Evans, C. J., Lorenz, R., Weber, E., and Barchas, J. D. (1982) Variants of alpha melanocyte stimulating hormone in rat brain and pituitary: Evidence that acetylated alpha MSH exists only in the intermediate lobe of the pituitary. Biochem. Biophys. Res. Commun. 106, 910–919.

    PubMed  CAS  Google Scholar 

  • Evans, C. J., Erdelyi, E., Weber, E., and Barchas, J. D. (1983) Identification of pro-opiomelanocortin-derived peptides in the human adrenal medulla. Science 221, 957–960.

    PubMed  CAS  Google Scholar 

  • Evans, C. J., Barchas, J. D., Esch, F. S., Bohlen, P., and Weber, E. (1985a) Isolation and characterization of an endogenous C-terminal fragment of the a-neo-endorphin/dynorphin precursor from bovine caudate nucleus. J. Neurosci. 5, 1803–1807.

    PubMed  CAS  Google Scholar 

  • Evans, C. J., Erdelyi, E., and Barchas, J. D. (1985b) Opioid peptides in the adrenal pituitary axis. Psychopharm. Bull. 21 (3), 466–471.

    CAS  Google Scholar 

  • Evans, C. J., Erdelyi, E., Hunter, J., and Barchas, J. D. (1985c) Co-localization and characterization of immunoreactive peptides derived from two opioid precursors in guinea pig adrenal glands. J. Neurosci. 5, 3423–3427.

    Google Scholar 

  • Faden, A. I. and Jacobs, T. P. (1984) Dynorphin related peptides cause motor dysfunction in the rat through a non-opiate action. Br. J. Pharmac. 81, 271–276.

    CAS  Google Scholar 

  • Feldberg, W. and Smyth, D. G. (1976) The C-fragment of lipotropin—a potent analgesic. J. Physiol. (Lond.) 260, 30p - 31 p.

    CAS  Google Scholar 

  • Fischli, W., Goldstein, A., Hunkapiller, M. W., and Hood, L. E. (1982a) Isolation and amino acid sequence analysis of a 4000 dalton dynorphin from porcine pituitary. Proc. Natl. Acad. Sci. USA 79, 5435–5437.

    PubMed  CAS  Google Scholar 

  • Fischli, W., Goldstein, A., Hunkapiller, M. W., and Hood, L. E. (1982b) Two “big” dynorphins from porcine pituitary. Life Sci. 31, 1769–1772.

    PubMed  CAS  Google Scholar 

  • Floras, P., Bidabe, A.-M., Caille, J.-M., Simonnet, G., Lecomte, J.-M., and Sabathie, M. (1983) Double-blind study of effects of enkephalinase inhibitor on adverse reactions to myelography. Am. J. Neuroradiol. 4, 653–655.

    PubMed  CAS  Google Scholar 

  • Fournie-Zaluski, M.-C., Gacel, G., Maigret, B., Premilat, S., and Roques, B. P. (1981) Structural requirements for specific recognition of or S opiate receptors. Mol. Pharmacol. 20, 484–491.

    PubMed  CAS  Google Scholar 

  • Fournie-Zaluski, M.-C., Chaillet, P., Soroca-Lucas, E., Marcais-Callado, H., Costentin, J., and Roques, B. P. (1983) New carboxyalkyl inhibitors of brain enkephalinase: Synthesis, biological activity, and analgesic properties. J. Med. Chem. 26, 60–65.

    PubMed  CAS  Google Scholar 

  • Fournie-Zaluski, M.-C., Chaillet, P., Bouboutou, R., Coulaud, A., Cherot, P., Waksman, G., Costentin, J., and Roques, B. P. (1984) Analgesic effects of kelatorphan, a new highly potent inhibitor of multiple enkephalin degrading enzymes. Eur. J. Pharmacol. 102, 525–528.

    PubMed  CAS  Google Scholar 

  • Fournie-Zaluski, M.-C., Coulaud, A., Bouboutou, R., Chaillet, P., Devin, J., Waksman, G., Costentin, J., and Roques, B. P. (1985) New bidentates as full inhibitors of enkephalin-degrading enzymes: Synthesis and analgesic properties. J. Med. Chem. 28, 1158–1169.

    Google Scholar 

  • Frederickson, R. C. A. (1984) Endogenous Opioids and Related Derivatives, in Analgesics: Neurochemical, Behavioral and Clinical Perspectives ( Kuhar, M. and Pasternak, G., eds.) Raven, New York.

    Google Scholar 

  • Frederickson, R. C. A. and Geary, L. E. (1982) Endogenous opioid peptides: Review of physiological, pharmacological and clinical aspects. Prog. Neurobiol. 19, 19–69.

    PubMed  CAS  Google Scholar 

  • Frederickson, R. C. A., Burgis, V., and Edwards, J. D. (1977) Hyperalgesia induced by naloxone follows diurnal rhythm in responsivity to painful stimuli. Science 198, 756–758.

    PubMed  CAS  Google Scholar 

  • Frederickson, R. C. A., Smithwick, E. L., Shuman, R., and Bemis, K. G. (1981) Metkephamid, a systemically active analog of methionine enkephalin with potent S receptor activity. Science 211, 603–605.

    PubMed  CAS  Google Scholar 

  • Frenk, H. (1983) Pro-and anticonvulsant actions of morphine and the endogenous opioids: Involvement and interactions of multiple opiate and non-opiate systems. Brain Res. Rev. 6, 197–210.

    CAS  Google Scholar 

  • Fricker, L. D., Supattapore, S., and Snyder, S. H. (1982) Enkephalin convertase; a specific carboxypeptidase in adrenal chromaffin granules, brain and pituitary gland. Life Sci 31, 1841–1844.

    PubMed  CAS  Google Scholar 

  • Friedman, H. J., Jen, M.-F., Chang, J.-K., Lee, N. M., and Loh, H. H. (1981) Dynorphin: A possible modulatory peptide on morphine or (3-endorphin analgesia in mouse. Eur. J. Pharmacol. 69, 357–360.

    PubMed  CAS  Google Scholar 

  • Gee, C. E., Chen, C.-L. C., Roberts, J. L., Thompson, R., and Watson, S. J. (1983) Identification of proopiomelanocortin neurones in rat hypothalamus by in situ cDNA-mRNA hybridization. Nature 306, 374–376.

    PubMed  CAS  Google Scholar 

  • Geis, R., Martin, R., and Voigt, K. H. (1984) a-MSH-like peptides from the rat hypothalamus and pituitary: Differences in the degree of N-acetylation. Horm. Metab. Res. 16, 266–267.

    Google Scholar 

  • Geisow, M. J., Deakin, J. F. W., Dostrovsky, J. O., and Smyth, D. G. (1977) Analgesic activity of lipotropin C fragment depends on carboxyl terminal tetrapeptide. Nature 269, 167–168.

    Google Scholar 

  • Gintzler, A. R., Levy, A., and Spector, S. (1976) Antibodies as a means of isolating and characterizing biologically active substances: Presence of a non-peptide, morphine-like compound in the central nervous system. Proc. Natl. Acad. Sci. LISA 73, 2132–2136.

    CAS  Google Scholar 

  • Glickman, J. A., Carson, G. D., and Challis, J. R. (1979) Differential effects of synthetic adrenocorticotropin 1–24 and alpha-melancyte-stimulating hormone on adrenal function in human and sheep fetuses. Endocrinology 104, 34–39.

    PubMed  CAS  Google Scholar 

  • Goldstein, A., Barrett, R. W., James, I. F., Lowney, L. I., Weitz, C. J., Knipmeyer, L. L., and Rapoport, H. (1985) Morphine and other opiates from beef brain and adrenal. Proc. Natl. Acad. Sci. LISA 82, 5203–5207.

    CAS  Google Scholar 

  • Goldstein, A., Fischli, W., Lowney, L. I., Hunkapiller, M., and Hood, L. (1981) Porcine pituitary dynorphin: Complete amino acid sequence of the biologically active heptadecapeptide. Proc. Natl. Acad. Sci. USA 78, 7219–7223.

    PubMed  CAS  Google Scholar 

  • Goldstein, A., Pryor, G. T., Otis, L. S., and Larsen, F. (1976) On the role of endogenous opioid peptides: Failure of naloxone to influence shock escape threshold in the rat. Life Sci. 18, 599–604.

    PubMed  CAS  Google Scholar 

  • Gracely, R. H., Dubner, R., Wolskee, P. J., and Deeter, W. R. (1983) Placebo and naloxone can alter postsurgical pain by separate mechanisms. Nature 306, 264–265.

    PubMed  CAS  Google Scholar 

  • Grevert, P. and Goldstein, A. (1977a) Some effects of naloxone on behavior in the mouse. Psychopharmacology 53, 111–113.

    PubMed  CAS  Google Scholar 

  • Grevert, P. and Goldstein, A. (1977b) Effects of naloxone on experimentally induced ischemic pain and on mood in human subjects. Proc. Natl. Acad. Sci. USA 74, 1291–1294.

    PubMed  CAS  Google Scholar 

  • Grevert, P. and Goldstein, A. (1978) Endorphins: Naloxone fails to alter experimental pain or mood in humans. Science 199, 1093–1095.

    PubMed  CAS  Google Scholar 

  • Grossman, A. and Rees, L. H. (1983) The neuroendocrinology of opioid peptides. Br. Med. Bull. 39, 83–88.

    PubMed  CAS  Google Scholar 

  • Guttman, S. T. and Boissonnas, R. A. (1961) Influence of the structure of the N-terminal extremity of a-MSH on the melanophore-stimulating activity of this hormone. Experientia 17, 265–267.

    Google Scholar 

  • Hamm, R. J. and Knisely, J. S. (1985) Environmentally induced analgesia: An age-related decline in an endogenous opioid system. J. Gerontol. 40, 268–274.

    PubMed  CAS  Google Scholar 

  • Hammond, D. L. ’ (1986) Control Systems for Nociceptive Afferent Processing. The Descending Inhibitory Pathways, in Spinal Afferent Processing ( Yaksh, T. L., ed.) Plenum, New York.

    Google Scholar 

  • Han, J.-S. and Xie, C.-W. (1982) Dynorphin: Potent analgesic effect in spinal cord of the rat. Life Sci. 31, 1781–1784.

    PubMed  CAS  Google Scholar 

  • Han, J.-S., Xie, G.-X., and Goldstein, A. (1984) Analgesia induced by intrathecal injection of dynorphin B in the rat. Life Sci. 34, 1573–1579.

    PubMed  CAS  Google Scholar 

  • Handa, B. K., Lane, A. C., Lord, J. A. H., Morgan, B. A., Rance, M. J., and Smith, C. F. C. (1981) Analogues of 13-LPH 61.64 possessing selective agonist activity at µ opiate receptors. Eur. J. Pharmacol. 70, 531–540.

    PubMed  CAS  Google Scholar 

  • Hayes, A. G., Skingle, M., and Tyers, M. B. (1983) Antinociceptive profile of dynorphin in the rat. Life Sci. 33 (Suppl), 657–660.

    PubMed  CAS  Google Scholar 

  • Herbert, E., Civelli, O., Douglas, J., Martens, G., and Rosen, H. (1985) Generation of diversity of opioid peptides. Biochemica Actions Horm. 12, 1–36.

    CAS  Google Scholar 

  • Herman, B. H. and Goldstein, A. (1985) Antinociception and paralysis induced by intrathecal dynorphin A. J. Pharmacol. Exp. Ther. 232, 27–32.

    PubMed  CAS  Google Scholar 

  • Hokfelt, T., Elde, R., Johansson, O., Terenius, L., and Stein, L. (1977) The distribution of enkephalin-immunoreactive cell bodies in the rat central nervous system. Neurosci. Lett. 5, 25–31.

    PubMed  CAS  Google Scholar 

  • Holaday, J. W. (1983) Cardiovascular effects of endogenous opiate systems. Annu. Rev. Pharmacol. Toxicol. 23, 541–594.

    PubMed  CAS  Google Scholar 

  • Hollt, V., Sanchez-Blazquez, P., and Garzon, J. (1985) Multiple opioid ligands and receptors in the control of nociception. Phil. Trans. R. Soc. Lond. (Biol.) 308, 299–310.

    CAS  Google Scholar 

  • Hollt, V., Tulunay, F. C., Woo, S. K., Loh, H. H., and Herz, A. (1982a) Opioid peptides derived from pro-enkephalin A but not that from proenkephalin B are substantial analgesics after administration into the brain of mice. Eur. J. Pharmacol. 85, 355–356.

    PubMed  CAS  Google Scholar 

  • Hollt, V., Haarman, I., Grimm, C., Herz, A., Tulunay, F. C., and Loh, H. H. (1982b) Pro-enkephalin intermediates in bovine brain and adrenal medulla: Characterization of immunoreactive peptides related to BAM-22P and peptide F. Life Sci. 31, 1883–1886.

    PubMed  CAS  Google Scholar 

  • Hughes, J., Smith, T. H., Kosterlitz, J. W., Fothergill, L. A., Morgan, B. A., and Morris, H. R. (1975) Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature 258, 577–579.

    PubMed  CAS  Google Scholar 

  • Hylden, J. K. and Wilcox, G. L. (1983) Intrathecal opioids block a spinal action of substance P in mice: Functional importance of both and 8 receptors. Eur. J. Pharmacol. 86, 95–98.

    Google Scholar 

  • Imura, H., Kato, Y., Nakai, Y., Kakao, K., Tanaka, I., Jingami, H., Koh, T., Yoshimasa, T., Suda, M., Sakamoto, M., Morii, N., Takahashi, H., Togo, K., and Sugawara, A. (1985) Endogenous opioids and related peptides: From molecular biology to clinical medicine. J. Endocrinol. 107, 147–157.

    PubMed  CAS  Google Scholar 

  • Izquierdo, I. and Netto, C. A. (1985) Roles of fl-endorphin in behavioral regulation. Ann. NY Acad. Sci. 444, 162–177.

    PubMed  CAS  Google Scholar 

  • Jacob, J. J., Tremblay, E. C., and Colombel, M. C. (1974) Facilitation de reactions nociceptives por la naloxone chez la souris et chez le rat. Psychopharmacologica 37, 217–223.

    CAS  Google Scholar 

  • Jacquet, Y. F. (1978) Opiate effects after adrenocorticotropin or I3-endorphin injection in the periaqueductal gray matter of rats. Science 201, 1032–1034.

    PubMed  CAS  Google Scholar 

  • James, I. F., Fischli, W., and Goldstein, A. (1984) Opioid receptor selectivity of dynorphin gene products. J. Pharmacol. Exp. Ther. 228, 88–93.

    PubMed  CAS  Google Scholar 

  • Jingami, H., Nakanishi, S., Imura, H., and Numa, S. (1984) Tissue distribution of messenger RNAs coding for opioid peptide precursors and related RNA. Eur. J. Biochem. 142, 441–447.

    PubMed  CAS  Google Scholar 

  • Johnson, M. W., Mitch, W. E., and Wilcox, C. S. (1985) The cardiovascular actions of morphine and the endogenous opioid peptides. Prog. Cardiovasc. Dis. 27, 435–450.

    PubMed  CAS  Google Scholar 

  • Jones, B. N., Shively, J. E., Kilpatrick, D. L., Kojima, K., and Udenfriend, S. (1982) Enkephalin biosynthetic pathway: A 5300-dalton adrenal polypeptide that terminates at its COOH end with the sequence [Met]enkephalin-Arg-Gly-Leu-COOH. Proc. Natl. Acad. Sci. USA 79, 1313–1315.

    PubMed  CAS  Google Scholar 

  • Kakidani, H., Furutani, Y., Takahashi, H., Noda, M., Morimoto, Y., Ho-rose, T., Asai, M., Inayama, S., Nakanishi, S., and Numa, S. (1982) Cloning and sequence analysis of cDNA for porcine ß-neo-endorphin/ dynorphin precursor. Nature 298, 245–249.

    PubMed  CAS  Google Scholar 

  • Kaneko, T., Nakazawa, T., Ikeda, M., Yamatsu, K., Iwama, T., Wada, T., Satoh, M., and Takagi, H. (1983) Sites of analgesic action of dynorphin. Life Sci. 33 (suppl.), 661–664.

    PubMed  CAS  Google Scholar 

  • Kangawa, K., Matsuo, H., and Igarashi, M. (1979) a-Neo-endorphin: A “big” leu-enkephalin with potent opiate activity from porcine hypothalami. Biochem. Biophys. Res. Comm. 86, 153–160.

    Google Scholar 

  • Kangawa, K., Minamino, N., Chino, N., Sakakibara, S., and Matsuo, H. (1981) The complete amino acid sequence of a-neo-endorphin. Biochem. Biophys. Res. Commun. 99, 871–888.

    PubMed  CAS  Google Scholar 

  • Kavaliers, M. and Hirst, M. (1983) Daily rhythms of analgesia in mice: Effects of age and photoperiod. Brain Res. 279, 387–393.

    PubMed  CAS  Google Scholar 

  • Kawauchi, H. (1983) Chemistry of proopiocortin-related peptides in the salmon pituitary. Arch. Biochem. Biophy. 227, 343–350.

    CAS  Google Scholar 

  • Khachaturian, H., Watson, S. J., Lewis, M. E., Coy, D., Goldstein, A., and Akil, H. (1982) Dynorphin immunocytochemistry in the rat central nervous system. Peptides 3, 941–954.

    PubMed  CAS  Google Scholar 

  • Kilpatrick, D. L., Taniguchi, T., Jones, B. N., Stein, A. S., Shirely, J. E., Hullihan, J., Kimura, S., Stein, S., and Udenfriend, S. (1981) A highly potent 3200-dalton adrenal opioid peptide that contains both a [Met]-and [Leujenkephalin sequence. Proc. Natl. Acad. Sci. USA 78, 3265–3268.

    PubMed  CAS  Google Scholar 

  • Kilpatrick, D. L., Wahlstrom, A., Lahm, H. W., Blacher, R. W., Ezra, E., Fleminger, G., and Udenfriend, S. (1982) Characterization of rimorphin, a new (leu)enkephalin-containing peptide from bovine posterior pituitary glands. Life Sci. 31, 1849–1852.

    PubMed  CAS  Google Scholar 

  • Kimura, S., Lewis, R. V., Stern, A. S., Rossier, J., Stein, S., and Udenfriend, S. (1980) Probable precursors of [Leujenkephalin and [Met]enkephalin in adrenal medulla: Peptides of 3–5 kilodaltons. Proc. Natl. Acad. Sci. USA 77, 1681–1685.

    PubMed  CAS  Google Scholar 

  • Kokka, N. and Fairhurst, A. S. (1977) Naloxone enhancement of acetic acid-induced writhing in rats. Life Sci. 21, 975–980.

    PubMed  CAS  Google Scholar 

  • Kuraishi, Y., Satoh, M., Harada, Y., Akaike, A., Shibata, T., and Takagi, H. (1980) Analgesic action of intrathecal and intracerebral I3-endorphin in rats: Comparison with morphine. Eur. J. Pharmacol. 67, 143–146.

    PubMed  CAS  Google Scholar 

  • Kuraishi, Y., Hirota, N., Satoh, M., and Takagi, H. (1985) Antinociceptive effects of intrathecal opioids, noradrenaline and serotonin in rats: Mechanical and thermal algesic tests. Brain Res. 326, 168–171.

    PubMed  CAS  Google Scholar 

  • Larson, A. A., Vaught, J. L., and Takemori, A. E. (1980) The potentiation of spinal analgesia by leucine enkephalin. Eur. J. Pharmacol. 61, 381–383.

    PubMed  CAS  Google Scholar 

  • Levine, J. D., Gordon, N. C., and Fields, H. L. (1978a) The mechanism of placebo analgesia. Lancet ii, 654–657.

    Google Scholar 

  • Levine, J. D., Gordon, N. C., Jones, R. T., and Fields, H. L. (1978b) The narcotic antagonist naloxone enhances clinical pain. Nature 272, 826827.

    Google Scholar 

  • Levine, J. D., Gordon, N. C., and Fields, H. L. (1979) Naloxone dose dependently produces analgesia and hyperalgesia in post operative pain. Nature 278, 740–741.

    PubMed  CAS  Google Scholar 

  • Lewis, R. V., Stern, A. S., Kimura, S., Rossier, J., Stein, S., and Undenfriend, S. (1980) An about 50,000-dalton protein in adrenal medulla: A common precursor of [Met]- and [Leu]enkephalin. Science 208, 1459–1460.

    Google Scholar 

  • Liebisch, D. C., Weber, E., Kosica, B., Gramsh, C., Hertz, A., and Sei-zinger, B. R. (1986) Isolation and structure of a C-terminally amidated non-opioid peptide, amidorphin-(8–26), from bovine striatum: A major product of proenkephalin in brain but not adrenal medulla. Proc. Natl. Acad. Sci. USA. 83, 1936–1940.

    PubMed  CAS  Google Scholar 

  • Lindberg, I. and Yang, H.-Y. T. (1984) Distribition of mets-enkephalin-are-gly -leu8-immunoreactive peptides in rat brain: Presence of multiple molecular forms. Brain Res. 299, 73–78.

    PubMed  CAS  Google Scholar 

  • Liotta, A. S. and Krieger, D. T. (1980) In vitro biosynthesis and comparative posttranslational processing of immunoreactive precursor corticotropin/ß-endorphin by human placental and pituitary cells. Endocrinology 106, 1504–1511.

    CAS  Google Scholar 

  • Liston, D. R., Vanderhaeghen, J.-J., and Rossier, J. (1983) Presence in brain of synenkephalin, a proenkephalin-immunoreactive protein which does not contain enkephalin. Nature 302, 62–65.

    PubMed  CAS  Google Scholar 

  • Loh, H. H., Tseng, L. F., Wei, W., and Li, C. H. (1976) 13-Endorphin is a potent analgesic agent. Proc. Natl. Acad. Sci. USA 73, 2895–2898.

    Google Scholar 

  • Loh, Y.-P., Eskay, R. L., and Brownstein, M. (1980) A MSH-like peptides in rat brain: Identification and changes in level during development. Science 215, 1125–1127.

    Google Scholar 

  • Lorenz, R. G., Evans, C. J., and Barchas, J. D. (1985) Effects of dehydration on pro-dynorphin derived peptides in the neuro-intermediate lobe of the rat pituitary. Life Sci. 37, 1523–1528.

    PubMed  CAS  Google Scholar 

  • Lorenz, R. G., Tyler, A. N., Faull, K. F., Makk, G., Barchas, J. D., and Evans, C. J. (1986) Characterization of endorphins from the pituitary of the spiny dogfish Squalus acanthias. Peptides 7, 119–126.

    CAS  Google Scholar 

  • Malick, J. B. and Goldstein, J. M. (1977) Analgesic activity of enkephalins following intracerebral administration in the rat. Life Sci. 20, 827–832.

    PubMed  CAS  Google Scholar 

  • Margioris, A. N., Liotta, A. S., Vaudry, H., Bardin, C. W., and Krieger, D. T. (1983) Characterization of immunoreactive proopiomelanocortinrelated peptides in rat testes. Endocrinology 113, 663–671.

    PubMed  CAS  Google Scholar 

  • Martin, W. R., Eades, C. G., Thompson, J. A., Huppler, R. E., and Gilbert, P. E. (1976) The effects of morphine-and nalorphine-like drugs in the nondependent and morphine-dependent chronic spinal dog. J. Pharmacol. Exp. Ther. 197, 517–532.

    PubMed  CAS  Google Scholar 

  • Mendelsohn, L. G., Johnson, B. G., Scott, W. L., and Frederickson, R. C. A. (1985) Thiorphan and analogs: Lack of correlation between potency to inhibit “enkephalinase A” in vitro and analgesic potency in vivo. J. Pharmacol. Exp. Ther. 234, 386–390.

    PubMed  CAS  Google Scholar 

  • Milan, M. J. and Herz, A. (1985) The endocrinology of the opioids. Int. Rev. Neurobiol. 26, 1–83.

    Google Scholar 

  • Milian, M. J., Gramsch, C., Przewlocki, R., Hollt, V., and Herz, A. (1980) Lesions of the hypothalamic arcuate nucleus produce a temporary hyperalgesia and attenuate stress-evoked analgesia. Life Sci. 27, 1513–1523.

    Google Scholar 

  • Minamino, N., Kangawa, K., Chino, N., Sakakibara, S., and Matsuo, H. (1981) ß-Neo-endorphin, a new hypothalamic “big” leu-enkephalin of porcine origin: Its purification and the complete amino acid sequence. Biochem. Biophys. Res. Commun. 99, 864–870.

    PubMed  CAS  Google Scholar 

  • Mizumo, K., Minamino, N., Kangawa, K., and Matzuo, H. (1980) A new family of endogenous “big” met-enkephalins from bovine adrenal medulla: Purification and structure of Docosa (BAM-22P) and eicosapeptide (BAM-20P) with very potent opiate activity. Biochem. Biophys. Res. Commun. 97, 1123–1290.

    Google Scholar 

  • Morley, J. S. (1980) Structure-activity relationships of enkephalin-like peptides. Ann. Rev. Pharmacol. Toxicol. 20, 81–110.

    CAS  Google Scholar 

  • Mosberg, H. I., Hurst, R., Hruby, V. J., Gee, K., Akiyama, K., Yamamura, H. I., Galligan, J. J., and Burks, T. F. (1983) Bis-penicillamine enkephalins possess highly improved specificity toward b receptors. Proc. Natl. Acad. Sci. USA 80, 5871–5874.

    PubMed  CAS  Google Scholar 

  • Nakai, Y., Nakao, K., Oki, S., and Imura, H. (1978) Presence of immunoreactive lipotropin and endorphin in human placenta. Life Sci. 23, 2013–2018.

    PubMed  CAS  Google Scholar 

  • Nakanishi, S., Inoue, A., Kita, T., Nakamura, M., Chang, A. C. Y., Cohen, S. W., and Numa, S. (1979) Nucleotide sequence of cloned cDNA for bovine corticotrophin-ß-lipotropin precursor. Nature 278, 423–427.

    PubMed  CAS  Google Scholar 

  • Nakao, K., Sudz, M., Sakamoto, M., Yoshimasi, T., Morii, N., Ikeda, Y., Yanaihara, C., Yanaihara, N., Numa, S., and Imura, H. (1983) Leumorphin is a novel endogenous opioid peptide derived from preproenkephalin B. Biochem. Biophys. Res. Commun. 117, 695–701.

    PubMed  CAS  Google Scholar 

  • Nakazawa, T., Ikeda, M., Kaneko, T., and Yamatsu, K. (1985) Analgesic effects of dynorphin-A and morphine in mice. Peptides 6, 75–78.

    PubMed  CAS  Google Scholar 

  • Negri, L., Melchiorri, F., Erspamer, G., and Erspamer, V. (1981) Radioimmunoassay of dermorphin-like peptides in mammalian and non-mammalian tissues. Peptides 2 (suppl.), 45–49.

    PubMed  CAS  Google Scholar 

  • Noda, M., Furatani, Y., Takahashi, H., Toyosato, M., Hirose, T., Inayama, S., Nakawishi, S., and Numa, S. (1982) Cloning and sequence analysis of cDNA for bovine adrenal preproenkephalin. Nature 295, 202–206.

    PubMed  CAS  Google Scholar 

  • O’Donohue, T. L. and Dorsa, D. M. (1982) The opiomelanotropinergic neuronal and endocrine systems. Peptides 3, 353–395.

    PubMed  Google Scholar 

  • O’Donohue, T. L., Handelmann, G. E., Miller, R. L., and Jacobowitz, D. M. (1982) N-Acetylation regulates the behavioral activity of a-melanotrophin in a multineurotransmitter neuron. Science 215, 1125–1127.

    Google Scholar 

  • Offermeier, J. and Van Rooyen, J. M. (1984) Opioid drugs and their receptors: A summary of the present state of knowledge. South African Med. J. 66, 299–305.

    CAS  Google Scholar 

  • Oka, K., Kandrowitz, J. D., and Spector, S. (1985) Isolation of morphine from toad skin. Proc. Natl. Acad. Sci. USA 82, 1852–1854.

    PubMed  CAS  Google Scholar 

  • Olson, G. A., Olson, R. D., and Kastin, A. J. (1985) Endogenous opiates 1984. Peptides 6, 769–791.

    PubMed  CAS  Google Scholar 

  • Oyama, T., Jin, T., Yamaya, R., Ling, N., and Guillemin, R. (1980) Profound analgesic effects of I3-endorphin in man. Lancet i, 122–124.

    Google Scholar 

  • Paterson, S. J., Robson, L. E., and Kosterlitz, H. W. (1983) Classification of opioid receptors. Br. Med. Bull. 39, 31–36.

    PubMed  CAS  Google Scholar 

  • Paterson, S. J., Corbett, A. D., Gillan, M. G. C., Kosterlitz, H. W., McKnight, A. T., and Robson, L. E. (1984) Radioligands for probing opioid receptors. J. Recept. Res. 4, 143–154.

    PubMed  CAS  Google Scholar 

  • Piercey, M. F., Varner, K., and Schroeder, L. A. (1982) Analgesic activity of intraspinally administered dynorphin and ethylketocyclozocine. Eur J. Pharmacol. 80, 283–284.

    PubMed  CAS  Google Scholar 

  • Pintar, J. E., Schachter, B. S., Herman, A. B., Durgerian, S., and Krieger, D. T. (1984) Characterization and localization of proopiomelanocortin messenger RNA in the adult rat testis. Science 225, 632–634.

    PubMed  CAS  Google Scholar 

  • Plotnikoff, N. P., Murgo, A. J., Miller, G. C., Cordes, C. N., and Faith, R. E. (1985) Enkephalins: Immunomodulators. Fed. Proc. 44, 118–122.

    PubMed  CAS  Google Scholar 

  • Porreca, F. and Burks, T. F. (1983) The spinal cord as a site of opioid effects on gastrointestinal transit in the mouse. J. Pharmacol. Exp. Ther. 227, 22–27.

    PubMed  CAS  Google Scholar 

  • Porreca, F., Mosberg, H. I., Hurst, R., Hruby, V. J., and Burks, T. F. (1984) Roles of mu, delta and kappa opioid receptors in spinal and supraspinal mediation of gastrointestinal transit effects and hot-plate analgesia in the mouse. J. Pharmacol. Exp. Ther. 230, 341–348.

    PubMed  CAS  Google Scholar 

  • Porreca, F., Mosberg, H. I., Omnaas, J. R., Burks, T. F., and Cowan, A. (1987a) Supraspinal and spinal potency of selective opioid agonists in the mouse writhing test. J. Pharmacol. Exp. Ther. 240, 890–894.

    PubMed  CAS  Google Scholar 

  • Porreca, F., Heyman, J. S., Mosberg, H. I., Omnaas, J. R., and Vaught, J. L. (1987b) Role of mu and delta receptors in the supraspinal and spinal analgesic effects of ED-Pent, D-Pens]enkephalin in the mouse. J. Pharmacol. Exp. Ther. 241, 393–400.

    PubMed  CAS  Google Scholar 

  • Procacci, P., Della Corte, M., Zappi, M., Romano, S., Maresca, M., and Voegelin, M. R. (1972) Pain Threshold Measurements in Man, in Recent Advances on Pain (Pathophysiology and Clinical Aspects) ( Bonica, J. T., Procacci, P., and Pagni, C. A., eds.) C. C. Thomas, Springfield, Illinois.

    Google Scholar 

  • Przewlocki, R., Shearman, G. T., and Herz, A. (1983a) Mixed opioid/nonopioid effects of dynorphin and dynorphin related peptides after their intrathecal injection in rats. Neuropeptides 3, 233–240.

    PubMed  CAS  Google Scholar 

  • Przewlocki, R., Stala, L., Greczek, M., Shearman, G. T., Przewlocka, B., and Herz, A. (1983b) Analgesic effects of p, 8 and K-opiate agonists and, in particular, dynorphin at the spinal level. Life Sci. 33 (suppl.), 649–652.

    PubMed  CAS  Google Scholar 

  • Rees, L. H., Burke, C. W., Chard, T., Evans, S. W., and Letchworth, A. T. (1975) Possible placental origin of ACTH in normal human pregnancy. Nature 254, 620.

    PubMed  CAS  Google Scholar 

  • Rodbard, D., Costa, T., Shimohigashi, Y., and Krumins, S. (1983) Dimeric pentapeptide and tetrapeptide enkephalins: New tools for the study of 8 opioid receptors. J. Recept. Res. 3, 21–33.

    PubMed  CAS  Google Scholar 

  • Roemer, D., Buscher, H. H., Hill, R. C., Pless, J., Bauer, W., Cardinaux, F., Closse, A., Hauser, D., and Huguenin, R. (1977) A synthetic enkephalin analogue with prolonged parenteral and oral analgesic activity. Nature 268, 547–549.

    PubMed  CAS  Google Scholar 

  • Roques, B. P., Fournie-Zaluski, M.-C., Soroca, E., Lecomte, J. M., Malfroy, B., Llorens, C., and Schwartz, J.-C. (1980) The enkephalinase inhibitor thiorphan shows antinociceptive activity in mice. Nature 288, 286–288.

    PubMed  CAS  Google Scholar 

  • Roques, B. P., Lucas-Soroca, E., Chaillet, P., Costentin, J., and FournieZaluski, M.-C. (1983) Complete differentiation between enkephalinase and angiotensin-converting enzyme inhibition by retro-thiorphan. Proc. Natl. Acad. Sci. USA 80, 3178–3182.

    PubMed  CAS  Google Scholar 

  • Ruprecht, J. Ukponmwan, O. E., Admiraal, P. V., and Dzolijic, M. R. (1983) Effect of phosphoramidon—a selective enkephalinase inhibitor—on nociception and behavior. Neurosci. Lett. 41 331–335.

    Google Scholar 

  • Sandyk, R. (1985) The endogenous opioid system in neurological disorders of the basal ganglia. Life Sci. 37, 1655–1663.

    PubMed  CAS  Google Scholar 

  • Schick, R. and Schusdziarra, V. (1985) Physiological, pathophysiological and pharmacological aspects of exogenous and endogenous opiates. Clin. Physiol. Biochem. 3, 43–60.

    PubMed  CAS  Google Scholar 

  • Schmauss, C. and Emrich, H. M. (1985) Dopamine and the action of opiates: A reevaluation of the dopamine hypothesis of schizophrenia with special consideration of the role of endogenous opioids in the pathogenesis of schizophrenia. Biol. Psychiatry 20, 1211–1231.

    PubMed  CAS  Google Scholar 

  • Schmauss, C. and Yaksh, T. L. (1984) In vivo studies on spinal opiate receptor systems mediating antinociception. II. Pharmacological profiles suggesting a differential association of µ, 8 and K receptors with visceral chemical and cutaneous thermal stimuli in the rat. J. Pharmacol. Exp. Ther. 228, 1–12.

    PubMed  CAS  Google Scholar 

  • Schmauss, C., Shimohigashi, Y., Jensen, T. S., Rodbard, D., and Yaksh, T. L. (1985) Studies on spinal opiate receptor pharmacology. III. Analgetic effects of enkephalin dimers as measured by cutaneous-thermal and visceral-chemical evoked responses. Brain Res. 337, 209–215.

    PubMed  CAS  Google Scholar 

  • Schultzberg, M., Hokfelt, T., Lundberg, J. M., Terenius, L., Elfrin, L., and Elde R. (1978) Enkephalin-like immunoreactivity in nerve terminals in sympathetic ganglia and adrenal medulla and in adrenal medullary gland cells. Acta Physiolog. Scand. 103, 475–477.

    CAS  Google Scholar 

  • Schuman, C. D., Gmerek, D. E., Mosberg, H. I., Rice, K. C., Jacobson, A. E., and Woods, J. H. (1987) Tail flick and analgesia following intracerebroventricular administration of opioids in the rat. I. Direct involvement of mu but not delta receptors. J. Pharmacol. Exp. Ther. (submitted).

    Google Scholar 

  • Schwartz, J. C., Costentin, J., and Lecomte, J. M. (1985) Pharmacology of enkephalinase inhibitors. Trends Pharm. Sci. 6, 472–476.

    CAS  Google Scholar 

  • Scott, W. L., Mendelsohn, L. G., Cohen, M. L., Evans, D. A., and Frederickson, R. C. A. (1985) Enantiomers of [R,S]-thiorphan: Dissociation of analgesia from enkephalinase A inhibition. Life Sci. 36, 1307–1313.

    PubMed  CAS  Google Scholar 

  • Seizinger, B. R., Liebisch, D. C., Gramsch, C., Herz, A., Weber, E., Evans, C. J., Esch, F. S., and Bohlen, P. (1985) Isolation and structure of a novel C-terminally amidated opioid peptide, amidorphin, from bovine adrenal medualla Nature 313, 57–62.

    Google Scholar 

  • Shimohigashi, Y., Costa, T., Chen, H.-C., and Rodbard, D. (1982) Dimeric tetrapeptide enkephalins display extraordinary selectivity for the 8 opiate receptor. Nature 297, 333–335.

    PubMed  CAS  Google Scholar 

  • Smyth, D. G. (1983) 0-Endorphin and related peptides in pituitary, brain, pancreas and antrum. Br. Med. Bull. 39, 25–30.

    Google Scholar 

  • Smyth, D. G., Massey, D. E., Zakarian, S., and Finnie, M. D. A. (1979) Endorphins are stored in biologically active and inactive forms: Isolation of a-N-acetyl peptides. Nature 279, 252–254.

    PubMed  CAS  Google Scholar 

  • Spampinato, S. and Candeletti, S. (1985) Characterization of dynorphin A-induced antinociception at spinal level. Eur. J. Pharmacol. 110, 21–30.

    PubMed  CAS  Google Scholar 

  • Stern, A. S., Jones, B. N., Shively, J. E., Stanley, S., and Udenfriend, S. (1981) Two adrenal opioid polypeptides: Proposed intermediates in the processing of proenkephalin. Proc. Natl. Acad. Sci. USA 78, 1962–1966.

    PubMed  CAS  Google Scholar 

  • Stern, A. S., Lewis, R. V., Kimua, S., Rossier, J., Gerber, L. D., Brink, L., Stein, S., and Udenfriend, S. (1979) Isolation of the opioid heptapeptide Met-enkephalin[Argb, Phe’] from bovine adrenal medullary granules and striatum. Proc. Natl. Acad. Sci. USA 76, 6680–6683.

    Google Scholar 

  • Takagi, H., Satoh, M., Akaike, A., Shibata, T., Yajima, H., and Ogawa, H. (1978) Analgesia by enkephalins injected into the nucleus reticularis gigantocellularis of rat medulla oblongata. Eur. J. Pharmacol. 49, 113116.

    Google Scholar 

  • Tortella, F. C., Cowan, A., and Adler, M. W. (1981) Comparison of the anticonvulsant effects of opioid peptides and etorphine. Life Sci. 29, 1039–1045.

    PubMed  CAS  Google Scholar 

  • Tortella, F. C., Long, J. B., and Holaday, J. W. (1985) Endogenous opioid systems: Physiological role in the self-limitation of seizures. Brain Res. 332, 174–178.

    Google Scholar 

  • Tseng, L.-F. (1981) Comparison of analgesic and body temperature responses to intrathecal 3-endorphin and o-Ala2-D-Leu5-enkephalin. Life Sci. 29, 1417–1424.

    PubMed  CAS  Google Scholar 

  • Tseng, L.-F. and Fujimoto, J. M. (1985) Differential actions of intrathecal naloxone on blocking the tail-flick inhibition induced by intra-ventricular 0-endorphin and morphine in rats. J. Pharmacol. Exp. Ther. 232, 74–79.

    PubMed  CAS  Google Scholar 

  • Tseng, L.-F., Wei, E. T., Loh, H. H., and Li, C. H. (1980) 0-Endorphin: Central sites of analgesia, catalepsy and body temperature changes in rats. J. Pharmacol. Exp. Ther. 214, 328–332.

    Google Scholar 

  • Tsong, S. D., Phillips, D., Halmi, N., Liotta, A. S., Margioris, A., Bardin, C. W., and Krieger, D. T. (1982) ACTH and 0-endorphin-related peptides are present in multiple sites in the reproductive tract of the male rat. Endocrinology 110, 2204–2206.

    PubMed  CAS  Google Scholar 

  • Tung, A. S. and Yaksh, T. L. (1982) In vivo evidence for multiple opiate receptors mediating analgesia in the rat spinal cord. Brain Res. 247, 75–83.

    PubMed  CAS  Google Scholar 

  • Turner, A. J., Matsas, R., and Kenny, A. J. (1985) Are there neuropeptide-specific peptidases? Biochem. Pharmacol. 34, 1347–1356.

    PubMed  CAS  Google Scholar 

  • Tyers, M. B. (1980) A classification of opiate receptors that mediate antinociception in animals. Br. J. Pharmacol. 69, 503–512.

    PubMed  CAS  Google Scholar 

  • Vaught, J. L. and Barrett, R. (1987) Modulation of Morphine Analgesia by Opioid Peptides: Implications for Antinociceptive Processes, in Advances in Pain and Headache Research: Neurotransmitters and Pain (Akil, H., ed.) Karger (in press).

    Google Scholar 

  • Vaught, J. L., Rothman, R. B., and Westfall, T. C. (1982) µ and 8 receptors: Their role in analgesia and in the differential effects of opioid peptides on analgesia. Life Sci. 30, 1443–1455.

    Google Scholar 

  • VonVoigtlander, P. F., Lahti, R. A., and Ludens, J. H. (1983) U-50,488: A selective and structurally novel (K) opioid agonist. J. Pharmacol. Exp. Ther. 224, 7–12.

    PubMed  CAS  Google Scholar 

  • Walker, J. M., Akil, H., and Watson, S. J. (1980) Evidence for homologous actions of pro-opiocortin products. Science 210, 1247–1249.

    PubMed  CAS  Google Scholar 

  • Walker, J. M., Moises, H. C., Coy, D. H., Baldrighi, G., and Akil, H. (1982) Nonopiate effects of dynorphin and des-tyr-dynorphin. Science 218, 1136–1138.

    PubMed  CAS  Google Scholar 

  • Ward, S. J. and Takemori, A. E. (1983) Relative involvement of µ, K and 8 receptor mechanisms in opiate-mediated antinociception in mice. J. Pharmacol. Exp. Ther. 224, 525–530.

    PubMed  CAS  Google Scholar 

  • Watkins, L. R. and Mayer, D. J. (1982) Organization of endogenous opiate and nonopiate pain control systems. Science 216, 1185–1192.

    PubMed  CAS  Google Scholar 

  • Watson, S. J., Akil, H., Richard, III, C. W., and Barchas, J. D. (1978) Evidence for two separate opiate peptide neuronal systems. Nature 275, 226–228.

    Google Scholar 

  • Watson, S. J., Khachaturian, H., Akil, H., Coy, D. H., and Goldstein, A. (1982) Comparison of the distribution of dynorphin systems and enkephalin systems in brain. Science 218, 1134–1136.

    Google Scholar 

  • Weber, E., Evans, C. J., and Barchas, J. D. (1981) Acetylated and nonacetylated forms of endorphin in pituitary and brain. Biochem. Biophys. Res. Commun. 103, 982–989.

    PubMed  CAS  Google Scholar 

  • Weber, E., Evans, C. J., and Barchas, J. D. (1982a) Predominance of the amino-terminal octapeptide fragment of dynorphin in rat brain regions. Nature 299, 77–79.

    Google Scholar 

  • Weber, E., Evans, C. J., Chang, J.-K., and Barchas, J. D. (1982b) Brain distributions of a-neo-endorphin: Evidence for regional processing differences. Biochem. Biophys. Res. Comm. 108, 81–88.

    PubMed  CAS  Google Scholar 

  • Weber, E., Evans, C. J., Chang, J.-K., and Barchas, J. D. (1982c) Antibodies specific for a-N-acetyl 13-endorphins: Radioimmunoassays and detection of acetylated 13-endorphins in pituitary extracts. J. Neurochem. 38, 436–477.

    Google Scholar 

  • Weber, E., Roth, K. A., and Barchas, J. D. (1982d) Immunohistochemical distribution of a-neo-endorphin/dynorphin neuronal systems in rat brain: Evidence for colocalization. Proc. Natl. Acad. Sci. USA 79, 3062–3066.

    PubMed  CAS  Google Scholar 

  • Weber, E., Esch, F. S., Bohlen, P., Barchas, J. D., and Evans, C. J. (1983a) Metorphamide: Isolation, structure and biologic activity of a novel amidated opioid actapeptide from bovine brain. Proc. Natl. Acad. Sci. USA 80, 7362–7366.

    PubMed  CAS  Google Scholar 

  • Weber, E., Evans, C. J., and Barchas, J. D. (1983b) Multiple endogenous ligands for opioid receptors. Trends. Neurosci. 6, 333–336.

    CAS  Google Scholar 

  • Wen, H. L., Mehal, Z. D., Ong, B. H., Ho, W. K. K., and Wen, D. Y. K. (1985) Intrathecal administration of (3-endorphin and dynorphin-(1–13) for the treatment of intractable pain. Life Sci. 37, 1213–1220.

    PubMed  CAS  Google Scholar 

  • Wood, P. L., Rackam, A., and Richard, J. (1981) Spinal analgesia, comparison of the mu agonist morphine and the kappa agonist ethylketocylclazocine. Life Sci. 28, 2119–2125.

    PubMed  CAS  Google Scholar 

  • Woolf, C. J. (1980a) Analgesia and hyperalgesia produced in the rat by intrathecal naloxone. Brain Res. 189, 593–597.

    PubMed  CAS  Google Scholar 

  • Woolf, C. J. (1980b) Intracerebral naloxone and the reaction to thermal noxious stimulation in the rat. Brain Res. 190, 578–583.

    PubMed  CAS  Google Scholar 

  • Wuster, M., Schulz, R., and Herz, A. (1979) Specificity of opioids towards the µ, 8 and e opiate receptors. Neurosci. Lett. 15, 193–198.

    PubMed  CAS  Google Scholar 

  • Wuster, M., Schulz, R., and Herz, A. (1980) Opiate activity and receptor selectivity of dynorphin 1.13 and related peptides. Neurosci. Lett. 20, 79–83.

    PubMed  CAS  Google Scholar 

  • Wybran, J. (1985) Enkephalins and endorphins as modifiers of the immune system: Present and future. Fed. Proc. 44, 92–94.

    PubMed  CAS  Google Scholar 

  • Xie, G. X., Han, J. S., and Hollt, V. (1983) Electroacupuncture analgesia blocked by microinjection of anti-ß-endorphin antiserum into periaqueductal gray of the rat. Int. J. Neurosci. 18, 287–292.

    PubMed  CAS  Google Scholar 

  • Xu, S.-F., Lu, W.-X., Zhou, K.-R., He, X.-P., Niu, S.-F., Xu, W.-M., Zhang, A.-L., Weber, E., and Chang, J. K. (1985) The analgesic and respiratory depressant actions of metorphamide in mice and rabbits. Neuropeptides 6, 121–131.

    PubMed  CAS  Google Scholar 

  • Yaksh, T. L. (1983) In vivo studies on spinal opiate receptor systems mediating antinociception I. µ and 8 receptor profiles in the primate. J. Pharmacol. Exp. Ther. 226, 303–316.

    PubMed  CAS  Google Scholar 

  • Yaksh, T. L. (1984) Multiple opioid receptor systems in brain and spinal cord. 2. Eur. J. Anesthesiol. 1, 201–243.

    CAS  Google Scholar 

  • Yaksh, T. L. and Elde, R. P. (1981) Factors governing release of methionine enkephalin-like immunoreactivity from mesencephalon and spinal cord of the cat in vivo. J. Neurophysiol. 46, 1056–1075.

    PubMed  CAS  Google Scholar 

  • Yaksh, T. L. and Harty, G. J. (1982) Effects of thiorphan on the antinociceptive actions of intrathecal [o-Ala2,Met5] enkephalin. Eur. J. Pharmacol. 79, 293–300.

    PubMed  CAS  Google Scholar 

  • Yaksh, T. L. and Henry, J. L. (1978) Antinociceptive effects of intrathecally administered human 13 endorphin in the rat and cat. Can. J. Physiol. Pharmacol. 56, 754–759.

    PubMed  CAS  Google Scholar 

  • Yaksh, T. L. and Noueihed, R. (1985) The physiology and pharmacology of spinal opiates. Ann. Rev. Pharmacol. Toxicol. 25, 433–462.

    CAS  Google Scholar 

  • Yaksh, T. L., Huang, S. P., Rudy, T. A., and Frederickson, R. C. A. (1977) The direct and specific opiate-like effect of Mets-enkephalin and analogues on the spinal cord. Neuroscience 2, 593–596.

    PubMed  CAS  Google Scholar 

  • Yaksh, T. L., Gross, K. F., and Li, C. H. (1982) Studies on the intrathecal effect of 13-endorphin in primate. Brain Res. 241, 261–269.

    PubMed  CAS  Google Scholar 

  • Yaksh, T. L., Terenius, L., Nyberg, F., Jhamandas, K., and Wang, J-Y. (1983) Studies on the release by somatic stimulation from rat and cat spinal cord of active materials which displace dihydromorphine in an opiate-binding assay. Brain Res. 268, 119–128.

    PubMed  CAS  Google Scholar 

  • Yang, H.-Y.-T., Panula, P., Tang, J., and Costa, E. (1983) Characterization and location of met5-enkephalin-arg6-phe7 stored in various rat brain regions. J. Neurochem. 40, 969–976.

    PubMed  CAS  Google Scholar 

  • Yen, S. S. C., Quigley, M. E., Reid, R. L., Ropert, J. F., and Cetel, N. S. (1985) Neuroendocrinology of opioid peptides and their role in the control of gonadotropin and prolactin secretion. Am. J. Obstet. Gynecol. 152, 485–493.

    PubMed  CAS  Google Scholar 

  • Zajac, J-M., Gacel, G., Petit, F., Dudey, P., Rossignol, P., and Roques, B. P. (1983) Tyr-D-Thr-Gly-Phe-Leu-Thr: A new highly potent and fully specific agonist for opiate S receptors. Biochem. Biophys. Res. Commun. 111, 390–397.

    PubMed  CAS  Google Scholar 

  • Zakarian, S. and Smyth, D. (1979) Distribution of active and inactive forms of endorphins in rat pituitary and brain. Proc. Natl. Acad. Sci. USA 76, 5972–5976.

    PubMed  CAS  Google Scholar 

  • Zakarian, S. and Smyth, D. G. (1982) 13-Endorphin is processed differently in specific regions of rat pituitary and brain. Nature 296, 250–252.

    Google Scholar 

  • Zamir, N., Weber, E., Palkovits, M., and Brownstein, M. (1984) Differential processing of prodynorphin and proenkephalin in specific regions of the rat brain. Proc. Natl. Acad. Sci. USA 81, 6886–6889.

    PubMed  CAS  Google Scholar 

  • Zlokovic, B. V., Begley, D. J., and Chain-Eliash, D. G. (1985) Blood-brain barrier permeability to leucine-enkephalin, D-Alanine2-D-Leucine5-enkephalin and their N-terminal amino acid (tyrosine). Brain Res. 336, 125–132.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Evans, C.J., Hammond, D.L., Frederickson, R.C.A. (1988). The Opioid Peptides. In: Pasternak, G.W. (eds) The Opiate Receptors. The Receptors. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-990-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-990-1_2

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-6768-1

  • Online ISBN: 978-1-60761-990-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics