Skip to main content

Role of Opioid Receptors in Narcotic Tolerance/ Dependence

  • Chapter

Part of the book series: The Receptors ((REC))

Abstract

The signal feature of opioid drugs is their ability to induce tolerance and dependence when given chronically to humans or experimental animals. Tolerance may be defined as a state in which the dose of drug required to achieve a given effect is larger than normal. Dependence is a state in which regular doses of the drug are required to prevent withdrawal symptoms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abood, M. E., Law, P. Y., and Loh, H. H. (1985) Pertussis toxin treatment modifies opiate action in the rat brain striatum. Biochem. Biophys. Res. Comm. 127, 477–483.

    PubMed  CAS  Google Scholar 

  • Andrade, R., Vandermaelen, C., and Aghajanian, G. (1983) Morphine tolerance and dependence in the locus coeruleus: single cell studies in brain slices. Eur. J. Pharmacol. 91, 161–169.

    PubMed  CAS  Google Scholar 

  • Baram, D. and Simantov, R. (1983) Enkephalins and opiate agonists control calmodulin distribution in neuroblastoma-glioma cells. J. Neurochem. 40, 55–63.

    PubMed  CAS  Google Scholar 

  • Basbaum, A. I. and Fields, H. L. (1984) Endogenous pain control systems: Brainstem spinal pathways and endorphin circuitry. Ann. Rev. Neurosci. 7, 309–338.

    PubMed  CAS  Google Scholar 

  • Blanchard, S. G., Chang, K.-J., and Cuatrecasas, P. (1983) Characterization of the association of tritiated enkephalin with neuroblastoma cells under conditions optimal for receptor down-regulation. J. Biol. Chem. 258, 1092–1097.

    PubMed  CAS  Google Scholar 

  • Blume, A. J. (1978) Interaction of ligands with the opiate receptors of brain membranes: Regulation by ions and nucleotides. Proc. Natl. Acad. Sci. USA 75, 1713–1717.

    PubMed  CAS  Google Scholar 

  • Brase, D. E. (1979) Roles of serotonin and gamma-aminobutyric acid in opioid effect. Adv. Biochem. Psychopharmacol. 20, 409–428.

    PubMed  CAS  Google Scholar 

  • Brostrom, M. A., Brostrom, C. O., Breckenridge, B. M., and Wolff, D. L. (1978) Calcium-dependent regulation of brain adenylate cyclase. Adv. Cyclic Nucleotide Res. 9, 85–99.

    PubMed  CAS  Google Scholar 

  • Brown, M. S., Anderson, R. G. W., and Goldstein, J. L. (1983) Recycling receptors: The round-trip itinerary of migrant membrane proteins. Cell 32, 663–667.

    PubMed  CAS  Google Scholar 

  • Chaillet, P., Coulaud, A., Fournie-Zaluski, M. C., Gacel, G., Roques, B. P., and Costentin, J. (1983) Pain control by endogenous enkephalins is mediated by mu opioid receptors. Life Sci. 33, ( Suppl. I), 685–688.

    Google Scholar 

  • Chaillet, P., Coulaud, A., Zajac, J.-M., Fournie-Zaluski, M. C., Costentin, J., and Roques, B. P. (1984) The mu rather than the delta subtype of opioid receptors appears to be involved in enkephalin-induced analgesia. Eur. J. Pharmacol. 101, 83–90.

    PubMed  CAS  Google Scholar 

  • Chang, K.-J. (1984) Opioid receptors: Multiplicity and sequelae of ligand- receptor interactions, in The Receptors vol. I, Academic, New York.

    Google Scholar 

  • Chang, K.-J. and Cuatrecasas, P. (1979) Multiple opiate receptors: Enkephalins and morphine bind to receptors of different specificity. J. Biol. Chem. 254, 2610–2618.

    PubMed  CAS  Google Scholar 

  • Chang, K. J., Eckel, R. W., and Blanchard, S. G. (1982) Opioid peptides induce reduction of enkephalin receptors in cultured neuroblastoma cells. Nature 296, 446–448.

    PubMed  CAS  Google Scholar 

  • Chapman, D. B. and Way, E. L. (1980) Metal ion interactions with opiates. Ann. Rev. Pharmacol. Toxicol. 20, 553–579.

    CAS  Google Scholar 

  • Cheung, W. Y. (1981) Discovery and recognition of calmodulin: A personal account. J. Cyclic Nucleotide Res. 7, 71–84.

    PubMed  CAS  Google Scholar 

  • Clouet, D. H. and Yonehara, N. (1984) Biochemical Reactions Between Opiate Receptor Binding and Inhibition of Neurotransmission, in Mechanisms of Tolerance and Dependence (C.W. Sharp, ed.) NIDA Research Monograph 54, US Government Printing Office, Washington DC.

    Google Scholar 

  • Collier, H. O. J. and Tucker, J. F. (1984) Sites and Mechanisms of Dependence in the Myenteric Plexus of the Guinea Pig Ileum, in Mechanisms of Tolerance and Dependence (C. W. Sharp, ed.) NIDA Research Monograph 54, US Government Printing Office, Washington, DC, pp. 81–94.

    Google Scholar 

  • Contreras, P. C. and Takemori, A. E. (1984) Antagonism of morphine-induced analgesia, tolerance and dependence by alpha-melanocytestimulating hormone. J. Pharmacol. Exp. Ther. 229, 21–26.

    PubMed  CAS  Google Scholar 

  • Cooper, D. M. F., Londos, C., Gill, D. L., and Rodbell, M. (1982) Opiate receptor-mediated inhibition of adenylate cyclase in rat striatal plasma membranes. J. Neurochem. 38, 1164–1167.

    PubMed  CAS  Google Scholar 

  • Crain, S. M. (1984) Spinal cord tissue culture models for analyses of opioid analgesia, tolerance and plasticity. In Mechanisms of Tolerance and Dependence (Sharp, C. W., ed.) NIDA Research Monograph 54, US Government Printing Office, Washington, DC, pp. 260–292.

    Google Scholar 

  • Crain, S. M., Crain, B., Peterson, E. R., and Simon, E. J. (1978) Selective depression by opioid peptides of sensory-evoked dorsal horn network responses in organized spinal cord cultures. Brain Res. 157, 196–201.

    PubMed  CAS  Google Scholar 

  • Crain, S. M., Crain, B., Peterson, E. R., Hiller, J. M., and Simon, E. J. (1982a) Exposure to 4-aminopyridine prevents depressant effects of opiates on sensory-evoked dorsal horn network responses in spinal cord cultures. Life Sci. 31, 235–240.

    PubMed  CAS  Google Scholar 

  • Crain, S. M., Crain, B., and Peterson, E. R. (1982b) Development of cross-tolerance to 5-hydroxytryptamine in organotypic cultures of mouse spinal cord-ganglia during chronic exposure to morphine. Life Sci. 51, 241–247.

    Google Scholar 

  • Creese, I. and Sibley, D. R. (1981) Receptor adaptations to centrally acting drugs. Ann. Rev. Pharmacol. Toxicol. 21, 357–391.

    CAS  Google Scholar 

  • Creese, I., Burt, D., and Snyder, S. (1977) Dopamine receptor binding enhancement accompanies lesion-induced behavioral super-sensitivity Science 197, 596–598.

    PubMed  CAS  Google Scholar 

  • Davis, N. E., Akera, T., and Brody, T. M. (1979) Reduction of opiate binding to brainstem slices associated with the development of tolerance to morphine in rats. J. Pharmacol. Exp. Ther. 211, 112–119.

    PubMed  CAS  Google Scholar 

  • Dingledine, R., Valentino, R. J., Bostock, E., King, M. E., and Chang, K.-J. (1983) Down-regulation of delta but not mu opioid receptors in the hippocampal slice associated with loss of physiological response. Life Sci. 33 (suppl. I), 333–336.

    Google Scholar 

  • Domino, E. F. (1979) Opiate interactions with cholinergic neurons. Adv. Biochem. Psychopharmacol. 20, 339–355.

    PubMed  CAS  Google Scholar 

  • Duggan, A. W., Hall, J. G., and Headley, P. M. (1977) Suppression of transmission of nociceptive impulses by morphine: Selective effects of morphine administered in the region of the substantia gelatinosa. Br. J. Pharmacol. 61, 65–76.

    PubMed  CAS  Google Scholar 

  • Faris, P. L., Komisaruk, B. R., Watkins, L. R., and Mayer, D. L. (1983) Evidence for the neuropeptide cholecystokinin as an antagonist of opiate analgesia. Science 219, 310–312.

    PubMed  CAS  Google Scholar 

  • Frederickson, R. C. D., Norris, F. H., and Hewes, C. R. (1975) Effects of naloxone and acetylcholine on medial thalamic and cortical units in naive and morphine-dependent rats. Life Sci. 17, 81–82.

    PubMed  CAS  Google Scholar 

  • French, E. and Zieglgansberger, W. (1982) The excitatory response of in vitro hippocampal pyramidal cells to normorphine and methionine-enkephalin may be mediated by different receptor populations. Exp. Brain Res. 48, 238–244.

    PubMed  CAS  Google Scholar 

  • Friedman, H. J., Jen, M. F., Chang, J. K., Lee, N. M., and Loh, H. H. (1981) Dynorphin: A possible modulatory peptide on morphine or beta-endorphin analgesia in mouse. Eur. J. Pharmacol. 69, 351–360.

    Google Scholar 

  • Fry, J. P., Herz, A., and Zieglgansberger, W. (1980) A demonstration of naloxone-precipitated withdrawal on single neurons in the morphinetolerant/dependent rat brain. Br. J. Pharmacol. 68, 585–592.

    PubMed  CAS  Google Scholar 

  • Gardner, E. L., Zukin, R. S., and Makman, M. (1980) Modulation of opiate receptor binding in striatum and amygdala by selective mesencephalic lesions. Brain Res. 194, 233–239.

    Google Scholar 

  • Gillan, M. G. C., Kosterlitz, H. W., Robson, L. E., and Waterfield, A. A. (1979) The inhibitory effects of presynaptic alpha-adrenoceptor agonists on contractions of guinea pig ileum and mouse vas deferens in the morphine-dependent and withdrawn states produced in vitro. Br. J. Pharmacol. 66, 601–608.

    CAS  Google Scholar 

  • Gilman, A. G. (1984) Guanine nucleotide-binding regulatory proteins and dual control of adenylate cyclase. J. Clin. Invest. 73, 1–4.

    PubMed  CAS  Google Scholar 

  • Goldstein, A. (1974) Drug tolerance and physical dependence, in Principles of Drug Action ( A. Goldstein, L. Aronow, and S. M. Kalman, eds.) Harper & Row, New York.

    Google Scholar 

  • Goldstein, D. B. and Goldstein, A. (1961) Possible role of enzyme inhibition and repression in drug tolerance and addiction. Biochem. Pharmacol. 8, 48.

    Google Scholar 

  • Goldstein, A. and Goldstein, D. B. (1968) Enzyme expansion theory of drug tolerance and physical dependence. Res. Publ. Assoc. Ment. Dis. 46, 265–267.

    CAS  Google Scholar 

  • Goldstein, A. and Schulz, R. (1973) Morphine tolerant longitudinal muscle strip from guinea pig ileum. Br. J.Pharmacol. 48, 655–666.

    PubMed  CAS  Google Scholar 

  • Goldstein, J. L., Anderson, R. G. W., and Brown, M. S. (1979) Coated pits, coated vesicles and receptor-mediated endocytosis. Nature 279, 679–685.

    PubMed  CAS  Google Scholar 

  • Gomperts, B. D. (1983) Involvement of guanine nucleotide binding proteins in the gating of calcium by receptors. Nature 306, 64.

    PubMed  CAS  Google Scholar 

  • Griffin, M. T., Law, P. Y., and Loh, H. H. (1983) Modulation of adenylate cyclase activity by a cytosolic factor following chronic opiate exposure in neuroblastoma x glioma NG108–15 hybrid cells. Life Sci. 33, 365–369.

    PubMed  CAS  Google Scholar 

  • Griffin, M. T., Law, P. Y., and Loh, H. H. (1985a) Neuroblastoma x glioma hybrid cells cultured in a serum-free chemically defined medium: Effects on acute and chronic opiate regulation of adenylate cyclase activity. Brain Res. 360, 370–373.

    PubMed  CAS  Google Scholar 

  • Griffin, M. T., Law, P.-Y., and Loh, H. H. (1985b) Involvement of both inhibitory and stimulatory guanine nucleotide binding proteins in the expression of chronic opiate regulation of adenylate cyclase activity in NG108–15 cells. J. Neurochem. 45, 1585–1589.

    PubMed  CAS  Google Scholar 

  • Griffin, M. T., Law, P. Y., and Loh, H. H. (1986) Effects of phospholipases on chronic opiate action in neuroblastoma x glioma NG108–15 hybrid cells. J. Neurochem. 47, 1098–1105.

    PubMed  CAS  Google Scholar 

  • Hammond, M. D., Schneider, C., and Collier, H. O. J. (1976) Induction of Opiate Tolerance in Guinea Pig Ileum and Its Modification by Drugs. in Opiates and Endogenous Opioid Peptides ( H. W. Kosterlitz, ed.) Amsterdam, Elsevier/North Holland.

    Google Scholar 

  • Hammonds, R. G., Nicolas, P., Jr., and Li, C. H. (1984) Beta-endorphin-(1–27) is an antagonist of beta-endorphin analgesia. Proc. Natl. Acad. Sci, USA 81, 1389–1390.

    PubMed  CAS  Google Scholar 

  • Harris, J. and Kazmierowski, D. T. (1975) Morphine Tolerance and Naloxone Receptor Binding. Life Sci. 16, 1831–1836.

    PubMed  CAS  Google Scholar 

  • Hazum, E., Chang, K.-J., and Cuatrecasas, P. (1979) Opiate (enkephalin) receptors of neuroblastoma cells: Occurrence in clusters on the cell surface. Science 206, 1077–1079.

    PubMed  CAS  Google Scholar 

  • Henderson, G., Hughes, J., and Kosterlitz, H. W. (1978) In vitro release of Leu-and Met-enkephalin from the corpus striatum. Nature 271, 677–679.

    CAS  Google Scholar 

  • Hitzemann, R. J., Hitzemann, B. A., and Loh, H. H. (1974) Binding of [3H] naloxone in the mouse brain: Effect of ions and tolerance development. Life Sci. 14, 2393–2404.

    PubMed  CAS  Google Scholar 

  • Holaday, J. W., Rothman, R. B., Danks, J. A., Hitzemann, R. J. and Tortella, F. C. (1985) Repeated electroconvulsive shock and chronic morphine: Upregulation of opioid receptors. Abstr. Ann. Meet. Am. Coll. of Neuropsychopharmacol. 74.

    Google Scholar 

  • Hollt, V., Dum, J., Blasig, J., Schubert, P., and Herz, A. (1975) Comparison of in vivo and in vitro parameters of opiate receptor binding in naive and tolerant/dependent rats. Life Sci. 16, 1823–1828.

    PubMed  CAS  Google Scholar 

  • Illes, P. and Thesleff, S. (1978) 4-Aminopyridine and evoked transmitter release from motor nerve endings. Br. J. Pharmacol. 64, 623–629.

    Google Scholar 

  • Iwamoto, E. T. and Martin, W. R. (1981) Multiple opioid receptors. Medicinal Res. Rev. 1, 411–440.

    CAS  Google Scholar 

  • Iwamato, E. T. and Way, E. L. (1979) Opiate actions and catecholamines. Adv. Biochem. Psychopharmacol. 20, 357–407.

    Google Scholar 

  • Kastin, A. J., Olson, R. D., Ehrensing, R. H., Beizas, M. C., Schally, A. V., and Coy, D. H. (1979) MIF’s differential actions as an opiate antagonist. Phamacol. Biochem. Behay. 11, 721–723.

    CAS  Google Scholar 

  • Klee, W. A. and Streaty, R. A. (1974) Narcotic receptor sites in morphine-dependent rats. Nature 248, 61–63.

    PubMed  CAS  Google Scholar 

  • Klein, W. L., Nathanson, N. M., and Nirenberg, M. (1979) Muscarinic acetylcholine receptor regulated by accelerated rate of receptor loss. Biochem. Biophys. Res. Comm. 90, 506–512.

    PubMed  CAS  Google Scholar 

  • Koski, G. and Klee, W. A. (1981) Opiates inhibit adenylate cyclase by stimulating GTP hydrolysis. Proc. Natl. Acad. Sci. USA 78, 4185–4189.

    PubMed  CAS  Google Scholar 

  • Koski, G., Streaty, R.A., and Klee, W. A. (1982) Modulation of sodium-sensitive GTPase by partial opiate agonist: An explanation for the dual requirement for Na and GTP in inhibitory regulation of adenylate cyclase. J. Biol. Chem. 257, 14035–14040.

    PubMed  CAS  Google Scholar 

  • Kuhar, M. J. and Uhl, G. R. (1979) Histochemical localization of opiate receptors and the enkephalins. Adv. Biochem. Psychopharmacol. 20, 53–68.

    PubMed  CAS  Google Scholar 

  • Lambert, S. M. and Childers, S. R. (1984) Modification of guanine nucleotide-regulatory components in brain membranes. I. Changes in guano-sine 5’-triphosphate regulation of opiate receptor binding sites. J. Neurosci. 4, 2755–2763.

    PubMed  CAS  Google Scholar 

  • Lamotte, C., Pert, C. B., and Snyder, S. H. (1976) Opiate receptor binding in primate spinal cord: Distribution and changes after dorsal root section. Brain Res. 112, 407–412.

    PubMed  CAS  Google Scholar 

  • Landahl, H. D., Garzon, J., and Lee, N. M. (1985) Mathematical modeling of opiate binding to mouse brain membrane. Bull. Math. Biol. 47, 503–512.

    PubMed  CAS  Google Scholar 

  • Law, P. Y., Wu, J., Koehler, J. E., and Loh, H. H. (1981) Demonstration and characterization of opiate inhibition of the striatal adenylate cyclase. J. Neurochem. 36, 1834–1846.

    PubMed  CAS  Google Scholar 

  • Law, P. Y., Koehler, J. E., and Loh, H. H. (1982) Comparison of opiate inhibition of adenylate cyclase activity in neuroblastoma N18TG2 and neuroblastoma x glioma NG108–15 hybrid cell lines. Mol. Pharmacol. 21, 483–491.

    PubMed  CAS  Google Scholar 

  • Law, P. Y., Horn, D.S., and Loh, H. H. (1983a) Opiate regulation of adenosine 3’5’-cyclic monophosphate level in neuroblastoma x glioma NG108–15 hybrid cells. Mol. Pharmacol. 23, 26–35.

    PubMed  CAS  Google Scholar 

  • Law, P. Y., Horn, D. S., and Loh, H. H. (1983b) Opiate receptor down-regulation and desensitization in neuroblastoma x glioma NG108–15 hybrid cells are two separate cellular adaption processes. Mol. Pharmacol. 25, 413–424.

    Google Scholar 

  • Law, P. Y., Hom, D.S., and Loh, H. H. (1984a) Down-regulation of opiate receptor in neuroblastoma x glioma NG108–15 hybrid cells: Chloroquine promotes accumulation of tritiated enkephalin in the lysosomes. J. Biol. Chem. 259, 4096–4104.

    PubMed  CAS  Google Scholar 

  • Law, P. Y., Griffin, M. T., and Loh, H. H. (1984b) Mechanisms of multiple cellular adaptation processes in clonal cell lines during chronic opiate treatment, in Mechanisms of Tolerance and Dependence (Sharp, C. W., ed.) NIDA Research Monograph 54, US Government Printing Office, Washington, DC, pp. 119–135.

    Google Scholar 

  • Law, P. Y., Ungar, H. G., Horn, D. S., and Law, P. Y. (1985a) Effect of cycloheximide and tunicamycin on opiate receptor activities in neuroblastoma x glioma NG108–15 hybrid cells. Biochem. Pharmacol. 34, 9–17.

    PubMed  CAS  Google Scholar 

  • Law, P. Y., Hom, D. S., and Loh, H. H. (1985b) Multiple affinity states of opiate receptor in neuroblastoma x glioma NG108–15 hybrid cells. J. Biol. Chem. 260, 3561–3569.

    PubMed  CAS  Google Scholar 

  • Law, P. Y., Louie, A. K., and Loh, H. H. (1985c) Effect of pertussis toxin treatment on down-regulation of opiate receptors in neuroblastoma x glioma NG108–15 hybrid cells. J. Biol. Chem. 260, 14818–14823.

    PubMed  CAS  Google Scholar 

  • Lee, N. M. and Smith, A. P. (1980) A protein-lipid model of the opiate receptor. Life Sci. 26, 459–464.

    Google Scholar 

  • Lee, N. M. and Smith, A. P. (1984) Possible regulatory function of dynor- phin and its clinical implications. Trends Pharmacol. Sci. 5, 108–110.

    CAS  Google Scholar 

  • Lefkowitz, R. J., Wessels, M. R., and Stadel, J. M. (1980) Hormones, receptors and cyclic AMP; their roles in target cell refractoriness. Curr. Top. Cell. Regul. 17, 205–230.

    PubMed  CAS  Google Scholar 

  • Lord, J. A. H., Waterfield, A. A., Hughes, J., and Kosterlitz, H. W. (1977) Endogenous opioid peptides: Multiple agonists and receptors. Nature 267, 495–499.

    PubMed  CAS  Google Scholar 

  • Louie, A. K., Law, P. Y., and Loh, H. H. (1986) Cell free desensitization of opiate inhibition of adenylate cyclase in neuroblastoma x glioma NG108–15 hybrid cell membranes. J. Neurochem. 47, 733–737.

    PubMed  CAS  Google Scholar 

  • Lux, B. and Schulz, R. (1985) Opioid dependence prevents the action of pertussis toxin in the guinea pig myenteric plexus. Naunyn Schmiedebergs Arch. Pharmacol. 330, 184–186.

    PubMed  CAS  Google Scholar 

  • Majane, E. A. and Yang, H.-Y. T. (1986) Distribution and characterization of two non-opioid peptides with morphine modulating activity in the brain. Fed. Proc. 45, 1052.

    Google Scholar 

  • Manning, D. R. and Gilman, A. G. (1983) The regulatory components of adenylate cyclase and transducin: A family of structurally homologous guanine nucleotide-binding proteins. J. Biol. Chem. 258, 7059–7063.

    PubMed  CAS  Google Scholar 

  • Martin, W. R. and Fraser, H. F. (1961) A comparative study of physiological and subjective effects of heroin and morphine administered intravenously in postaddicts. J. Pharmacol. Exp. Ther. 133, 388–399.

    PubMed  CAS  Google Scholar 

  • Morchetti, I. Giorgi, O., Schwartz, J. P., and Costa, E. (1985) Regulation of hypothalamic proopiomelanocortin system by morphine treatment. Trans. Soc. Neurochem. 16 253.

    Google Scholar 

  • Mudge, A. W., Leeman, S. E., and Fischbach, G. D. (1979) Enkephalin inhibits release of substance P from sensory neurons in culture and decreases action potential duration. Proc. Natl. Acad. Sci. USA 76, 526–530.

    PubMed  CAS  Google Scholar 

  • Murayama, T. and Ui, M. (1983) Loss of the inhibitory function of the guanine nucleotide regulatory components of adenylate cyclase due to its ADP ribosylation by islet-activating protein pertussis toxin in adipocyte membranes. J. Biol. Chem. 258, 3319–3326.

    PubMed  CAS  Google Scholar 

  • Nicoll, R. A., Siggins, G. R., Ling, N., Bloom, F., and Guillemin, R. (1977) Neuronal actions of endorphins and enkephalins among brain regions: A comparative microiontophoretic study. Proc. Natl. Acad. Sci. USA 74, 2584–2588.

    PubMed  CAS  Google Scholar 

  • North, R. A. and Vitek, L. (1979) The effect of chronic morphine treatment on excitatory junction potentials in the mouse vas deferens. Br. J. Pharmacol. 68, 399–406.

    Google Scholar 

  • North, R. and Williams, J. T. (1983) Opiate activation of potassium conductance inhibitory calcium action potentials in rat locus coeruleus neurons. Br. J. Pharmacol. 80, 225–228.

    PubMed  CAS  Google Scholar 

  • Pert, C. B. and Snyder, S. H. (1973) Opiate receptor: Its demonstration in nervous tissue. Science 179, 1011–1014.

    PubMed  CAS  Google Scholar 

  • Pert, C. B. and Snyder, S. H. (1976) Opiate receptor binding enhancement by opiate administration in vivo. Biochem. Pharmacol. 25, 847–853.

    CAS  Google Scholar 

  • Pfeiffer, A. and Herz, A. (1981) Demonstration and distribution of an opiate binding site in rat brain with high affinity for ethylketocyclazocine and SKF 10047. Biochem. Biophys. Res. Comm. 101, 38–44.

    PubMed  CAS  Google Scholar 

  • Rodbell, M. (1980) The role of hormone receptors and GTP regulatory proteins in membrane transduction. Nature 284, 17–22.

    PubMed  CAS  Google Scholar 

  • Rosen, O. M., Chia, G. H., Fung, C., and Rubin, C. S. (1979) Tunicamycinmediated depletion of insulin receptors in 3T3–L1 adipocytes. J. Cell Physiol. 99, 37–42.

    PubMed  CAS  Google Scholar 

  • Ross, D. H. and Cardenas, H. L. (1979) Nerve cell calcium as a messenger for opiate and endorphin actions. Adv. Biochem. Psychopharmacol. 20, 301–336.

    PubMed  CAS  Google Scholar 

  • Rossier, J. and Bloom, F. (1979) Central neuropharmacology of endorphins. Adv. Biochem. Psychopharmacol. 20, 165–185.

    PubMed  CAS  Google Scholar 

  • Rothman, R. B. and Westfall, T. C. (1982) Allosteric coupling between mor- phine and enkephalin receptors in vitro. Mol. Pharmacol. 21, 548–557.

    CAS  Google Scholar 

  • Rubini, P., Schulz, R., Wuster, M., and Herz, A. (1982) Opiate receptor binding studies in the mouse vas deferens exhibiting tolerance without dependence. Naunyn Schmiedebergs Arch. Pharmacol. 319, 142–146.

    PubMed  CAS  Google Scholar 

  • Satoh, M., Zieglgansberger, W., and Herz, A. (1975) Interaction between morphine and putative excitatory neurotransmitters in cortical neurons in naive and tolerant rats. Life Sci. 17, 75–80.

    PubMed  CAS  Google Scholar 

  • Satoh, M., Zieglgansberger, W., and Herz, A. (1976) Actions of opiates upon single unit activity in the cortex of naive and tolerant rats. Brain Res. 115, 99–110.

    PubMed  CAS  Google Scholar 

  • Schulz, R. and Herz, A. (1984) Opioid Tolerance and Dependence in Light of the Multiplicity of Opioid Receptors. In Mechanisms of Tolerance and Dependence (Sharp, C. W., ed.) NIDA Research Monograph 54, U.S. Government Printing Office, Washington, DC., pp. 70–80.

    Google Scholar 

  • Schulz, R., Wuster, M., and Herz, A. (1979) Supersensitivity to opioids following chronic blockade of endorphin activity by nalaxone. Naunyn Schmiedebergs Arch. Pharmacol. 306, 93–96.

    PubMed  CAS  Google Scholar 

  • Schulz, R., Wuster, M., Krenss, H., and Herz, A. (1980) Lack of cross-tolerance on multiple opiate receptors in the mouse vas deferens. Mol. Pharmacol. 18, 395–401.

    PubMed  CAS  Google Scholar 

  • Schulz, R., Wuster, M., and Herz, A. (1981) Differentiation of opiate receptors in the brain by the selective development of tolerance. Pharmacol. Biochem. Behay. 14, 75–79.

    CAS  Google Scholar 

  • Schulz, R., Seidl, E., Wuster, M., and Herz, A. (1982) Opioid dependence and cross-dependence in the isolated guinea pig ileum. Eur. J. Pharmacol. 84, 33–40.

    PubMed  CAS  Google Scholar 

  • Sharma, S., Nirenberg, M., and Klee, W. (1975a) Morphine receptors are regulators of adenylate cylcase activity. Proc. Natl. Acad. Sci. USA 72, 590–594.

    PubMed  CAS  Google Scholar 

  • Sharma, S. K., Klee, W. A., and Nirenberg, M. (1975b) Dual regulation of adenylate cyclase accounts for narcotic dependence and tolerance. Proc. Natl. Acad. Sci. USA 72, 3092–3096.

    PubMed  CAS  Google Scholar 

  • Sharma, S. K., Klee, W. A., and Nirenberg, M. (1977) Opiate-Dependent modulation of adenylate cyclase. Proc. Natl. Acad. Sci. USA 74, 3365–3369.

    PubMed  CAS  Google Scholar 

  • Sibley, D. R., Strasser, R. H., Caron, M. G., and Lefkowitz, R. J. (1985) Homologous desensitization of adenylate cyclase is associated with phosphorylation of the beta-adrenergic receptor. J. Biol. Chem. 260, 3883–3886.

    Google Scholar 

  • Simon, E. J., Hiller, J. M., and Edelman, J. (1973) Stereospecific binding of the potent narcotic analgesic [3H] etorphine to rat brain homogenate. Proc. Natl. Acad. Sci. USA 70, 1947–1949.

    PubMed  CAS  Google Scholar 

  • Simantov, R. and Amir, S. (1983) Regulation of opiate receptors in mouse brain: Arcuate nuclear lesion induces receptor up-regulation and super-sensitivity to opiates. Brain Res. 262, 168–171.

    PubMed  CAS  Google Scholar 

  • Smith, A. P. and Loh, H. H. (1981) The Opiate Receptor, in Hormonal Proteins and Peptides vol. 10 (C. H. Li, ed.) Academic, New York.

    Google Scholar 

  • Smock, T. and Fields, H. L. (1981) ACTH (1–24) antagonizes opiate induced analgesia in the rat. Brain Res. 212, 202–206.

    PubMed  CAS  Google Scholar 

  • Sternweis, P. C. and Robishaw, J. D. (1984) Isolation of two proteins withhigh affinity for guanine nucleotides from membranes of bovine brain. J. Biol. Chem. 259, 13806–13813.

    PubMed  CAS  Google Scholar 

  • Su, Y. F., Harden, T. K., and Perkins, J. P. (1980) Cathecholamine-specific desensitization of adenylate cyclase: Evidence for a multi-step process. J. Biol. Chem. 255, 7410–7419.

    PubMed  CAS  Google Scholar 

  • Tang, A. and Collins, R. (1978) Enhanced analgesic effects of morphine after chronic administration of naloxone in the rat. Eur. J. Pharmacol. 47, 473–474.

    PubMed  CAS  Google Scholar 

  • Tao, P. L. and Law, P. Y. (1984) Down-regulation of opiate receptor in rat brain after chronic etorphine treatment. Proc. West. Pharmacol. Soc. 127, 557–560.

    Google Scholar 

  • Tempel, A., Crain, S. M., Simon, E. J., and Zukin, R. S. (1983) Opiate receptor upregulation in explants of spinal cord-dorsal root ganglia. Soc. Neurosci. Abst. 9, 327.

    Google Scholar 

  • Tempel, A., Gardner, E. L., and Zukin, R. S. (1985) Neurochemical and functional correlates of naltrexone-induced opiate receptor upregulation. J. Pharmacol. Exp. Ther. 232, 439–444.

    PubMed  CAS  Google Scholar 

  • Terenius, L. (1973) Stereospecific interaction between narcotic analgesics and synaptic plasma membrane fraction of rat cerebral cortex. Act Pharmacol. Toxicol. 32, 317–320.

    CAS  Google Scholar 

  • Tulunay, F. C., Jen, M. F., Chang, J. K., Loh, H. H., and Lee, N. M. (1981) Possible regulatory role of dynorphin on morphine-and endorphin-dependent analgesia. J. Pharmacol. Exp. Ther. 219, 296–298.

    PubMed  CAS  Google Scholar 

  • Tung, A. S. and Yaksh, T. L. (1982) In vivo evidence for multiple opiate receptors mediating analgesia in the rat spinal cord. Brain Res. 247, 75–83.

    CAS  Google Scholar 

  • Vaught, J. L. and Takemori, A. E. (1979) Differential effects of leucine and methionine enkephalin on morphine-induced analgesia, acute tolerance and dependence. J. Pharmacol. Exp. Ther. 208, 86–90.

    PubMed  CAS  Google Scholar 

  • Von Voightlander, P. F. and Lewis, R. A. (1982) U50,488, a selective kappa opioid agonist: Comparison to other reported kappa agonists. Prog. Neuropsychopharmacol. Biol. Psychiatry 6, 467–470.

    Google Scholar 

  • Ward, S. J. and Takemori, A. E. (1983) Relative involvement of mu, kappa, and delta receptor mechanisms in opiate-mediated antinociception. I. Mu and delta receptor profiles in the primate. J. Pharmacol. Exp. Ther. 224, 525–530.

    PubMed  CAS  Google Scholar 

  • Wilkening, D. and Nirenberg, M. (1980) Lipid requirement for long-lived morphine-dependent activations of adenylate cyclase of neuroblastoma x glioma hybrid cells. J. Neurochem. 34, 321–326.

    PubMed  CAS  Google Scholar 

  • Williams, E. G. and Oberst, F. W. (1946) A cycle of morphine addiction, biological and psychological studies. I. Biological studies. Public Health Rep. 61, 1–20.

    PubMed  CAS  Google Scholar 

  • Williams, J. and North, R. A. (1983) tolerance to opiates in locus coeruleus actions? Abst. Int. Narc. Res. Conf. 16, 49.

    Google Scholar 

  • Williams, J. T. and Zieglgansberger, W. (1981) Neurons in the frontal cortex of the rat carry multiple opiate receptors. Brain Res. 226, 304–308.

    PubMed  CAS  Google Scholar 

  • Williams, J. T., Egan, T. M., and North, D. (1982) Enkephalin opens potas- sium channel on mammalian central neurons. Nature 229, 74–77.

    Google Scholar 

  • Wood, P. L. (1982) Multiple opiate receptors: Support for unique mu, delta, and kappa sites. Neuropharmacology 21, 487–497.

    PubMed  CAS  Google Scholar 

  • Wuster, M., Rubini, P., and Schulz, R. (1981) The preference of putative pro-enkephalins for different types of opiate receptors. Life Sci. 29, 1219–1227.

    PubMed  CAS  Google Scholar 

  • Wuster, M., Schulz, R., and Herz, A. (1985) Opioid tolerance and dependence: Re-evaluating the unitary hypothesis. Trends Pharmacol. Sci. 6, 64–67.

    Google Scholar 

  • Yaksh, T. L. (1983) In vivo studies on spinal opiate receptor systems mediating antinociception. I. Mu and delta receptor profiles in the primate. J. Pharmacol. Exp. Ther. 226, 303–316.

    CAS  Google Scholar 

  • Yang, H.-Y., Tang, J., and Costa, E. (1985a) Role of endogenous non-opioid peptides which may modulate opiate analgesia. Abstr. Ann. Meet. Coll. Neurophsycopharm. 105.

    Google Scholar 

  • Yang, H.-Y. T., Fratta, W., Majane, E. A., and Costa, E. (1985b) Isolation, sequencing, synthesis and pharmacological characterization of two brain neuropeptides that modulate the action of morphine. Proc. Natl. Acad. Sci. USA 82, 7757–7761.

    PubMed  CAS  Google Scholar 

  • Yeung, J. C. and Rudy, T. A. (1980) Sites of antinociceptive action of systemically injected morphine: Involvement of supraspinal loci as revealed by intracerebroventricular injection of naloxone. J. Pharmacol. Exp. Ther. 215, 626–632.

    PubMed  CAS  Google Scholar 

  • Young, E., Olney, J., and Akil, H. (1982) Increase in delta, but not mu receptors in MSG-treated rats. Life Sci. 31, 1343–1346.

    Google Scholar 

  • Zieglgansberger, W., Satoh, M., and Bayerl, J. (1975) Actions of microelectrophoretically applied opiates on cortical and spinal neurons. Naunyn Schmiedebergs Arch. Exp. Path. Pharmacol. 287 (suppl.), RR16.

    Google Scholar 

  • Zieglgansberger, W., Fry, J. P., Herz, A., Moroder, L., and Wunsch, E. (1976) Enkephalin-induced inhibition of cortical neurons and the lack of this effect in morphine tolerant/dependent rats. Brain Res. 115, 160–164.

    PubMed  CAS  Google Scholar 

  • Zhu, X. Z. and Raffa, R. B. (1986) FMRFamide: Low affinity inhibition of opioid binding to rabbit brain membranes. Fed. Proc. 45, 797.

    Google Scholar 

  • Zukin, R. S. and Zukin, S. R. (1981) Demonstration of [3H1 cyclazocine bind- ing to multiple opiate receptor sites. Mol. Pharmacol. 20, 246–254.

    PubMed  CAS  Google Scholar 

  • Zukin, R. S., Sugarman, J. R., Fitz-Syage, M. L., Gardner, E. L., Zukin, S. R., and Gintzler, A. R. (1982) Naltrexone-induced opiate receptor supersensitivity. Brain Res. 245, 285–292.

    PubMed  CAS  Google Scholar 

  • Zukin, R. S., Tempel, A., and Gardner, E. L. (1984) Opiate Receptor Upregulation and Functional Supersensitivity, in Mechanisms of Tolerance and Dependence (Sharp, C. W., ed.) NIDA Research Monograph 54, U.S. Government Printing Office, Washington, DC, pp. 146–161.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Smith, A.P., Law, PY., Loh, H.H. (1988). Role of Opioid Receptors in Narcotic Tolerance/ Dependence. In: Pasternak, G.W. (eds) The Opiate Receptors. The Receptors. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-990-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-990-1_13

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-6768-1

  • Online ISBN: 978-1-60761-990-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics