Skip to main content

Tumor-Specific Mutations as Targets for Cancer Immunotherapy

  • Chapter
  • First Online:
Experimental and Applied Immunotherapy

Abstract

The fundamental job of the immune system is to discriminate self from nonself. To achieve this, the immune system is actively tolerized against self proteins. When pathogens enter a host, they introduce foreign proteins to which the host is not tolerant, and an immune response ensues. In contrast, tumors represent a special case, as the vast majority of tumor proteins are “self” and hence do not trigger immune activation. However, mutation of genes important for regulation of cell growth is the underlying cause of cancer and any point mutation, insertion, reading frame-shift or protein fusion that generates a new protein sequence could theoretically be recognized as foreign by the immune system. With the advent of high-throughput sequencing technologies, we have entered an era where the tumor and germline genomes of individual patients can be sequenced, such that the entire repertoire of tumor-specific mutations can be known. To date, more than 78,000 somatic mutations have been reported in human cancer. While the prospect of targeting this huge diversity of mutations via pharmacological approaches appears daunting, T-cell-based treatments may offer a practical alternative owing to the enormous repertoire of antigen receptors expressed by the human T-cell compartment. To what extent are cancer mutations recognized by the immune system? To what extent can they be targeted by immunotherapy? Here, we review the work to date on these questions with a focus on tumor-specific mutations that have transitioned from basic laboratory investigations through to clinical trials in humans. Our goal is to identify the major issues that need to be resolved to enable advances in DNA sequencing to be translated to effective T-cell therapies in the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bardelli A, Parsons DW et al (2003). Mutational analysis of the tyrosine kinome in colorectal cancers. Science 300:949.

    Article  PubMed  CAS  Google Scholar 

  2. Greenman C, Stephens P et al (2007). Patterns of somatic mutation in human cancer genomes. Nature 446:153–158.

    Article  PubMed  CAS  Google Scholar 

  3. Ding L, Getz G et al (2008). Somatic mutations affect key pathways in lung adenocarcinoma. Nature 455:1069–1075.

    Article  PubMed  CAS  Google Scholar 

  4. Wood LD, Parsons DW et al (2007). The genomic landscapes of human breast and colorectal cancers. Science 318:1108–1113.

    Article  PubMed  CAS  Google Scholar 

  5. Shah SP, Morin RD et al (2009). Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution. Nature 461:809–813.

    Article  PubMed  CAS  Google Scholar 

  6. Jones S, Zhang X et al (2008). Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321:1801–1806.

    Article  PubMed  CAS  Google Scholar 

  7. Parsons DW, Jones S et al (2008). An integrated genomic analysis of human glioblastoma multiforme. Science 321:1807–1812.

    Article  PubMed  CAS  Google Scholar 

  8. Loeb LA, Bielas JH et al (2008). Cancers exhibit a mutator phenotype: clinical implications. Cancer Res 68:3551–3557; discussion 3557.

    Article  PubMed  CAS  Google Scholar 

  9. Lengauer C, Kinzler KW et al (1998). Genetic instabilities in human cancers. Nature 396:643–649.

    Article  PubMed  CAS  Google Scholar 

  10. Buckowitz A, Knaebel HP et al (2005). Microsatellite instability in colorectal cancer is associated with local lymphocyte infiltration and low frequency of distant metastases. Br J Cancer 92:1746–1753.

    Article  PubMed  CAS  Google Scholar 

  11. Lakhani SR (1999). The pathology of familial breast cancer: morphological aspects. Breast Cancer Res 1:31–35.

    Article  PubMed  CAS  Google Scholar 

  12. Kuroda H, Tamaru J et al (2005). Immunophenotype of lymphocytic infiltration in medullary carcinoma of the breast. Virchows Arch 446:10–14.

    Article  PubMed  Google Scholar 

  13. Clarke B, Tinker AV et al (2009). Intraepithelial T cells and prognosis in ovarian carcinoma: novel associations with stage, tumor type, and BRCA1 loss. Mod Pathol 22:393–402.

    Article  PubMed  CAS  Google Scholar 

  14. Forbes SA, Bhamra G et al (2008). The Catalogue of Somatic Mutations in Cancer (COSMIC). Curr Protoc Hum Genet Chapter 10: Unit 10 11.

    Google Scholar 

  15. Schinzel AC, and Hahn WC (2008). Oncogenic transformation and experimental models of human cancer. Front Biosci 13:71–84.

    Article  PubMed  CAS  Google Scholar 

  16. Beerenwinkel N, Antal T et al (2007). Genetic progression and the waiting time to cancer. PLoS Comput Biol 3:e225.

    Article  PubMed  Google Scholar 

  17. Stratton MR, Campbell PJ et al (2009). The cancer genome. Nature 458:719–724.

    Article  PubMed  CAS  Google Scholar 

  18. Vyas JM, Van der Veen AG et al (2008). The known unknowns of antigen processing and presentation. Nat Rev Immunol 8:607–618.

    Article  PubMed  CAS  Google Scholar 

  19. Rangel LB, Agarwal R et al (2004). Anomalous expression of the HLA-DR alpha and beta chains in ovarian and other cancers. Cancer Biol Ther 3:1021–1027.

    Article  PubMed  CAS  Google Scholar 

  20. Liu T, Liu W et al (2009). Computational prediction of the specificities of proteasome interaction with antigen protein. Cell Mol Immunol 6:135–142.

    Article  PubMed  CAS  Google Scholar 

  21. Horton R, Wilming L et al (2004). Gene map of the extended human MHC. Nat Rev Genet 5:889–899.

    Article  PubMed  CAS  Google Scholar 

  22. Bevan MJ (2006). Cross-priming. Nat Immunol 7:363–365.

    Article  PubMed  CAS  Google Scholar 

  23. Arstila TP, Casrouge A et al (1999). A direct estimate of the human alphabeta T cell receptor diversity. Science 286:958–961.

    Article  PubMed  CAS  Google Scholar 

  24. Echchakir H, Mami-Chouaib F et al (2001). A point mutation in the alpha-actinin-4 gene generates an antigenic peptide recognized by autologous cytolytic T lymphocytes on a human lung carcinoma. Cancer Res 61:4078–4083.

    PubMed  CAS  Google Scholar 

  25. Sensi M, and Anichini A (2006). Unique tumor antigens: evidence for immune control of genome integrity and immunogenic targets for T cell-mediated patient-specific immunotherapy. Clin Cancer Res 12:5023–5032.

    Article  PubMed  CAS  Google Scholar 

  26. Jia J, Cui J et al (2009). Genome-scale search of tumor-specific antigens by collective analysis of mutations, expressions and T-cell recognition. Mol Immunol 46:1824–1829.

    Article  PubMed  CAS  Google Scholar 

  27. Wang HY, Zhou J et al (2002). Identification of a mutated fibronectin as a tumor antigen recognized by CD4+ T cells: its role in extracellular matrix formation and tumor metastasis. J Exp Med 195:1397–1406.

    Article  PubMed  CAS  Google Scholar 

  28. Gaudin C, Kremer F et al (1999). A hsp70-2 mutation recognized by CTL on a human renal cell carcinoma. J Immunol 162:1730–1738.

    PubMed  CAS  Google Scholar 

  29. Pieper R, Christian RE et al (1999). Biochemical identification of a mutated human melanoma antigen recognized by CD4(+) T cells. J Exp Med 189:757–766.

    Article  PubMed  CAS  Google Scholar 

  30. Baurain JF, Colau D et al (2000). High frequency of autologous anti-melanoma CTL directed against an antigen generated by a point mutation in a new helicase gene. J Immunol 164:6057–6066.

    PubMed  CAS  Google Scholar 

  31. Huang J, El-Gamil M et al (2004). T cells associated with tumor regression recognize frameshifted products of the CDKN2A tumor suppressor gene locus and a mutated HLA class I gene product. J Immunol 172:6057–6064.

    PubMed  CAS  Google Scholar 

  32. Linard B, Bezieau S et al (2002). A RAS-mutated peptide targeted by CTL infiltrating a human melanoma lesion. J Immunol 168:4802–4808.

    PubMed  CAS  Google Scholar 

  33. Robbins PF, El-Gamil M et al (1996). A mutated beta-catenin gene encodes a melanoma-specific antigen recognized by tumor infiltrating lymphocytes. J Exp Med 183:1185–1192.

    Article  PubMed  CAS  Google Scholar 

  34. Novellino L, Renkvist N et al (2003). Identification of a mutated receptor-like protein tyrosine phosphatase kappa as a novel, class II HLA-restricted melanoma antigen. J Immunol 170:6363–6370.

    PubMed  CAS  Google Scholar 

  35. Kawakami Y, Wang X et al (2001). Isolation of a new melanoma antigen, MART-2, containing a mutated epitope recognized by autologous tumor-infiltrating T lymphocytes. J Immunol 166:2871–2877.

    PubMed  CAS  Google Scholar 

  36. Karanikas V, Colau D et al (2001). High frequency of cytolytic T lymphocytes directed against a tumor-specific mutated antigen detectable with HLA tetramers in the blood of a lung carcinoma patient with long survival. Cancer Res 61:3718–3724.

    PubMed  CAS  Google Scholar 

  37. Mami-Chouaib F, Echchakir H et al (2002). Antitumor cytotoxic T-lymphocyte response in human lung carcinoma: identification of a tumor-associated antigen. Immunol Rev 188:114–121.

    Article  PubMed  CAS  Google Scholar 

  38. Zorn E, and Hercend T (1999). A natural cytotoxic T cell response in a spontaneously regressing human melanoma targets a neoantigen resulting from a somatic point mutation. Eur J Immunol 29:592–601.

    Article  PubMed  CAS  Google Scholar 

  39. Wang HY, Peng G et al (2005). Recognition of a new ARTC1 peptide ligand uniquely expressed in tumor cells by antigen-specific CD4+ regulatory T cells. J Immunol 174:2661–2670.

    PubMed  CAS  Google Scholar 

  40. Coulie PG, Lehmann F et al (1995). A mutated intron sequence codes for an antigenic peptide recognized by cytolytic T lymphocytes on a human melanoma. Proc Natl Acad Sci USA 92:7976–7980.

    Article  PubMed  CAS  Google Scholar 

  41. Topalian SL, Gonzales MI et al (2002). Revelation of a cryptic major histocompatibility complex class II-restricted tumor epitope in a novel RNA-processing enzyme. Cancer Res 62:5505–5509.

    PubMed  CAS  Google Scholar 

  42. Maccalli C, Li YF et al (2003). Identification of a colorectal tumor-associated antigen (COA-1) recognized by CD4(+) T lymphocytes. Cancer Res 63:6735–6743.

    PubMed  CAS  Google Scholar 

  43. Van Elsas A, Nijman HW et al (1995). Induction and characterization of cytotoxic T-lymphocytes recognizing a mutated p21RAS peptide presented by HLA-A*0201. Int J Cancer 61:389–396.

    Article  PubMed  Google Scholar 

  44. Qin H, Chen W et al (1995). CD4+ T-cell immunity to mutated RAS protein in pancreatic and colon cancer patients. Cancer Res 55:2984–2987.

    PubMed  CAS  Google Scholar 

  45. Abrams SI, Hand PH et al (1996). Mutant RAS epitopes as targets for cancer vaccines. Semin Oncol 23:118–134.

    PubMed  CAS  Google Scholar 

  46. Sharkey MS, Lizee G et al (2004). CD4(+) T-cell recognition of mutated B-RAF in melanoma patients harboring the V599E mutation. Cancer Res 64:1595–1599.

    Article  PubMed  CAS  Google Scholar 

  47. Schwitalle Y, Linnebacher M et al (2004). Immunogenic peptides generated by frameshift mutations in DNA mismatch repair-deficient cancer cells. Cancer Immun 4:14.

    PubMed  Google Scholar 

  48. Ripberger E, Linnebacher M et al (2003). Identification of an HLA-A0201-restricted CTL epitope generated by a tumor-specific frameshift mutation in a coding microsatellite of the OGT gene. J Clin Immunol 23:415–423.

    Article  PubMed  CAS  Google Scholar 

  49. Linnebacher M, Gebert J et al (2001). Frameshift peptide-derived T-cell epitopes: a source of novel tumor-specific antigens. Int J Cancer 93:6–11.

    Article  PubMed  CAS  Google Scholar 

  50. Worley BS, van den Broeke LT et al (2001). Antigenicity of fusion proteins from sarcoma-associated chromosomal translocations. Cancer Res 61:6868–6875.

    PubMed  CAS  Google Scholar 

  51. Yotnda P, Garcia F et al (1998). Cytotoxic T cell response against the chimeric ETV6-AML1 protein in childhood acute lymphoblastic leukemia. J Clin Invest 102:455–462.

    Article  PubMed  CAS  Google Scholar 

  52. Yotnda P, Firat H et al (1998). Cytotoxic T cell response against the chimeric p210 BCR-ABL protein in patients with chronic myelogenous leukemia. J Clin Invest 101:2290–2296.

    Article  PubMed  CAS  Google Scholar 

  53. Nieda M, Nicol A et al (1998). Dendritic cells stimulate the expansion of bcr-abl specific CD8+ T cells with cytotoxic activity against leukemic cells from patients with chronic myeloid leukemia. Blood 91:977–983.

    PubMed  CAS  Google Scholar 

  54. Bosch GJ, Joosten AM et al (1996). Recognition of BCR-ABL positive leukemic blasts by human CD4+ T cells elicited by primary in vitro immunization with a BCR-ABL breakpoint peptide. Blood 88:3522–3527.

    PubMed  CAS  Google Scholar 

  55. Reddy EP, Reynolds RK et al (1982). A point mutation is responsible for the acquisition of transforming properties by the T24 human bladder carcinoma oncogene. Nature 300:149–152.

    Article  PubMed  CAS  Google Scholar 

  56. Tabin CJ, Bradley SM et al (1982). Mechanism of activation of a human oncogene. Nature 300:143–149.

    Article  PubMed  CAS  Google Scholar 

  57. Fossum B, Olsen AC et al (1995). CD8+ T cells from a patient with colon carcinoma, specific for a mutant p21-RAS-derived peptide (Gly13-- > Asp), are cytotoxic towards a carcinoma cell line harbouring the same mutation. Cancer Immunol Immunother 40:165–172.

    PubMed  CAS  Google Scholar 

  58. Gjertsen MK, Bjorheim J et al (1997). Cytotoxic CD4+ and CD8+ T lymphocytes, generated by mutant p21-RAS (12Val) peptide vaccination of a patient, recognize 12Val-dependent nested epitopes present within the vaccine peptide and kill autologous tumour cells carrying this mutation. Int J Cancer 72:784–790.

    Article  PubMed  CAS  Google Scholar 

  59. Juretic A, Jurgens-Gobel J et al (1996). Cytotoxic T-lymphocyte responses against mutated p21 RAS peptides: an analysis of specific T-cell-receptor gene usage. Int J Cancer 68:471–478.

    Article  PubMed  CAS  Google Scholar 

  60. Gjertsen MK, Bakka A et al (1995). Vaccination with mutant RAS peptides and induction of T-cell responsiveness in pancreatic carcinoma patients carrying the corresponding RAS mutation. Lancet 346:1399–1400.

    Article  PubMed  CAS  Google Scholar 

  61. Gjertsen MK, Buanes T et al (2001). Intradermal RAS peptide vaccination with granulocyte-macrophage colony-stimulating factor as adjuvant: clinical and immunological responses in patients with pancreatic adenocarcinoma. Int J Cancer 92:441–450.

    Article  PubMed  CAS  Google Scholar 

  62. Khleif SN, Abrams SI et al (1999). A phase I vaccine trial with peptides reflecting RAS oncogene mutations of solid tumors. J Immunother 22:155–165.

    Article  PubMed  CAS  Google Scholar 

  63. Abrams SI, Khleif SN et al (1997). Generation of stable CD4+ and CD8+ T cell lines from patients immunized with RAS oncogene-derived peptides reflecting codon 12 mutations. Cell Immunol 182:137–151.

    Article  PubMed  CAS  Google Scholar 

  64. Toubaji A, Achtar M et al (2008). Pilot study of mutant RAS peptide-based vaccine as an adjuvant treatment in pancreatic and colorectal cancers. Cancer Immunol Immunother 57:1413–1420.

    Article  PubMed  CAS  Google Scholar 

  65. Meyer RG, Korn S et al (2007). An open-label, prospective phase I/II study evaluating the immunogenicity and safety of a RAS peptide vaccine plus GM-CSF in patients with non-small cell lung cancer. Lung Cancer 58:88–94.

    Article  PubMed  Google Scholar 

  66. Carbone DP, Ciernik IF et al (2005). Immunization with mutant p53- and K-RAS-derived peptides in cancer patients: immune response and clinical outcome. J Clin Oncol 23:5099–5107.

    Article  PubMed  Google Scholar 

  67. Hunger RE, Brand CU et al (2001). Successful induction of immune responses against mutant RAS in melanoma patients using intradermal injection of peptides and GM-CSF as adjuvant. Exp Dermatol 10:161–167.

    Article  PubMed  CAS  Google Scholar 

  68. Shtivelman E, Lifshitz B et al (1986). Alternative splicing of RNAs transcribed from the human ABL gene and from the BCR-ABL fused gene. Cell 47:277–284.

    Article  PubMed  CAS  Google Scholar 

  69. Bocchia M, Wentworth PA et al (1995). Specific binding of leukemia oncogene fusion protein peptides to HLA class I molecules. Blood 85:2680–2684.

    PubMed  CAS  Google Scholar 

  70. Bocchia M, Korontsvit T et al (1996). Specific human cellular immunity to BCR-ABL oncogene-derived peptides. Blood 87:3587–3592.

    PubMed  CAS  Google Scholar 

  71. Greco G, Fruci D et al (1996). Two BRC-ABL junction peptides bind HLA-A3 molecules and allow specific induction of human cytotoxic T lymphocytes. Leukemia 10:693–699.

    PubMed  CAS  Google Scholar 

  72. Buzyn A, Ostankovitch M et al (1997). Peptides derived from the whole sequence of BCR-ABL bind to several class I molecules allowing specific induction of human cytotoxic T lymphocytes. Eur J Immunol 27:2066–2072.

    Article  PubMed  CAS  Google Scholar 

  73. Clark RE, Dodi IA et al (2001). Direct evidence that leukemic cells present HLA-associated immunogenic peptides derived from the BCR-ABL b3a2 fusion protein. Blood 98:2887–2893.

    Article  PubMed  CAS  Google Scholar 

  74. ten Bosch GJ, Toornvliet AC et al (1995). Recognition of peptides corresponding to the joining region of p210BCR-ABL protein by human T cells. Leukemia 9:1344–1348.

    PubMed  Google Scholar 

  75. Pawelec G, Max H et al (1996). BCR/ABL leukemia oncogene fusion peptides selectively bind to certain HLA-DR alleles and can be recognized by T cells found at low frequency in the repertoire of normal donors. Blood 88:2118–2124.

    PubMed  CAS  Google Scholar 

  76. Mannering SI, McKenzie JL et al (1997). HLA-DR1-restricted bcr-abl (b3a2)-specific CD4+ T lymphocytes respond to dendritic cells pulsed with b3a2 peptide and antigen-presenting cells exposed to b3a2 containing cell lysates. Blood 90:290–297.

    PubMed  CAS  Google Scholar 

  77. Pinilla-Ibarz J, Cathcart K et al (2000). Vaccination of patients with chronic myelogenous leukemia with BCR-ABL oncogene breakpoint fusion peptides generates specific immune responses. Blood 95:1781–1787.

    PubMed  CAS  Google Scholar 

  78. Cathcart K, Pinilla-Ibarz J et al (2004). A multivalent BCR-ABL fusion peptide vaccination trial in patients with chronic myeloid leukemia. Blood 103:1037–1042.

    Article  PubMed  CAS  Google Scholar 

  79. Bocchia M, Gentili S et al (2005). Effect of a p210 multipeptide vaccine associated with imatinib or interferon in patients with chronic myeloid leukaemia and persistent residual disease: a multicentre observational trial. Lancet 365:657–662.

    PubMed  CAS  Google Scholar 

  80. Rojas JM, Knight K et al (2007). Clinical evaluation of BCR-ABL peptide immunisation in chronic myeloid leukaemia: results of the EPIC study. Leukemia 21:2287–2295.

    Article  PubMed  CAS  Google Scholar 

  81. Maslak PG, Dao T et al (2008). A pilot vaccination trial of synthetic analog peptides derived from the BCR-ABL breakpoints in CML patients with minimal disease. Leukemia 22:1613–1616.

    Article  PubMed  CAS  Google Scholar 

  82. Jain N, Reuben JM et al (2009). Synthetic tumor-specific breakpoint peptide vaccine in patients with chronic myeloid leukemia and minimal residual disease: a phase 2 trial. Cancer 115:3924–3934.

    Article  PubMed  Google Scholar 

  83. Parker KC, Bednarek MA et al (1994). Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J Immunol 152:163–175.

    PubMed  CAS  Google Scholar 

  84. Rammensee H, Bachmann J et al (1999). SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50:213–219.

    Article  PubMed  CAS  Google Scholar 

  85. Larsen MV, Lundegaard C et al (2007). Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinformatics 8:424.

    Article  Google Scholar 

  86. Larsen MV, Lundegaard C et al (2005). An integrative approach to CTL epitope prediction: a combined algorithm integrating MHC class I binding, TAP transport efficiency, and proteasomal cleavage predictions. Eur J Immunol 35:2295–2303.

    Article  PubMed  CAS  Google Scholar 

  87. Lundegaard C, Lamberth K et al (2008). NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8–11. Nucleic Acids Res 36:W509–512.

    Article  PubMed  CAS  Google Scholar 

  88. Doytchinova IA, Guan P et al (2006). EpiJen: a server for multistep T cell epitope prediction. BMC Bioinformatics 7:131.

    Article  Google Scholar 

  89. Hakenberg J, Nussbaum AK et al (2003). MAPPP: MHC class I antigenic peptide processing prediction. Appl Bioinformatics 2:155–158.

    PubMed  CAS  Google Scholar 

  90. Zhang Q, Wang P et al (2008). Immune epitope database analysis resource (IEDB-AR). Nucleic Acids Res 36:W513–518.

    Article  PubMed  CAS  Google Scholar 

  91. Westrop SJ, Grageda N et al (2009). Novel approach to recognition of predicted HIV-1 Gag B3501-restricted CD8 T-cell epitopes by HLA-B3501(+) patients: confirmation by quantitative ELISpot analyses and characterisation using multimers. J Immunol Meth 341:76–85.

    Article  CAS  Google Scholar 

  92. Wulf M, Hoehn P et al (2009). Identification of human MHC class I binding peptides using the iTOPIA- epitope discovery system. Meth Mol Biol 524:361–367.

    Article  CAS  Google Scholar 

  93. Wilson CC, Olson WC et al (1999). HIV-1-specific CTL responses primed in vitro by blood-derived dendritic cells and Th1-biasing cytokines. J Immunol 162:3070–3078.

    PubMed  CAS  Google Scholar 

  94. Tuting T, Wilson CC et al (1998). Autologous human monocyte-derived dendritic cells genetically modified to express melanoma antigens elicit primary cytotoxic T cell responses in vitro: enhancement by cotransfection of genes encoding the Th1-biasing cytokines IL-12 and IFN-alpha. J Immunol 160:1139–1147.

    PubMed  CAS  Google Scholar 

  95. Pascolo S (2005). HLA class I transgenic mice: development, utilisation and improvement. Expert Opin Biol Ther 5:919–938.

    Article  PubMed  CAS  Google Scholar 

  96. Hunter C, Smith R et al (2006). A hypermutation phenotype and somatic MSH6 mutations in recurrent human malignant gliomas after alkylator chemotherapy. Cancer Res 66:3987–3991.

    Article  PubMed  CAS  Google Scholar 

  97. The Cancer Genome Atlas (2008). Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455:1061–1068.

    Article  Google Scholar 

  98. O’Hare T, Eide CA et al (2008). New BCR-ABL inhibitors in chronic myeloid leukemia: keeping resistance in check. Expert Opin Investig Drugs 17:865–878.

    Article  PubMed  Google Scholar 

  99. Yamamoto H, Toyooka S et al (2009). Impact of EGFR mutation analysis in non-small cell lung cancer. Lung Cancer 63:315–321.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brad H. Nelson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Nelson, B.H., Webb, J.R. (2011). Tumor-Specific Mutations as Targets for Cancer Immunotherapy. In: Medin, J., Fowler, D. (eds) Experimental and Applied Immunotherapy. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-980-2_7

Download citation

Publish with us

Policies and ethics