Skip to main content

Allogeneic and Autologous Transplantation Therapy of Cancer: Converging Themes

  • Chapter
  • First Online:
Experimental and Applied Immunotherapy
  • 815 Accesses

Abstract

Effective adoptive T-cell therapy of cancer occurs after allogeneic bone marrow transplantation, and is now increasingly observed after autologous transplantation. As the clinical practice of each field evolves and the biologic underpinnings of these two seemingly disparate approaches are elucidated, four converging themes have emerged. (1) T-cell antigen specificity. The alloreactive T-cell graft-versus-tumor response is difficult to dissociate from potentially lethal graft-versus-host disease (GVHD); as such, efforts are underway to enhance antigen-specificity after allogeneic transplantation. By comparison, the field of autologous T-cell therapy has now largely redefined itself by use of highly specific T-cell receptor reactivities, which may ultimately prove limiting in terms of tumor escape mechanisms; efforts are therefore underway to broaden antigenic reactivities after autologous transplantation. (2) Host conditioning. Myeloablative conditioning used in allogeneic transplantation causes significant morbidity and mortality even in young and healthy patients, thereby limiting broader application to the majority of cancer patients; in response, less intensive and better tolerated nonmyeloablative regimens are being developed. By comparison, autologous T-cell therapy has been primarily limited by lack of efficacy, and in response, investigators have increased host conditioning to myeloablative levels to create immune space that facilitates T-cell expansion and effectiveness in vivo. (3) T-cell function. The evolving discipline of T-cell biology will continue to enhance the efficacy of both autologous and allogeneic transplantation therapy. The quality of the T-cell response is of paramount importance, and is determined by T-cell differentiation status, apoptotic tendency, and cytokine phenotype vis-à-vis Th1, Th2, Treg, and Th17 balance; modulation of this balance for therapeutic gain will depend upon an ability to understand and control an emerging phenomenon termed T-cell plasticity. (4) T-cell-mediated immune pathology. GVHD after allogeneic transplantation has been an instrumental model system for understanding T-cell path ology; importantly, cellular and molecular mechanisms underlying GVHD may also contribute to toxicities observed after effective autologous T-cell therapy. As such, both allogeneic and autologous immunotherapies are now confronted with an overall goal of maximizing T-cell efficacy while limiting T-cell toxicity. Attainment of such enhanced therapeutic windows may be facilitated by recent developments in immune cell modulation, including use of cell fate control genes and use of inhibitors of the mammalian target of rapamycin (mTOR) and JAK/STAT pathways. In conclusion, converging themes in autologous and allogeneic transplantation therapy indicate that a bright future will emerge for T-cell therapies, the success of which will be realized through advances in T-cell biology and T-cell engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weiden PL, Flournoy N, Thomas ED, et al. Antileukemic effect of graft-versus-host disease in human recipients of allogeneic-marrow grafts. N Engl J Med. 1979;300:1068–1073.

    Article  PubMed  CAS  Google Scholar 

  2. Barkholt L, Bregni M, Remberger M, et al. Allogeneic haematopoietic stem cell transplantation for metastatic renal carcinoma in Europe. Ann Oncol. 2006;17:1134–1140.

    Article  PubMed  CAS  Google Scholar 

  3. Bishop MR, Fowler DH, Marchigiani D, et al. Allogeneic lymphocytes induce tumor regression of advanced metastatic breast cancer. J Clin Oncol. 2004;22:3886–3892.

    Article  PubMed  Google Scholar 

  4. Brown CE, Starr R, Martinez C, et al. Recognition and killing of brain tumor stem-like initi ating cells by CD8+ cytolytic T cells. Cancer Res. 2009;69:8886–8893.

    Article  PubMed  CAS  Google Scholar 

  5. Wrzesinski C, Paulos CM, Gattinoni L, et al. Hematopoietic stem cells promote the expansion and function of adoptively transferred antitumor CD8 T cells. J Clin Invest. 2007;117:492–501.

    Article  PubMed  CAS  Google Scholar 

  6. Fowler DH. Shared biology of GVHD and GVT effects: potential methods of separation. Crit Rev Oncol Hematol. 2006;57:225–244.

    Article  PubMed  Google Scholar 

  7. Mielke S, Nunes R, Rezvani K, et al. A clinical-scale selective allodepletion approach for the treatment of HLA-mismatched and matched donor-recipient pairs using expanded T lymphocytes as antigen-presenting cells and a TH9402-based photodepletion technique. Blood. 2008;111:4392–4402.

    Article  PubMed  CAS  Google Scholar 

  8. Paulos CM, Wrzesinski C, Kaiser A, et al. Microbial translocation augments the function of adoptively transferred self/tumor-specific CD8+ T cells via TLR4 signaling. J Clin Invest. 2007;117:2197–2204.

    Article  PubMed  CAS  Google Scholar 

  9. Warrren EH, Fujii N, Akatsuka Y, et al. Therapy of relapsed leukemia after allogeneic hematopoietic cell transplant with T cells specific for minor histocompatibility antigens. Blood. 2010;115(19):3869–3878.

    Google Scholar 

  10. Ksontini R, Colagiovanni DB, Josephs MD, et al. Disparate roles for TNF-alpha and Fas ligand in concanavalin A-induced hepatitis. J Immunol. 1998;160:4082–4089.

    PubMed  CAS  Google Scholar 

  11. Boni A, Muranski P, Cassard L, et al. Adoptive transfer of allogeneic tumor-specific T cells mediates effective regression of large tumors across major histocompatibility barriers. Blood. 2008;112:4746–4754.

    Article  PubMed  CAS  Google Scholar 

  12. Zhang H, Chua KS, Guimond M, et al. Lymphopenia and interleukin-2 therapy alter homeostasis of CD4 + CD25+ regulatory T cells. Nat Med. 2005;11:1238–1243.

    Article  PubMed  CAS  Google Scholar 

  13. Gattinoni L, Finkelstein SE, Klebanoff CA, et al. Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. J Exp Med. 2005;202:907–912.

    Article  PubMed  CAS  Google Scholar 

  14. Hsieh MM, Kang EM, Fitzhugh CD, et al. Allogeneic hematopoietic stem-cell transplantation for sickle cell disease. N Engl J Med. 2009;361:2309–2317.

    Article  PubMed  CAS  Google Scholar 

  15. Bishop MR, Hou JW, Wilson WH, et al. Establishment of early donor engraftment after reduced-intensity allogeneic hematopoietic stem cell transplantation to potentiate the graft-versus-lymphoma effect against refractory lymphomas. Biol Blood Marrow Transplant. 2003;9:162–169.

    Article  PubMed  Google Scholar 

  16. Robak T, Korycka A, Lech-Maranda E, Robak P. Current status of older and new purine nucleoside analogues in the treatment of lymphoproliferative diseases. Molecules. 2009;14:1183–1226.

    Article  PubMed  CAS  Google Scholar 

  17. Aiuti A, Cattaneo F, Galimberti S, et al. Gene therapy for immunodeficiency due to adenosine deaminase deficiency. N Engl J Med. 2009;360:447–458.

    Article  PubMed  CAS  Google Scholar 

  18. Pavletic SZ, Bociek RG, Foran JM, et al. Lymphodepleting effects and safety of pentostatin for nonmyeloablative allogeneic stem-cell transplantation. Transplantation. 2003;76:877–881.

    Article  PubMed  CAS  Google Scholar 

  19. Dean RM, Fry T, Mackall C, et al. Association of serum interleukin-7 levels with the development of acute graft-versus-host disease. J Clin Oncol. 2008;26:5735–5741.

    Article  PubMed  CAS  Google Scholar 

  20. Mielcarek M, Martin PJ, Leisenring W, et al. Graft-versus-host disease after nonmyeloablative versus conventional hematopoietic stem cell transplantation. Blood. 2003;102:756–762.

    Article  PubMed  CAS  Google Scholar 

  21. Mariotti J, Foley J, Jung U, et al. Ex vivo rapamycin generates apoptosis-resistant donor Th2 cells that persist in vivo and prevent hemopoietic stem cell graft rejection. J Immunol. 2008;180:89–105.

    PubMed  CAS  Google Scholar 

  22. Martin PJ, Akatsuka Y, Hahne M, Sale G. Involvement of donor T-cell cytotoxic effector mechanisms in preventing allogeneic marrow graft rejection. Blood. 1998;92:2177–2181.

    PubMed  CAS  Google Scholar 

  23. Mariotti J, Foley J, Ryan K, et al. Graft rejection as a Th1-type process amenable to regulation by donor Th2-type cells through an interleukin-4/STAT6 pathway. Blood. 2008;112:4765–4775.

    Article  PubMed  CAS  Google Scholar 

  24. Dudley ME, Yang JC, Sherry R, et al. Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. J Clin Oncol. 2008;26:5233–5239.

    Article  PubMed  CAS  Google Scholar 

  25. Melchionda F, Fry TJ, Milliron MJ, McKirdy MA, Tagaya Y, Mackall CL. Adjuvant IL-7 or IL-15 overcomes immunodominance and improves survival of the CD8+ memory cell pool. J Clin Invest. 2005;115:1177–1187.

    PubMed  CAS  Google Scholar 

  26. Cui Y, Zhang H, Meadors J, Poon R, Guimond M, Mackall CL. Harnessing the physiology of lymphopenia to support adoptive immunotherapy in lymphoreplete hosts. Blood. 2009;114:3831–3840.

    Article  PubMed  CAS  Google Scholar 

  27. Guimond M, Veenstra RG, Grindler DJ, et al. Interleukin 7 signaling in dendritic cells regulates the homeostatic proliferation and niche size of CD4+ T cells. Nat Immunol. 2009;10:149–157.

    Article  PubMed  CAS  Google Scholar 

  28. Sportes C, Hakim FT, Memon SA, et al. Administration of rhIL-7 in humans increases in vivo TCR repertoire diversity by preferential expansion of naive T cell subsets. J Exp Med. 2008;205:1701–1714.

    Article  PubMed  CAS  Google Scholar 

  29. Berger C, Berger M, Hackman RC, et al. Safety and immunologic effects of IL-15 administration in nonhuman primates. Blood. 2009;114:2417–2426.

    Article  PubMed  CAS  Google Scholar 

  30. Hinrichs CS, Spolski R, Paulos CM, et al. IL-2 and IL-21 confer opposing differentiation programs to CD8+ T cells for adoptive immunotherapy. Blood. 2008;111:5326–5333.

    Article  PubMed  CAS  Google Scholar 

  31. Jung U, Foley JE, Erdmann AA, et al. Ex vivo rapamycin generates Th1/Tc1 or Th2/Tc2 Effector T cells with enhanced in vivo function and differential sensitivity to post-transplant rapamycin therapy. Biol Blood Marrow Transplant. 2006;12:905–918.

    Article  PubMed  CAS  Google Scholar 

  32. Foley JE, Mariotti J, Ryan K, Eckhaus M, Fowler DH. Th2 cell therapy of established acute graft-versus-host disease requires IL-4 and IL-10 and is abrogated by IL-2 or host-type antigen-presenting cells. Biol Blood Marrow Transplant. 2008;14:959–972.

    Article  PubMed  CAS  Google Scholar 

  33. Fowler DH, Odom J, Steinberg SM, et al. Phase I clinical trial of costimulated, IL-4 polarized donor CD4+ T cells as augmentation of allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2006;12:1150–1160.

    Article  PubMed  CAS  Google Scholar 

  34. O’Shea JJ, Paul WE. Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science.;327:1098–1102.

    Google Scholar 

  35. Edinger M, Hoffmann P, Ermann J, et al. CD4+ CD25+ regulatory T cells preserve graft-versus-tumor activity while inhibiting graft-versus-host disease after bone marrow transplantation. Nat Med. 2003;9:1144–1150.

    Article  PubMed  CAS  Google Scholar 

  36. Jones SC, Murphy GF, Korngold R. Post-hematopoietic cell transplantation control of graft-versus-host disease by donor CD425 T cells to allow an effective graft-versus-leukemia response. Biol Blood Marrow Transplant. 2003;9:243–256.

    Article  PubMed  Google Scholar 

  37. Langowski JL, Zhang X, Wu L, et al. IL-23 promotes tumour incidence and growth. Nature. 2006;442:461–465.

    Article  PubMed  CAS  Google Scholar 

  38. Chen X, Das R, Komorowski R, et al. Blockade of interleukin-6 signaling augments regulatory T-cell reconstitution and attenuates the severity of graft-versus-host disease. Blood. 2009;114:891–900.

    Article  PubMed  CAS  Google Scholar 

  39. Das R, Chen X, Komorowski R, Hessner MJ, Drobyski WR. Interleukin-23 secretion by donor antigen-presenting cells is critical for organ-specific pathology in graft-versus-host disease. Blood. 2009;113:2352–2362.

    Article  PubMed  CAS  Google Scholar 

  40. Chen X, Vodanovic-Jankovic S, Johnson B, Keller M, Komorowski R, Drobyski WR. Absence of regulatory T-cell control of TH1 and TH17 cells is responsible for the autoimmune-mediated pathology in chronic graft-versus-host disease. Blood. 2007;110:3804–3813.

    Article  PubMed  CAS  Google Scholar 

  41. Yi T, Chen Y, Wang L, et al. Reciprocal differentiation and tissue-specific pathogenesis of Th1, Th2, and Th17 cells in graft-versus-host disease. Blood. 2009;114:3101–3112.

    Article  PubMed  CAS  Google Scholar 

  42. Dobrzanski MJ, Reome JB, Hollenbaugh JA, Dutton RW. Tc1 and Tc2 effector cell therapy elicit long-term tumor immunity by contrasting mechanisms that result in complementary endogenous type 1 antitumor responses. J Immunol. 2004;172:1380–1390.

    PubMed  CAS  Google Scholar 

  43. Labbe A, Nelles M, Walia J, et al. IL-12 immunotherapy of murine leukaemia: comparison of systemic versus gene modified cell therapy. J Cell Mol Med. 2009;13:1962–1976.

    Article  PubMed  Google Scholar 

  44. Martin-Orozco N, Muranski P, Chung Y, et al. T helper 17 cells promote cytotoxic T cell activation in tumor immunity. Immunity. 2009;31:787–798.

    Article  PubMed  CAS  Google Scholar 

  45. Hinrichs CS, Kaiser A, Paulos CM, et al. Type 17 CD8+ T cells display enhanced antitumor immunity. Blood. 2009;114:596–599.

    Article  PubMed  CAS  Google Scholar 

  46. Damsker JM, Hansen AM, Caspi RR. Th1 and Th17 cells: adversaries and collaborators. Ann N Y Acad Sci;1183:211–221.

    Google Scholar 

  47. Saraiva M, O’Garra A. The regulation of IL-10 production by immune cells. Nat Rev Immunol;10:170–181.

    Google Scholar 

  48. Lee YK, Mukasa R, Hatton RD, Weaver CT. Developmental plasticity of Th17 and Treg cells. Curr Opin Immunol. 2009;21:274–280.

    Article  PubMed  CAS  Google Scholar 

  49. Zhou L, Chong MM, Littman DR. Plasticity of CD4+ T cell lineage differentiation. Immunity. 2009;30:646–655.

    Article  PubMed  CAS  Google Scholar 

  50. Zhou X, Bailey-Bucktrout SL, Jeker LT, et al. Instability of the transcription factor FOXP3 leads to the generation of pathogenic memory T cells in vivo. Nat Immunol. 2009;10:1000–1007.

    Article  PubMed  CAS  Google Scholar 

  51. Koch MA, Tucker-Heard G, Perdue NR, Killebrew JR, Urdahl KB, Campbell DJ. The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation. Nat Immunol. 2009;10:595–602.

    Article  PubMed  CAS  Google Scholar 

  52. Yang XO, Nurieva R, Martinez GJ, et al. Molecular antagonism and plasticity of regulatory and inflammatory T cell programs. Immunity. 2008;29:44–56.

    Article  PubMed  CAS  Google Scholar 

  53. Polansky JK, Kretschmer K, Freyer J, et al. DNA methylation controls FOXP3 gene expression. Eur J Immunol. 2008;38:1654–1663.

    Article  PubMed  CAS  Google Scholar 

  54. Wei G, Wei L, Zhu J, et al. Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells. Immunity. 2009;30:155–167.

    Article  PubMed  Google Scholar 

  55. Merkenschlager M, Wilson CB. RNAi and chromatin in T cell development and function. Curr Opin Immunol. 2008;20:131–138.

    Article  PubMed  CAS  Google Scholar 

  56. Hinrichs CS, Borman ZA, Cassard L, et al. Adoptively transferred effector cells derived from naive rather than central memory CD8+ T cells mediate superior antitumor immunity. Proc Natl Acad Sci USA. 2009;106:17469–17474.

    Article  PubMed  CAS  Google Scholar 

  57. Foley JE, Jung U, Miera A, et al. Ex vivo rapamycin generates donor Th2 cells that potently inhibit graft-versus-host disease and graft-versus-tumor effects via an IL-4-dependent mechanism. J Immunol. 2005;175:5732–5743.

    PubMed  CAS  Google Scholar 

  58. Berger C, Jensen MC, Lansdorp PM, Gough M, Elliott C, Riddell SR. Adoptive transfer of effector CD8+ T cells derived from central memory cells establishes persistent T cell memory in primates. J Clin Invest. 2008;118:294–305.

    Article  PubMed  CAS  Google Scholar 

  59. Hakim FT, Memon SA, Cepeda R, et al. Age-dependent incidence, time course, and consequences of thymic renewal in adults. J Clin Invest. 2005;115:930–939.

    PubMed  CAS  Google Scholar 

  60. Gattinoni L, Zhong XS, Palmer DC, et al. Wnt signaling arrests effector T cell differentiation and generates CD8+ memory stem cells. Nat Med. 2009;15:808–813.

    Article  PubMed  CAS  Google Scholar 

  61. Sinclair LV, Finlay D, Feijoo C, et al. Phosphatidylinositol-3-OH kinase and nutrient-sensing mTOR pathways control T lymphocyte trafficking. Nat Immunol. 2008;9:513–521.

    Article  PubMed  CAS  Google Scholar 

  62. Amarnath S, Flomerfelt FA, Costanzo CM, et al. Rapamycin generates anti-apoptotic human Th1/Tc1 cells via autophagy for induction of xenogeneic GVHD. Autophagy. 2010;6(4):523–541.

    Google Scholar 

  63. Pua HH, Guo J, Komatsu M, He YW. Autophagy is essential for mitochondrial clearance in mature T lymphocytes. J Immunol. 2009;182:4046–4055.

    Article  PubMed  CAS  Google Scholar 

  64. Virgin HW, Levine B. Autophagy genes in immunity. Nat Immunol. 2009;10:461–470.

    Article  PubMed  CAS  Google Scholar 

  65. Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, Deretic V. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell. 2004;119:753–766.

    Article  PubMed  CAS  Google Scholar 

  66. Li Y, Wang LX, Yang G, Hao F, Urba WJ, Hu HM. Efficient cross-presentation depends on autophagy in tumor cells. Cancer Res. 2008;68:6889–6895.

    Article  PubMed  CAS  Google Scholar 

  67. Bishop MR, Alyea EP, 3rd, Cairo MS, et al. Introduction to the reports from the National Cancer Institute first international workshop on the biology, prevention, and treatment of relapse after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant;16:563–564.

    Google Scholar 

  68. Taylor PA, Panoskaltsis-Mortari A, Swedin JM, et al. L-Selectin(hi) but not the L-selectin(lo) CD4+ 25+ T-regulatory cells are potent inhibitors of GVHD and BM graft rejection. Blood. 2004;104:3804–3812.

    Article  PubMed  CAS  Google Scholar 

  69. Amarnath S, Costanzo CM, Mariotti J, et al. Regulatory T cells and human myeloid dendritic cells promote tolerance via programmed death ligand–1. PLoS Biol;8:e1000302.

    Google Scholar 

  70. Couriel DR, Saliba R, de Lima M, et al. A phase III study of infliximab and corticosteroids for the initial treatment of acute graft-versus-host disease. Biol Blood Marrow Transplant. 2009;15:1555–1562.

    Article  PubMed  CAS  Google Scholar 

  71. Venkiteshwaran A. Tocilizumab. MAbs. 2009;1:432–438.

    Article  PubMed  Google Scholar 

  72. Luznik L, Bolanos-Meade J, Zahurak M, et al. High-dose cyclophosphamide as single agent, short-course prophylaxis of graft-versus-host disease. Blood. 2010;115(16):3224–3230.

    Google Scholar 

  73. Morgan RA, Dudley ME, Wunderlich JR, et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science. 2006;314:126–129.

    Article  PubMed  CAS  Google Scholar 

  74. Johnson LA, Morgan RA, Dudley ME, et al. Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood. 2009;114:535–546.

    Article  PubMed  CAS  Google Scholar 

  75. Lamers CH, Sleijfer S, Vulto AG, et al. Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience. J Clin Oncol. 2006;24:e20–e22.

    Article  PubMed  Google Scholar 

  76. Brentjens R, Yeh R, Bernal Y, Riviere I, Sadelain M. Treatment of chronic lymphocytic leukemia with genetically targeted autologous T cells: case report of an unforeseen adverse event in a phase I clinical trial. Mol Ther. 2010;18:666–668.

    Article  PubMed  CAS  Google Scholar 

  77. Morgan RA, Yang JC, Kitano M, Dudley ME, Laurencot CM, Rosenberg SA. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther. 2010;18:843–851.

    Article  PubMed  CAS  Google Scholar 

  78. Rapoport AP, Stadtmauer EA, Aqui N, et al. Rapid immune recovery and graft-versus-host disease-like engraftment syndrome following adoptive transfer of Costimulated autologous T cells. Clin Cancer Res. 2009;15:4499–4507.

    Article  PubMed  CAS  Google Scholar 

  79. Spitzer TR. Engraftment syndrome following hematopoietic stem cell transplantation. Bone Marrow Transplant. 2001;27:893–898.

    Article  PubMed  CAS  Google Scholar 

  80. Suntharalingam G, Perry MR, Ward S, et al. Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N Engl J Med. 2006;355:1018–1028.

    Article  PubMed  CAS  Google Scholar 

  81. Ciceri F, Bonini C, Stanghellini MT, et al. Infusion of suicide-gene-engineered donor lymphocytes after family haploidentical haemopoietic stem-cell transplantation for leukaemia (the TK007 trial): a non-randomised phase I-II study. Lancet Oncol. 2009;10:489–500.

    Article  PubMed  Google Scholar 

  82. Berger C, Flowers ME, Warren EH, Riddell SR. Analysis of transgene-specific immune responses that limit the in vivo persistence of adoptively transferred HSV-TK-modified donor T cells after allogeneic hematopoietic cell transplantation. Blood. 2006;107:2294–2302.

    Article  PubMed  CAS  Google Scholar 

  83. Sato T, Neschadim A, Konrad M, Fowler DH, Lavie A, Medin JA. Engineered human tmpk/AZT as a novel enzyme/prodrug axis for suicide gene therapy. Mol Ther. 2007;15:962–970.

    Article  PubMed  CAS  Google Scholar 

  84. Ghoreschi K, Laurence A, O’Shea JJ. Selectivity and therapeutic inhibition of kinases: to be or not to be? Nat Immunol. 2009;10:356–360.

    Article  PubMed  CAS  Google Scholar 

  85. Adamson AS, Collins K, Laurence A, O’Shea JJ. The Current STATus of lymphocyte signaling: new roles for old players. Curr Opin Immunol. 2009;21:161–166.

    Article  PubMed  CAS  Google Scholar 

  86. Karaman MW, Herrgard S, Treiber DK, et al. A quantitative analysis of kinase inhibitor selectivity. Nat Biotechnol. 2008;26:127–132.

    Article  PubMed  CAS  Google Scholar 

  87. van Gurp E, Weimar W, Gaston R, et al. Phase 1 dose-escalation study of CP-690 550 in stable renal allograft recipients: preliminary findings of safety, tolerability, effects on lymphocyte subsets and pharmacokinetics. Am J Transplant. 2008;8:1711–1718.

    Article  PubMed  Google Scholar 

  88. Ciuffreda L, Di Sanza C, Milella M. The mTOR pathway: a new target in cancer therapy. Curr Cancer Drug Targets. 2010;10(5):484–495.

    Google Scholar 

  89. Hudes G, Carducci M, Tomczak P, et al. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med. 2007;356:2271–2281.

    Article  PubMed  CAS  Google Scholar 

  90. Battaglia M, Stabilini A, Roncarolo MG. Rapamycin selectively expands CD4+ CD25+ FOXP3+ regulatory T cells. Blood. 2005;105:4743–4748.

    Article  PubMed  CAS  Google Scholar 

  91. Delgoffe GM, Kole TP, Zheng Y, et al. The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity. 2009;30:832–844.

    Article  PubMed  CAS  Google Scholar 

  92. Delgoffe GM, Powell JD. mTOR: taking cues from the immune microenvironment. Immunology. 2009;127:459–465.

    Article  PubMed  CAS  Google Scholar 

  93. Hackstein H, Taner T, Zahorchak AF, et al. Rapamycin inhibits IL-4 – induced dendritic cell maturation in vitro and dendritic cell mobilization and function in vivo. Blood. 2003;101:4457–4463.

    Article  PubMed  CAS  Google Scholar 

  94. Araki K, Turner AP, Shaffer VO, et al. mTOR regulates memory CD8 T-cell differentiation. Nature. 2009;460:108–112.

    Article  PubMed  CAS  Google Scholar 

  95. Armand P, Gannamaneni S, Kim HT, et al. Improved survival in lymphoma patients receiving sirolimus for graft-versus-host disease prophylaxis after allogeneic hematopoietic stem-cell transplantation with reduced-intensity conditioning. J Clin Oncol. 2008;26:5767–5774.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel H. Fowler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Fowler, D.H. (2011). Allogeneic and Autologous Transplantation Therapy of Cancer: Converging Themes. In: Medin, J., Fowler, D. (eds) Experimental and Applied Immunotherapy. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-980-2_19

Download citation

Publish with us

Policies and ethics