Skip to main content

Combining Oncolytic Viruses with Cancer Immunotherapy

  • Chapter
  • First Online:
Experimental and Applied Immunotherapy

Abstract

Although there are a number of treatment modalities currently available for the treatment of cancer, mortality rates have only shown marginal improvement of late. Novel therapeutics, with decreased side effects, are desperately needed in order to improve the current prognosis for this deadly disease. To this end viruses with either natural or engineered tropism to tumors as well as immunotherapeutic approaches are being investigated as possible mono-therapies for the treatment of cancer. Each of these therapies have shown some successes on their own, however the combination of these two modalities may improve on the efficacy of the individual treatments. This chapter will focus on the use of oncolytic viruses in cancer therapy, the importance of the immune response, and its ability to further improve on the successes of oncolytic viral therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jemal A, Siegel R, Ward E et al (2009) Cancer statistics, 2009. CA Cancer J Clin 59(4): 225–249

    Article  PubMed  Google Scholar 

  2. Benencia F, Courreges MC, Conejo-Garcia JR et al (2005) HSV oncolytic therapy upregulates interferon-inducible chemokines and recruits immune effector cells in ovarian cancer. Mol Ther 12: 789–802

    Article  PubMed  CAS  Google Scholar 

  3. Endo Y, Sakai R, Ouchi M et al (2008) Virus-mediated oncolysis induces danger signal and stimulates cytotoxic T-lymphocyte activity via proteasome activator upregulation. Oncogene 27: 2375–2381

    Article  PubMed  CAS  Google Scholar 

  4. Errington F, White CL, Twigger KR et al (2008) Inflammatory tumour cell killing by oncolytic reovirus for the treatment of melanoma. Gene Ther 15: 1257–1270

    Article  PubMed  CAS  Google Scholar 

  5. Endo T, Toda M, Watanabe M et al (2002) In situ cancer vaccination with a replication-conditional HSV for the treatment of liver metastasis of colon cancer. Cancer Gene Ther 9: 142–148

    Article  PubMed  CAS  Google Scholar 

  6. Hummel JL, Safroneeva E, Mossman KL (2005) The role of ICP0-Null HSV-1 and interferon signaling defects in the effective treatment of breast adenocarcinoma. Mol Ther 12: 1101–1110

    Article  PubMed  CAS  Google Scholar 

  7. Li H, Dutuor A, Fu X et al (2007) Induction of strong antitumor immunity by an HSV-2-based oncolytic virus in a murine mammary tumor model. J Gene Med 9: 161–169

    Article  PubMed  CAS  Google Scholar 

  8. Li H, Dutuor A, Tao L et al (2007) Virotherapy with a type 2 herpes simplex virus-derived oncolytic virus induces potent antitumor immunity against neuroblastoma. Clin Cancer Res 13: 316–322

    Article  PubMed  CAS  Google Scholar 

  9. Nakamori M, Fu X, Rousseau R et al (2004) Destruction of nonimmunogenic mammary tumor cells by a fusogenic oncolytic herpes simplex virus induces potent antitumor immunity. Mol Ther 9: 658–665

    Article  PubMed  CAS  Google Scholar 

  10. Toda M, Iizuka Y, Kawase T et al (2002) Immuno-viral therapy of brain tumors by combination of viral therapy with cancer vaccination using a replication-conditional HSV. Cancer Gene Ther 9: 356–364

    Article  PubMed  CAS  Google Scholar 

  11. Diaz RM, Galivo F, Kottke T et al (2007) Oncolytic immunovirotherapy for melanoma using vesicular stomatitis virus. Cancer Res 67: 2840–2848

    Article  PubMed  CAS  Google Scholar 

  12. Moehler MH, Zeidler M, Wilsberg V et al (2005) Parvovirus H-1-induced tumor cell death enhances human immune response in vitro via increased phagocytosis, maturation, and cross-presentation by dendritic cells. Hum Gene Ther 16: 996–1005

    Article  PubMed  CAS  Google Scholar 

  13. Khawli LA, Hu P, Epstein AL (2008) Cytokine, chemokine, and co-stimulatory fusion proteins for the immunotherapy of solid tumors. Handb Exp Pharmacol 181(5): 291–328

    Article  PubMed  CAS  Google Scholar 

  14. Greiner S, Humrich JY, Thuman P et al (2006) The highly attenuated vaccinia virus strain modified virus Ankara induces apoptosis in melanoma cells and allows bystander dendritic cells to generate a potent anti-tumoral immunity. Clin Exp Immunol 146: 344–353

    Article  PubMed  CAS  Google Scholar 

  15. Schulz O, Diebold SS, Chen M et al (2005) Toll-like receptor 3 promotes cross-priming to virus-infected cells. Nature 433: 887–892

    Article  PubMed  CAS  Google Scholar 

  16. Lindenmann J, Klein PA (1967) Viral oncolysis: increased immunogenicity of host cell antigen associated with influenza virus. J Exp Med 126: 93–108

    Article  PubMed  CAS  Google Scholar 

  17. Freedman RS, Edwards CL, Bowen JM et al (1988) Viral oncolysates in patients with advanced ovarian cancer. Gynecol Oncol 29: 337–347

    Article  PubMed  CAS  Google Scholar 

  18. Lotzova E, Savary CA, Freedman RS et al (1984) Natural killer cell cytotoxic potential of patients with ovarian carcinoma and its modulation with virus-modified tumor cell extract. Cancer Immunol Immunother 17: 124–129

    PubMed  CAS  Google Scholar 

  19. Savage HE, Rossen RD, Hersh EM et al (1986) Antibody development to viral and allogeneic tumor cell-associated antigens in patients with malignant melanoma and ovarian carcinoma treated with lysates of virus-infected tumor cells. Cancer Res 46: 2127–2133

    PubMed  CAS  Google Scholar 

  20. Cassel WA, Murray DR, Phillips HS (1983) A phase II study on the postsurgical management of Stage II malignant melanoma with a Newcastle disease virus oncolysate. Cancer 52: 856–860

    Article  PubMed  CAS  Google Scholar 

  21. Fitzgerald-Bocarsly P, Feng D (2007) The role of type I interferon production by dendritic cells in host defense. Biochimie 89: 843–855

    Article  PubMed  CAS  Google Scholar 

  22. Berthier-Vergnes O, Portoukalian J, Leftheriotis E et al (1994) Induction of IgG antibodies directed to a M(r) 31,000 melanoma antigen in patients immunized with vaccinia virus melanoma oncolysates. Cancer Res 54: 2433–2439

    PubMed  CAS  Google Scholar 

  23. Arroyo PJ, Bash JA, Wallack MK (1990) Active specific immunotherapy with vaccinia colon oncolysate enhances the immunomodulatory and antitumor effects of interleukin-2 and interferon alpha in a murine hepatic metastasis model. Cancer Immunol Immunother 31: 305–311

    Article  PubMed  CAS  Google Scholar 

  24. Barnavon Y, Iwaki H, Bash JA et al (1988) Treatment of murine hepatic metastases with vaccinia colon oncolysates and IL-2. J Surg Res 45: 523–530

    Article  PubMed  CAS  Google Scholar 

  25. Batliwalla FM, Bateman BA, Serrano D et al (1998) A 15-year follow-up of AJCC stage III malignant melanoma patients treated postsurgically with Newcastle disease virus (NDV) oncolysate and determination of alterations in the CD8 T cell repertoire. Mol Med 4: 783–794

    PubMed  CAS  Google Scholar 

  26. Tanaka N, Sivanandham M, Wallack MK (1994) Immunotherapy of a vaccinia colon oncolysate prepared with interleukin-2 gene-encoded vaccinia virus and interferon-alpha increases the survival of mice bearing syngeneic colon adenocarcinoma. J Immunother Emphasis Tumor Immunol 16: 283–293

    Article  PubMed  CAS  Google Scholar 

  27. Wallack MK (1981) Specific immunotherapy with vaccinia oncolysates. Cancer Immunol Immunother 12: 1–4

    Article  Google Scholar 

  28. Belongia EA, Naleway AL (2003) Smallpox vaccine: the good, the bad, and the ugly. Clin Med Res 1: 87–92

    Article  PubMed  Google Scholar 

  29. Nelson CB, Pomeroy BS, Schrall K et al (1952) An outbreak of conjunctivitis due to Newcastle disease virus (NDV) occurring in poultry workers. Am J Public Health Nations Health 42: 672–678

    Article  PubMed  CAS  Google Scholar 

  30. Cassel WA, Murray DR (1992) A ten-year follow-up on stage II malignant melanoma patients treated postsurgically with Newcastle disease virus oncolysate. Med Oncol Tumor Pharmacother 9: 169–171

    PubMed  CAS  Google Scholar 

  31. Lee YS, Kim JH, Choi KJ et al (2006) Enhanced antitumor effect of oncolytic adenovirus expressing interleukin-12 and B7-1 in an immunocompetent murine model. Clin Cancer Res 12: 5859–5868

    Article  PubMed  CAS  Google Scholar 

  32. Reschner A, Hubert P, Delvenne P et al (2008) Innate lymphocyte and dendritic cell cross-talk: a key factor in the regulation of the immune response. Clin Exp Immunol 152: 219–226

    Article  PubMed  CAS  Google Scholar 

  33. Tan JK, O’Neill HC (2005) Maturation requirements for dendritic cells in T cell stimulation leading to tolerance versus immunity. J Leukoc Biol 78: 319–324

    Article  PubMed  CAS  Google Scholar 

  34. Choi KJ, Kim JH, Lee YS et al (2006) Concurrent delivery of GM-CSF and B7-1 using an oncolytic adenovirus elicits potent antitumor effect. Gene Ther 13: 1010–1020

    Article  PubMed  CAS  Google Scholar 

  35. Fukuhara H, Ino Y, Kuroda T et al (2005) Triple gene-deleted oncolytic herpes simplex virus vector double-armed with interleukin 18 and soluble B7-1 constructed by bacterial artificial chromosome-mediated system. Cancer Res 65: 10,663–10,668

    Article  Google Scholar 

  36. Shin EJ, Wanna GB, Choi B et al (2007) Interleukin-12 expression enhances vesicular stomatitis virus oncolytic therapy in murine squamous cell carcinoma. Laryngoscope 117: 210–214

    Article  PubMed  CAS  Google Scholar 

  37. Su C, Peng L, Sham J et al (2006) Immune gene-viral therapy with triplex efficacy mediated by oncolytic adenovirus carrying an interferon-gamma gene yields efficient antitumor activity in immunodeficient and immunocompetent mice. Mol Ther 13: 918–927

    Article  PubMed  CAS  Google Scholar 

  38. Varghese S, Rabkin SD, Liu R et al (2006) Enhanced therapeutic efficacy of IL-12, but not GM-CSF, expressing oncolytic herpes simplex virus for transgenic mouse derived prostate cancers. Cancer Gene Ther 13: 253–265

    Article  PubMed  CAS  Google Scholar 

  39. Vigil A, Park MS, Martinez O et al (2007) Use of reverse genetics to enhance the oncolytic properties of Newcastle disease virus. Cancer Res 67: 8285–8292

    Article  PubMed  CAS  Google Scholar 

  40. Zhao H, Janke M, Fournier P et al (2008) Recombinant Newcastle disease virus expressing human interleukin-2 serves as a potential candidate for tumor therapy. Virus Res 136: 75–80

    Article  PubMed  CAS  Google Scholar 

  41. Carew JF, Kooby DA, Halterman MW et al (2001) A novel approach to cancer therapy using an oncolytic herpes virus to package amplicons containing cytokine genes. Mol Ther 4: 250–256

    Article  PubMed  CAS  Google Scholar 

  42. Dasgupta S, Bhattacharya-Chatterjee M, O’Malley BW, Jr. et al (2006) Recombinant vaccinia virus expressing interleukin-2 invokes anti-tumor cellular immunity in an orthotopic murine model of head and neck squamous cell carcinoma. Mol Ther 13: 183–193

    Article  PubMed  CAS  Google Scholar 

  43. Liu TC, Hwang T, Park BH et al (2008) The targeted oncolytic poxvirus JX-594 demonstrates antitumoral, antivascular, and anti-HBV activities in patients with hepatocellular carcinoma. Mol Ther 16: 1637–1642

    Article  PubMed  CAS  Google Scholar 

  44. Park BH, Hwang T, Liu TC et al (2008) Use of a targeted oncolytic poxvirus, JX-594, in patients with refractory primary or metastatic liver cancer: a phase I trial. Lancet Oncol 9: 533–542

    Article  PubMed  CAS  Google Scholar 

  45. Lapteva N, Aldrich M, Weksberg D et al (2009) Targeting the intratumoral dendritic cells by the oncolytic adenoviral vaccine expressing RANTES elicits potent antitumor immunity. J Immunother 32: 145–156

    Article  PubMed  CAS  Google Scholar 

  46. Liu BL, Robinson M, Han ZQ et al (2003) ICP34.5 deleted herpes simplex virus with enhanced oncolytic, immune stimulating, and anti-tumour properties. Gene Ther 10: 292–303

    Article  PubMed  CAS  Google Scholar 

  47. Kim JH, Oh JY, Park BH et al (2006) Systemic armed oncolytic and immunologic therapy for cancer with JX-594, a targeted poxvirus expressing GM-CSF. Mol Ther 14: 361–370

    Article  PubMed  CAS  Google Scholar 

  48. Todo T, Martuza RL, Dallman MJ et al (2001) In situ expression of soluble B7-1 in the context of oncolytic herpes simplex virus induces potent antitumor immunity. Cancer Res 61: 153–161

    PubMed  CAS  Google Scholar 

  49. Mueller DL, Jenkins MK, Schwartz RH (1989) Clonal expansion versus functional clonal inactivation: a costimulatory signalling pathway determines the outcome of T cell antigen receptor occupancy. Annu Rev Immunol 7: 445–480

    Article  PubMed  CAS  Google Scholar 

  50. Ino Y, Saeki Y, Fukuhara H et al (2006) Triple combination of oncolytic herpes simplex virus-1 vectors armed with interleukin-12, interleukin-18, or soluble B7-1 results in enhanced antitumor efficacy. Clin Cancer Res 12: 643–652

    Article  PubMed  CAS  Google Scholar 

  51. Trinchieri G, Pflanz S, Kastelein RA (2003) The IL-12 family of heterodimeric cytokines: new players in the regulation of T cell responses. Immunity 19: 641–644

    Article  PubMed  CAS  Google Scholar 

  52. de Jong EC, Smits HH, Kapsenberg ML (2005) Dendritic cell-mediated T cell polarization. Springer Semin Immunopathol 26: 289–307

    Article  PubMed  Google Scholar 

  53. Lui VW, He Y, Falo L et al (2002) Systemic administration of naked DNA encoding interleukin 12 for the treatment of human papillomavirus DNA-positive tumor. Hum Gene Ther 13: 177–185

    Article  PubMed  CAS  Google Scholar 

  54. Leonard JP, Sherman ML, Fisher GL et al (1997) Effects of single-dose interleukin-12 exposure on interleukin-12-associated toxicity and interferon-gamma production. Blood 90: 2541–2548

    PubMed  CAS  Google Scholar 

  55. Wong RJ, Chan MK, Yu Z et al (2004) Angiogenesis inhibition by an oncolytic herpes virus expressing interleukin 12. Clin Cancer Res 10: 4509–4516

    Article  PubMed  CAS  Google Scholar 

  56. Rogers LJ, Eva LJ, Luesley DM (2008) Vaccines against cervical cancer. Curr Opin Oncol 20: 570–574

    Article  PubMed  Google Scholar 

  57. Lollini PL, Cavallo F, Nanni P et al (2006) Vaccines for tumour prevention. Nat Rev Cancer 6: 204–216

    Article  PubMed  CAS  Google Scholar 

  58. Lonchay C, van der Bruggen P, Connerotte T et al (2004) Correlation between tumor regression and T cell responses in melanoma patients vaccinated with a MAGE antigen. Proc Natl Acad Sci USA 101 Suppl 2: 14,631–14,638

    Google Scholar 

  59. Harrop R, Connolly N, Redchenko I et al (2006) Vaccination of colorectal cancer patients with modified vaccinia Ankara delivering the tumor antigen 5T4 (TroVax) induces immune responses which correlate with disease control: a phase I/II trial. Clin Cancer Res 12: 3416–3424

    Article  PubMed  CAS  Google Scholar 

  60. Amato RJ, Shingler W, Naylor S et al (2008) Vaccination of renal cell cancer patients with modified vaccinia ankara delivering tumor antigen 5T4 (TroVax) administered with interleukin 2: a phase II trial. Clin Cancer Res 14: 7504–7510

    Article  PubMed  CAS  Google Scholar 

  61. Kaufman HL, Taback B, Sherman W et al (2009) Phase II trial of Modified Vaccinia Ankara (MVA) virus expressing 5T4 and high dose Interleukin-2 (IL-2) in patients with metastatic renal cell carcinoma. J Transl Med 7: 2

    Article  PubMed  Google Scholar 

  62. Kaufman HL, Lenz HJ, Marshall J et al (2008) Combination chemotherapy and ALVAC-CEA/B7.1 vaccine in patients with metastatic colorectal cancer. Clin Cancer Res 14: 4843–4849

    Article  PubMed  CAS  Google Scholar 

  63. Horig H, Lee DS, Conkright W et al (2000) Phase I clinical trial of a recombinant canarypoxvirus (ALVAC) vaccine expressing human carcinoembryonic antigen and the B7.1 co-stimulatory molecule. Cancer Immunol Immunother 49: 504–514

    Article  PubMed  CAS  Google Scholar 

  64. Jager E, Karbach J, Gnjatic S et al (2006) Recombinant vaccinia/fowlpox NY-ESO-1 vaccines induce both humoral and cellular NY-ESO-1-specific immune responses in cancer patients. Proc Natl Acad Sci USA 103: 14,453–14,458

    Google Scholar 

  65. Harrop R, John J, Carroll MW (2006) Recombinant viral vectors: cancer vaccines. Adv Drug Deliv Rev 58: 931–947

    Article  PubMed  CAS  Google Scholar 

  66. Elzey BD, Siemens DR, Ratliff TL et al (2001) Immunization with type 5 adenovirus recombinant for a tumor antigen in combination with recombinant canarypox virus (ALVAC) cytokine gene delivery induces destruction of established prostate tumors. Int J Cancer 94: 842–849

    Article  PubMed  CAS  Google Scholar 

  67. Irvine KR, Chamberlain RS, Shulman EP et al (1997) Enhancing efficacy of recombinant anticancer vaccines with prime/boost regimens that use two different vectors. J Natl Cancer Inst 89: 1595–1601

    Article  PubMed  CAS  Google Scholar 

  68. Naslund TI, Uyttenhove C, Nordstrom EK et al (2007) Comparative prime-boost vaccinations using Semliki Forest virus, adenovirus, and ALVAC vectors demonstrate differences in the generation of a protective central memory CTL response against the P815 tumor. J Immunol 178: 6761–6769

    PubMed  Google Scholar 

  69. Hodge JW, Poole DJ, Aarts WM et al (2003) Modified vaccinia virus ankara recombinants are as potent as vaccinia recombinants in diversified prime and boost vaccine regimens to elicit therapeutic antitumor responses. Cancer Res 63: 7942–7949

    PubMed  CAS  Google Scholar 

  70. Hodge JW, McLaughlin JP, Kantor JA et al (1997) Diversified prime and boost protocols using recombinant vaccinia virus and recombinant non-replicating avian pox virus to enhance T-cell immunity and antitumor responses. Vaccine 15: 759–768

    Article  PubMed  CAS  Google Scholar 

  71. Marshall JL, Hoyer RJ, Toomey MA et al (2000) Phase I study in advanced cancer patients of a diversified prime-and-boost vaccination protocol using recombinant vaccinia virus and recombinant nonreplicating avipox virus to elicit anti-carcinoembryonic antigen immune responses. J Clin Oncol 18: 3964–3873

    PubMed  CAS  Google Scholar 

  72. Palmer DH, Midgley RS, Mirza N et al (2009) A phase II study of adoptive immunotherapy using dendritic cells pulsed with tumor lysate in patients with hepatocellular carcinoma. Hepatology 49: 124–132

    Article  PubMed  Google Scholar 

  73. Shen X, Berger CL, Tigelaar R et al (2008) Development of immunogenic tumor-loaded dendritic cells through physical perturbation and apoptotic cell loading. Immunol Investig 37: 798–821

    Article  CAS  Google Scholar 

  74. Bonehill A, Van Nuffel AM, Corthals J et al (2009) Single-step antigen loading and activation of dendritic cells by mRNA electroporation for the purpose of therapeutic vaccination in melanoma patients. Clin Cancer Res 15: 3366–3375

    Article  PubMed  CAS  Google Scholar 

  75. Kaplan JM, Yu Q, Piraino ST et al (1999) Induction of antitumor immunity with dendritic cells transduced with adenovirus vector-encoding endogenous tumor-associated antigens. J Immunol 163: 699–707

    PubMed  CAS  Google Scholar 

  76. Ojima T, Iwahashi M, Nakamura M et al (2006) The boosting effect of co-transduction with cytokine genes on cancer vaccine therapy using genetically modified dendritic cells expressing tumor-associated antigen. Int J Oncol 28: 947–953

    PubMed  CAS  Google Scholar 

  77. Farrell CJ, Zaupa C, Barnard Z et al (2008) Combination immunotherapy for tumors via sequential intratumoral injections of oncolytic herpes simplex virus 1 and immature dendritic cells. Clin Cancer Res 14: 7711–7716

    Article  PubMed  CAS  Google Scholar 

  78. Vigil A, Martinez O, Chua MA et al (2008) Recombinant Newcastle disease virus as a vaccine vector for cancer therapy. Mol Ther 16: 1883–1890

    Article  PubMed  CAS  Google Scholar 

  79. Bronte V, Tsung K, Rao JB et al (1995) IL-2 enhances the function of recombinant poxvirus-based vaccines in the treatment of established pulmonary metastases. J Immunol 154: 5282–5292

    PubMed  CAS  Google Scholar 

  80. Boudreau JE, Bridle BW, Stephenson KB et al (2009) Recombinant vesicular stomatitis virus transduction of dendritic cells enhances their ability to prime innate and adaptive antitumor immunity. Mol Ther 17: 1465–1472

    Article  PubMed  CAS  Google Scholar 

  81. Bridle BW, Hanson S, Lichty BD (2010) Combining oncolytic virotherapy and tumour vaccination. Cytokine Growth Factor Rev. S1359-6101(10)00020-1 [pii] 10.1016/j.cytogfr.2010.02.009

  82. Xu F, Sternberg MR, Kottiri BJ et al (2006) Trends in herpes simplex virus type 1 and type 2 seroprevalence in the United States. J Am Med Assoc 296: 964–973

    Article  CAS  Google Scholar 

  83. Tai JH, Williams JV, Edwards KM et al (2005) Prevalence of reovirus-specific antibodies in young children in Nashville, Tennessee. J Infect Dis 191: 1221–4

    Article  PubMed  Google Scholar 

  84. Thorne SH, Negrin RS, Contag CH (2006) Synergistic antitumor effects of immune cell-viral biotherapy. Science 311: 1780–1784

    Article  PubMed  CAS  Google Scholar 

  85. Qiao J, Kottke T, Willmon C et al (2008) Purging metastases in lymphoid organs using a combination of antigen-nonspecific adoptive T cell therapy, oncolytic virotherapy and immunotherapy. Nat Med 14: 37–44

    Article  PubMed  CAS  Google Scholar 

  86. Qiao J, Wang H, Kottke T et al (2008) Loading of oncolytic vesicular stomatitis virus onto antigen-specific T cells enhances the efficacy of adoptive T-cell therapy of tumors. Gene Ther 15: 604–616

    Article  PubMed  CAS  Google Scholar 

  87. Iankov ID, Blechacz B, Liu C et al (2007) Infected cell carriers: a new strategy for systemic delivery of oncolytic measles viruses in cancer virotherapy. Mol Ther 15: 114–122

    Article  PubMed  CAS  Google Scholar 

  88. Ong HT, Hasegawa K, Dietz AB et al (2007) Evaluation of T cells as carriers for systemic measles virotherapy in the presence of antiviral antibodies. Gene Ther 14: 324–333

    Article  PubMed  CAS  Google Scholar 

  89. Ilett EJ, Prestwich RJ, Kottke T et al (2009) Dendritic cells and T cells deliver oncolytic reovirus for tumour killing despite pre-existing anti-viral immunity. Gene Ther 16: 689–699

    Article  PubMed  CAS  Google Scholar 

  90. Thorne SH, Contag CH (2008) Integrating the biological characteristics of oncolytic viruses and immune cells can optimize therapeutic benefits of cell-based delivery. Gene Ther 15: 753–758

    Article  PubMed  CAS  Google Scholar 

  91. Power AT, Wang J, Falls TJ et al (2007) Carrier cell-based delivery of an oncolytic virus circumvents antiviral immunity. Mol Ther 15: 123–130

    Article  PubMed  CAS  Google Scholar 

  92. Dudley ME, Wunderlich JR, Robbins PF et al (2002) Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298: 850–854

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyle B. Stephenson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Stephenson, K.B., Bell, J., Lichty, B. (2011). Combining Oncolytic Viruses with Cancer Immunotherapy. In: Medin, J., Fowler, D. (eds) Experimental and Applied Immunotherapy. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-980-2_16

Download citation

Publish with us

Policies and ethics