Skip to main content

Neural Progenitor Cells for Traumatic Brain and Spinal Cord Injury: Endogenous Cell Rescue Versus Replacement Mechanisms

  • Chapter
  • First Online:
Progenitor Cell Therapy for Neurological Injury

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 553 Accesses

Abstract

Neural progenitor cells possess the qualities of all progenitor cells (that is, multipotency and the capacity for self-renewal). In culture, they differentiate into neurons, astrocytes, and oligodendrocytes. In the adult central nervous system (CNS), there are endogenous reserves of neural stem cells. These endogenous cells (as well as transplanted cells) represent a promising target for reparative treatment strategies for traumatic brain and spinal cord injury. Current research involves exploring ways to affect the endogenous neural stem cell reserve after injury and effects and potential mechanisms of transplantation of embryonic or adult neural stem cells or both. In this chapter, we review cell types in the CNS relevant to neural stem cell therapy, endogenous neural stem cell reserves, ways to promote endogenous stem cell reserves after injury, and purported mechanisms of embryonic and adult neural stem cell therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BBB:

Blood–brain barrier

BDNF:

Brain-derived neurotrophic factor

CNS:

Central nervous system

ChAT:

Choline acetyltransferase

EGF:

Epidermal growth factor

FDA:

US Food and Drug Administration

FGF2:

Fibroblast growth factor-2

GDNF:

Glial cell-derived neurotrophic factor

GFAP:

Glial fibrillary acidic protein

GM-CSF:

Granulocyte monocyte colony-stimulating factor

IL:

Interleukin

INF-γ:

Interferon-gamma

LIF:

Leukemia inhibitory factor

LPS:

Lipopolysaccharide

mTOR:

Mammalian target of rapamycin

NGF:

Nerve growth factor

NT-3:

Neurotrophin-3

STAT-3:

Signal transducer and activator of transcription-3

TBI:

Traumatic brain injury

VEGF:

Vascular endothelial growth factor

References

  • Akiyama Y, Honmou O, Kato T, Uede T, Hashi K, Kocsis JD (2001) Transplantation of clonal neural precursor cells derived from adult human brain establishes functional peripheral myelin in the rat spinal cord. Exp Neurol 167:27–39

    Article  PubMed  CAS  Google Scholar 

  • Alexanian AR, Crowe MJ, Kurpad SN (2006) Efficient differentiation and integration of lineage-restricted neural precursors in the traumatically injured adult cat spinal cord. J Neurosci Methods 150:41–46

    Article  PubMed  Google Scholar 

  • Azari MF, Profyris C, Zang DW, Petratos S, Cheema SS (2005) Induction of endogenous neural precursors in mouse models of spinal cord injury and disease. Eur J Neurol 12:638–648

    Article  PubMed  CAS  Google Scholar 

  • Bakshi A, Shimizu S, Keck CA, Cho S, LeBold DG, Morales D, Arenas E, Snyder EY, Watson DJ, McIntosh TK (2006) Neural progenitor cells engineered to secrete GDNF show enhanced survival, neuronal differentiation and improve cognitive function following traumatic brain injury. Eur J Neurosci 23:2119–2134

    Article  PubMed  Google Scholar 

  • Balabanov R, Beaumont T, Dore-Duffy P (1999) Role of central nervous system microvascular pericytes in activation of antigen-primed splenic T-lymphocytes. J Neurosci Res 55:578–587

    Article  PubMed  CAS  Google Scholar 

  • Beck KD, Nguyen HX, Galvan MD, Salazar DL, Woodruff TM, Anderson AJ (2010) Quantitative analysis of cellular inflammation after traumatic spinal cord injury: evidence for a multiphasic inflammatory response in the acute to chronic environment. Brain 133:433–447

    Article  PubMed  Google Scholar 

  • Benoit M, Desnues B, Mege JL (2008) Macrophage polarization in bacterial infections. J Immunol 181:3733–3739

    PubMed  CAS  Google Scholar 

  • Bottai D, Madaschi L, Di Giulio AM, Gorio A (2008) Viability-dependent promoting action of adult neural precursors in spinal cord injury. Mol Med 14:634–644

    Article  PubMed  CAS  Google Scholar 

  • Cao QL, Howard RM, Dennison JB, Whittemore SR (2002) Differentiation of engrafted neuronal-restricted precursor cells is inhibited in the traumatically injured spinal cord. Exp Neurol 177:349–359

    Article  PubMed  CAS  Google Scholar 

  • Cao Q, He Q, Wang Y, Cheng X, Howard RM, Zhang Y, DeVries WH, Shields CB, Magnuson DS, Xu XM, Kim DH, Whittemore SR (2010) Transplantation of ciliary neurotrophic factor-expressing adult oligodendrocyte precursor cells promotes remyelination and functional recovery after spinal cord injury. J Neurosci 30:2989–3001

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Swanson RA (2003) Astrocytes and brain injury. J Cereb Blood Flow Metab 23:137–149

    Article  PubMed  Google Scholar 

  • Chirumamilla S, Sun D, Bullock MR, Colello RJ (2002) Traumatic brain injury induced cell proliferation in the adult mammalian central nervous system. J Neurotrauma 19:693–703

    Article  PubMed  CAS  Google Scholar 

  • Dewar D, Underhill SM, Goldberg MP (2003) Oligodendrocytes and ischemic brain injury. J Cereb Blood Flow Metab 23:263–274

    Article  PubMed  Google Scholar 

  • Dore-Duffy P, Owen C, Balabanov R, Murphy S, Beaumont T, Rafols JA (2000) Pericyte migration from the vascular wall in response to traumatic brain injury. Microvasc Res 60:55–69

    Article  PubMed  CAS  Google Scholar 

  • Enzmann GU, Benton RL, Woock JP, Howard RM, Tsoulfas P, Whittemore SR (2005) Consequences of noggin expression by neural stem, glial, and neuronal precursor cells engrafted into the injured spinal cord. Exp Neurol 195:293–304

    Article  PubMed  CAS  Google Scholar 

  • Flax JD, Aurora S, Yang C, Simonin C, Wills AM, Billinghurst LL, Jendoubi M, Sidman RL, Wolfe JH, Kim SU, Snyder EY (1998) Engraftable human neural stem cells respond to developmental cues, replace neurons, and express foreign genes. Nat Biotechnol 16:1033–1039

    Article  PubMed  CAS  Google Scholar 

  • Foret A, Quertainmont R, Botman O, Bouhy D, Amabili P, Brook G, Schoenen J, Franzen R (2010) Stem cells in the adult rat spinal cord: plasticity after injury and treadmill training exercise. J Neurochem 112:762–772

    Article  PubMed  CAS  Google Scholar 

  • Fujiwara Y, Tanaka N, Ishida O, Fujimoto Y, Murakami T, Kajihara H, Yasunaga Y, Ochi M (2004) Intravenously injected neural progenitor cells of transgenic rats can migrate to the injured spinal cord and differentiate into neurons, astrocytes and oligodendrocytes. Neurosci Lett 366:287–291

    Article  PubMed  CAS  Google Scholar 

  • Gao J, Prough DS, McAdoo DJ, Grady JJ, Parsley MO, Ma L, Tarensenko YI, Wu P (2006) Transplantation of primed human fetal neural stem cells improves cognitive function in rats after traumatic brain injury. Exp Neurol 201:281–292

    Article  PubMed  CAS  Google Scholar 

  • Gao X, Enikolopov G, Chen J (2009) Moderate traumatic brain injury promotes proliferation of quiescent neural progenitors in the adult hippocampus. Exp Neurol 219:516–523

    Article  PubMed  CAS  Google Scholar 

  • Guillemin GJ, Brew BJ (2004) Microglia, macrophages, perivascular macrophages, and pericytes: a review of function and identification. J Leukoc Biol 75:388–397

    Article  PubMed  CAS  Google Scholar 

  • Hadley SD, Goshgarian HG (1997) Altered immunoreactivity for glial fibrillary acidic protein in astrocytes within 1 h after cervical spinal cord injury. Exp Neurol 146:380–387

    Article  PubMed  CAS  Google Scholar 

  • Hagan M, Wennersten A, Meijer X, Holmin S, Wahlberg L, Mathiesen T (2003) Neuroprotection by human neural progenitor cells after experimental contusion in rats. Neurosci Lett 351:149–152

    Article  PubMed  CAS  Google Scholar 

  • Harting MT, Jimenez F, Adams SD, Mercer DW, Cox CS Jr (2008) Acute, regional inflammatory response after traumatic brain injury: Implications for cellular therapy. Surgery 144:803–813

    Article  PubMed  Google Scholar 

  • Harting MT, Sloan LE, Jimenez F, Baumgartner J, Cox CS Jr (2009) Subacute neural stem cell therapy for traumatic brain injury. J Surg Res 153:188–194

    Article  PubMed  CAS  Google Scholar 

  • Hatton J, Kryscio R, Ryan M, Ott L, Young B (2006) Systemic metabolic effects of combined insulin-like growth factor-I and growth hormone therapy in patients who have sustained acute traumatic brain injury. J Neurosurg 105:843–852

    Article  PubMed  CAS  Google Scholar 

  • Hayashi K, Ohta S, Kawakami Y, Toda M (2009) Activation of dendritic-like cells and neural stem/progenitor cells in injured spinal cord by GM-CSF. Neurosci Res 64:96–103

    Article  PubMed  CAS  Google Scholar 

  • Howard MJ, Liu S, Schottler F, Joy Snider B, Jacquin MF (2005) Transplantation of apoptosis-resistant embryonic stem cells into the injured rat spinal cord. Somatosens Mot Res 22:37–44

    Article  PubMed  Google Scholar 

  • Huang X, Reynolds AD, Mosley RL, Gendelman HE (2009) CD4+ T cells in the pathobiology of neurodegenerative disorders. J Neuroimmunol 211:3–15

    Article  PubMed  CAS  Google Scholar 

  • Hwang DH, Kim BG, Kim EJ, Lee SI, Joo IS, Suh-Kim H, Sohn S, Kim SU (2009) Transplantation of human neural stem cells transduced with Olig2 transcription factor improves locomotor recovery and enhances myelination in the white matter of rat spinal cord following contusive injury. BMC Neurosci 10:117

    Article  PubMed  Google Scholar 

  • Ishii K, Nakamura M, Dai H, Finn TP, Okano H, Toyama Y, Bregman BS (2006) Neutralization of ciliary neurotrophic factor reduces astrocyte production from transplanted neural stem cells and promotes regeneration of corticospinal tract fibers in spinal cord injury. J Neurosci Res 84:1669–1681

    Article  PubMed  CAS  Google Scholar 

  • Itoh T, Satou T, Nishida S, Tsubaki M, Hashimoto S, Ito H (2009) The novel free radical scavenger, edaravone, increases neural stem cell number around the area of damage following rat traumatic brain injury. Neurotox Res 16:378–389

    Article  PubMed  CAS  Google Scholar 

  • Itoh T, Satou T, Takemori K, Hashimoto S, Ito H (2010) Neural stem cells and new neurons in the cerebral cortex of stroke-prone spontaneously hypertensive rats after stroke. J Mol Neurosci 41:55–65

    Article  PubMed  CAS  Google Scholar 

  • Iwanami A, Kaneko S, Nakamura M, Kanemura Y, Mori H, Kobayashi S, Yamasaki M, Momoshima S, Ishii H, Ando K, Tanioka Y, Tamaoki N, Nomura T, Toyama Y, Okano H (2005) Transplantation of human neural stem cells for spinal cord injury in primates. J Neurosci Res 80:182–190

    Article  PubMed  CAS  Google Scholar 

  • Jiang S, Ballerini P, Buccella S, Giuliani P, Jiang C, Huang X, Rathbone MP (2008) Remyelination after chronic spinal cord injury is associated with proliferation of endogenous adult progenitor cells after systemic administration of guanosine. Purinergic Signal 4:61–71

    Article  PubMed  CAS  Google Scholar 

  • Kamei N, Tanaka N, Oishi Y, Hamasaki T, Nakanishi K, Sakai N, Ochi M (2007) BDNF, NT-3, and NGF released from transplanted neural progenitor cells promote corticospinal axon growth in organotypic cocultures. Spine (Phila Pa 1976) 32:1272–1278

    Article  Google Scholar 

  • Kang SK, Shin MJ, Jung JS, Kim YG, Kim CH (2006) Autologous adipose tissue-derived stromal cells for treatment of spinal cord injury. Stem Cells Dev 15:583–594

    Article  PubMed  CAS  Google Scholar 

  • Karimi-Abdolrezaee S, Eftekharpour E, Wang J, Morshead CM, Fehlings MG (2006) Delayed transplantation of adult neural precursor cells promotes remyelination and functional neurological recovery after spinal cord injury. J Neurosci 26:3377–3389

    Article  PubMed  CAS  Google Scholar 

  • Karimi-Abdolrezaee S, Eftekharpour E, Wang J, Schut D, Fehlings MG (2010) Synergistic effects of transplanted adult neural stem/progenitor cells, chondroitinase, and growth factors promote functional repair and plasticity of the chronically injured spinal cord. J Neurosci 30:1657–1676

    Article  PubMed  CAS  Google Scholar 

  • Ke Y, Chi L, Xu R, Luo C, Gozal D, Liu R (2006) Early response of endogenous adult neural progenitor cells to acute spinal cord injury in mice. Stem Cells 24:1011–1019

    Article  PubMed  Google Scholar 

  • Keirstead HS, Nistor G, Bernal G, Totoiu M, Cloutier F, Sharp K, Steward O (2005) Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J Neurosci 25:4694–4705

    Article  PubMed  CAS  Google Scholar 

  • Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG (2009) Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci 29:13435–13444

    Article  PubMed  CAS  Google Scholar 

  • Kim HM, Hwang DH, Lee JE, Kim SU, Kim BG (2009) Ex vivo VEGF delivery by neural stem cells enhances proliferation of glial progenitors, angiogenesis, and tissue sparing after spinal cord injury. PLoS One 4:e4987

    Article  PubMed  Google Scholar 

  • Kimura H, Yoshikawa M, Matsuda R, Toriumi H, Nishimura F, Hirabayashi H, Nakase H, Kawaguchi S, Ishizaka S, Sakaki T (2005) Transplantation of embryonic stem cell-derived neural stem cells for spinal cord injury in adult mice. Neurol Res 27:812–819

    Article  PubMed  Google Scholar 

  • Krityakiarana W, Espinosa-Jeffrey A, Ghiani CA, Zhao PM, Topaldjikian N, Gomez-Pinilla F, Yamaguchi M, Kotchabhakdi N, de Vellis J (2010) Voluntary exercise increases oligodendrogenesis in spinal cord. Int J Neurosci 120:280–290

    Article  PubMed  CAS  Google Scholar 

  • Kuhn HG, Dickinson-Anson H, Gage FH (1996) Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci 16:2027–2033

    PubMed  CAS  Google Scholar 

  • Kusano K, Enomoto M, Hirai T, Tsoulfas P, Sotome S, Shinomiya K, Okawa A (2010) Transplanted neural progenitor cells expressing mutant NT3 promote myelination and partial hindlimb recovery in the chronic phase after spinal cord injury. Biochem Biophys Res Commun 393:812–817

    Article  PubMed  CAS  Google Scholar 

  • Lee SH, Chung YN, Kim YH, Kim YJ, Park JP, Kwon DK, Kwon OS, Heo JH, Ryu S, Kang HJ, Paek SH, Wang KC, Kim SU, Yoon BW (2009a) Effects of human neural stem cell transplantation in canine spinal cord hemisection. Neurol Res 31:996–1002

    Article  PubMed  Google Scholar 

  • Lee SI, Kim BG, Hwang DH, Kim HM, Kim SU (2009b) Overexpression of Bcl-XL in human neural stem cells promotes graft survival and functional recovery following transplantation in spinal cord injury. J Neurosci Res 87:3186–3197

    Article  PubMed  CAS  Google Scholar 

  • Lepore AC, Bakshi A, Swanger SA, Rao MS, Fischer I (2005) Neural precursor cells can be delivered into the injured cervical spinal cord by intrathecal injection at the lumbar cord. Brain Res 1045:206–216

    Article  PubMed  CAS  Google Scholar 

  • Lu P, Jones LL, Snyder EY, Tuszynski MH (2003) Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury. Exp Neurol 181:115–129

    Article  PubMed  CAS  Google Scholar 

  • Maeda K, Kanno H, Yamazaki Y, Kubo A, Sato F, Yamaguchi Y, Saito T (2009) Transplantation of Von Hippel–Lindau peptide delivered neural stem cells promotes recovery in the injured rat spinal cord. Neuroreport 20:1559–1563

    Article  PubMed  CAS  Google Scholar 

  • McDonald JW, Liu XZ, Qu Y, Liu S, Mickey SK, Turetsky D, Gottlieb DI, Choi DW (1999) Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nat Med 5:1410–1412

    Article  PubMed  CAS  Google Scholar 

  • McTigue DM, Horner PJ, Stokes BT, Gage FH (1998) Neurotrophin-3 and brain-derived neurotrophic factor induce oligodendrocyte proliferation and myelination of regenerating axons in the contused adult rat spinal cord. J Neurosci 18:5354–5365

    PubMed  CAS  Google Scholar 

  • Meng XT, Li C, Dong ZY, Liu JM, Li W, Liu Y, Xue H, Chen D (2008) Co-transplantation of bFGF-expressing amniotic epithelial cells and neural stem cells promotes functional recovery in spinal cord-injured rats. Cell Biol Int 32:1546–1558

    Article  PubMed  CAS  Google Scholar 

  • Mikami Y, Okano H, Sakaguchi M, Nakamura M, Shimazaki T, Okano HJ, Kawakami Y, Toyama Y, Toda M (2004) Implantation of dendritic cells in injured adult spinal cord results in activation of endogenous neural stem/progenitor cells leading to de novo neurogenesis and functional recovery. J Neurosci Res 76:453–465

    Article  PubMed  CAS  Google Scholar 

  • Mitsui T, Kakizaki H, Tanaka H, Shibata T, Matsuoka I, Koyanagi T (2003) Immortalized neural stem cells transplanted into the injured spinal cord promote recovery of voiding function in the rat. J Urol 170:1421–1425

    Article  PubMed  Google Scholar 

  • Nakamura M, Okano H, Toyama Y, Dai HN, Finn TP, Bregman BS (2005) Transplantation of embryonic spinal cord-derived neurospheres support growth of supraspinal projections and functional recovery after spinal cord injury in the neonatal rat. J Neurosci Res 81:457–468

    Article  PubMed  CAS  Google Scholar 

  • Nakayama D, Matsuyama T, Ishibashi-Ueda H, Nakagomi T, Kasahara Y, Hirose H, Kikuchi-Taura A, Stern DM, Mori H, Taguchi A (2010) Injury-induced neural stem/progenitor cells in post-stroke human cerebral cortex. Eur J Neurosci 31:90–98

    Article  PubMed  Google Scholar 

  • Narayan RK, Michel ME, Ansell B, Baethmann A, Biegon A, Bracken MB, Bullock MR, Choi SC, Clifton GL, Contant CF, Coplin WM, Dietrich WD, Ghajar J, Grady SM, Grossman RG, Hall ED, Heetderks W, Hovda DA, Jallo J, Katz RL, Knoller N, Kochanek PM, Maas AI, Majde J, Marion DW, Marmarou A, Marshall LF, McIntosh TK, Miller E, Mohberg N, Muizelaar JP, Pitts LH, Quinn P, Riesenfeld G, Robertson CS, Strauss KI, Teasdale G, Temkin N, Tuma R, Wade C, Walker MD, Weinrich M, Whyte J, Wilberger J, Young AB, Yurkewicz L (2002) Clinical trials in head injury. J Neurotrauma 19:503–557

    Article  PubMed  Google Scholar 

  • Obermair FJ, Schroter A, Thallmair M (2008) Endogenous neural progenitor cells as therapeutic target after spinal cord injury. Physiology (Bethesda) 23:296–304

    Article  Google Scholar 

  • Ogawa Y, Sawamoto K, Miyata T, Miyao S, Watanabe M, Nakamura M, Bregman BS, Koike M, Uchiyama Y, Toyama Y, Okano H (2002) Transplantation of in vitro-expanded fetal neural progenitor cells results in neurogenesis and functional recovery after spinal cord contusion injury in adult rats. J Neurosci Res 69:925–933

    Article  PubMed  CAS  Google Scholar 

  • Ohori Y, Yamamoto S, Nagao M, Sugimori M, Yamamoto N, Nakamura K, Nakafuku M (2006) Growth factor treatment and genetic manipulation stimulate neurogenesis and oligodendrogenesis by endogenous neural progenitors in the injured adult spinal cord. J Neurosci 26:11948–11960

    Article  PubMed  CAS  Google Scholar 

  • Okada S, Nakamura M, Mikami Y, Shimazaki T, Mihara M, Ohsugi Y, Iwamoto Y, Yoshizaki K, Kishimoto T, Toyama Y, Okano H (2004) Blockade of interleukin-6 receptor suppresses reactive astrogliosis and ameliorates functional recovery in experimental spinal cord injury. J Neurosci Res 76:265–276

    Article  PubMed  CAS  Google Scholar 

  • Okano H, Ogawa Y, Nakamura M, Kaneko S, Iwanami A, Toyama Y (2003) Transplantation of neural stem cells into the spinal cord after injury. Semin Cell Dev Biol 14:191–198

    Article  PubMed  CAS  Google Scholar 

  • Okano H, Okada S, Nakamura M, Toyama Y (2005) Neural stem cells and regeneration of injured spinal cord. Kidney Int 68:1927–1931

    Article  PubMed  CAS  Google Scholar 

  • Olefsky JM, Glass CK (2010) Macrophages, inflammation, and insulin resistance. Annu Rev Physiol 72:219–246

    Article  PubMed  CAS  Google Scholar 

  • Olson JK, Miller SD (2004) Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. J Immunol 173:3916–3924

    PubMed  CAS  Google Scholar 

  • Parr AM, Kulbatski I, Zahir T, Wang X, Yue C, Keating A, Tator CH (2008) Transplanted adult spinal cord-derived neural stem/progenitor cells promote early functional recovery after rat spinal cord injury. Neuroscience 155:760–770

    Article  PubMed  CAS  Google Scholar 

  • Pfeifer K, Vroemen M, Caioni M, Aigner L, Bogdahn U, Weidner N (2006) Autologous adult rodent neural progenitor cell transplantation represents a feasible strategy to promote structural repair in the chronically injured spinal cord. Regen Med 1:255–266

    Article  PubMed  Google Scholar 

  • Philips MF, Mattiasson G, Wieloch T, Bjorklund A, Johansson BB, Tomasevic G, Martinez-Serrano A, Lenzlinger PM, Sinson G, Grady MS, McIntosh TK (2001) Neuroprotective and behavioral efficacy of nerve growth factor-transfected hippocampal progenitor cell transplants after experimental traumatic brain injury. J Neurosurg 94:765–774

    Article  PubMed  CAS  Google Scholar 

  • Ricci-Vitiani L, Casalbore P, Petrucci G, Lauretti L, Montano N, Larocca LM, Falchetti ML, Lombardi DG, Gerevini VD, Cenciarelli C, D’Alessandris QG, Fernandez E, De Maria R, Maira G, Peschle C, Parati E, Pallini R (2006) Influence of local environment on the differentiation of neural stem cells engrafted onto the injured spinal cord. Neurol Res 28:488–492

    Article  PubMed  Google Scholar 

  • Riess P, Zhang C, Saatman KE, Laurer HL, Longhi LG, Raghupathi R, Lenzlinger PM, Lifshitz J, Boockvar J, Neugebauer E, Snyder EY, McIntosh TK (2002) Transplanted neural stem cells survive, differentiate, and improve neurological motor function after experimental traumatic brain injury. Neurosurgery 51:1043–1052; discussion 1052–1044

    PubMed  Google Scholar 

  • Schwartz PH, Bryant PJ, Fuja TJ, Su H, O’Dowd DK, Klassen H (2003) Isolation and characterization of neural progenitor cells from post-mortem human cortex. J Neurosci Res 74:838–851

    Article  PubMed  CAS  Google Scholar 

  • Setoguchi T, Yone K, Matsuoka E, Takenouchi H, Nakashima K, Sakou T, Komiya S, Izumo S (2001) Traumatic injury-induced BMP7 expression in the adult rat spinal cord. Brain Res 921:219–225

    Article  PubMed  CAS  Google Scholar 

  • Setoguchi T, Nakashima K, Takizawa T, Yanagisawa M, Ochiai W, Okabe M, Yone K, Komiya S, Taga T (2004) Treatment of spinal cord injury by transplantation of fetal neural precursor cells engineered to express BMP inhibitor. Exp Neurol 189:33–44

    Article  PubMed  CAS  Google Scholar 

  • Sharp J, Frame J, Siegenthaler M, Nistor G, Keirstead HS (2010) Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants improve recovery after cervical spinal cord injury. Stem Cells 28:152–163

    PubMed  CAS  Google Scholar 

  • Shear DA, Tate MC, Archer DR, Hoffman SW, Hulce VD, Laplaca MC, Stein DG (2004) Neural progenitor cell transplants promote long-term functional recovery after traumatic brain injury. Brain Res 1026:11–22

    Article  PubMed  CAS  Google Scholar 

  • Shetty AK, Rao MS, Hattiangady B (2008) Behavior of hippocampal stem/progenitor cells following grafting into the injured aged hippocampus. J Neurosci Res 86:3062–3074

    Article  PubMed  CAS  Google Scholar 

  • Shindo T, Matsumoto Y, Wang Q, Kawai N, Tamiya T, Nagao S (2006) Differences in the neuronal stem cells survival, neuronal differentiation and neurological improvement after transplantation of neural stem cells between mild and severe experimental traumatic brain injury. J Med Invest 53:42–51

    Article  PubMed  Google Scholar 

  • Sinson G, Voddi M, McIntosh TK (1996) Combined fetal neural transplantation and nerve growth factor infusion: effects on neurological outcome following fluid-percussion brain injury in the rat. J Neurosurg 84:655–662

    Article  PubMed  CAS  Google Scholar 

  • Su H, Zhang W, Guo J, Guo A, Yuan Q, Wu W (2009) Lithium enhances the neuronal differentiation of neural progenitor cells in vitro and after transplantation into the avulsed ventral horn of adult rats through the secretion of brain-derived neurotrophic factor. J Neurochem 108:1385–1398

    Article  PubMed  CAS  Google Scholar 

  • Sun D, Bullock MR, Altememi N, Zhou Z, Hagood S, Rolfe A, McGinn MJ, Hamm R, Colello RJ (2010) The effect of epidermal growth factor in the injured brain after trauma in rats. J Neurotrauma 27:923–938

    Article  PubMed  Google Scholar 

  • Takeuchi H, Natsume A, Wakabayashi T, Aoshima C, Shimato S, Ito M, Ishii J, Maeda Y, Hara M, Kim SU, Yoshida J (2007) Intravenously transplanted human neural stem cells migrate to the injured spinal cord in adult mice in an SDF-1- and HGF-dependent manner. Neurosci Lett 426:69–74

    Article  PubMed  CAS  Google Scholar 

  • Tarasenko YI, Gao J, Nie L, Johnson KM, Grady JJ, Hulsebosch CE, McAdoo DJ, Wu P (2007) Human fetal neural stem cells grafted into contusion-injured rat spinal cords improve behavior. J Neurosci Res 85:47–57

    Article  PubMed  CAS  Google Scholar 

  • Tzeng SF (2002) Neural progenitors isolated from newborn rat spinal cords differentiate into neurons and astroglia. J Biomed Sci 9:10–16

    Article  PubMed  CAS  Google Scholar 

  • Urrea C, Castellanos DA, Sagen J, Tsoulfas P, Bramlett HM, Dietrich WD (2007) Widespread cellular proliferation and focal neurogenesis after traumatic brain injury in the rat. Restor Neurol Neurosci 25:65–76

    PubMed  CAS  Google Scholar 

  • Vescovi AL, Galli R, Reynolds BA (2006) Brain tumour stem cells. Nat Rev Cancer 6(6):425–36

    Google Scholar 

  • Walker PA, Harting MT, Jimenez F, Shah SK, Pati S, Dash PK, Cox CS (2009) Direct intrathecal implantation of mesenchymal stromal cells leads to enhanced neuroprotection via an NFkappaB mediated increase in Interleukin 6 (IL-6) production. Stem Cells Dev

    Google Scholar 

  • Wang B, Xiao Z, Chen B, Han J, Gao Y, Zhang J, Zhao W, Wang X, Dai J (2008) Nogo-66 promotes the differentiation of neural progenitors into astroglial lineage cells through mTOR-STAT3 pathway. PLoS One 3:e1856

    Article  PubMed  Google Scholar 

  • Watanabe K, Nakamura M, Iwanami A, Fujita Y, Kanemura Y, Toyama Y, Okano H (2004) Comparison between fetal spinal-cord- and forebrain-derived neural stem/progenitor cells as a source of transplantation for spinal cord injury. Dev Neurosci 26:275–287

    Article  PubMed  CAS  Google Scholar 

  • Webber DJ, Bradbury EJ, McMahon SB, Minger SL (2007) Transplanted neural progenitor cells survive and differentiate but achieve limited functional recovery in the lesioned adult rat spinal cord. Regen Med 2:929–945

    Article  PubMed  CAS  Google Scholar 

  • Weiss S, Dunne C, Hewson J, Wohl C, Wheatley M, Peterson AC, Reynolds BA (1996) Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. J Neurosci 16:7599–7609

    PubMed  CAS  Google Scholar 

  • Wennersten A, Meier X, Holmin S, Wahlberg L, Mathiesen T (2004) Proliferation, migration, and differentiation of human neural stem/progenitor cells after transplantation into a rat model of traumatic brain injury. J Neurosurg 100:88–96

    Article  PubMed  Google Scholar 

  • Xu G, Li X, Bai Y, Bai J, Li L, Shen L (2004) Improving recovery of spinal cord-injured rats by telomerase-driven human neural progenitor cells. Restor Neurol Neurosci 22:469–476

    PubMed  CAS  Google Scholar 

  • Yamane J, Nakamura M, Iwanami A, Sakaguchi M, Katoh H, Yamada M, Momoshima S, Miyao S, Ishii K, Tamaoki N, Nomura T, Okano HJ, Kanemura Y, Toyama Y, Okano H (2010) Transplantation of galectin-1-expressing human neural stem cells into the injured spinal cord of adult common marmosets. J Neurosci Res 88:1394–1405

    PubMed  CAS  Google Scholar 

  • Yan YP, Sailor KA, Vemuganti R, Dempsey RJ (2006) Insulin-like growth factor-1 is an endogenous mediator of focal ischemia-induced neural progenitor proliferation. Eur J Neurosci 24:45–54

    Article  PubMed  Google Scholar 

  • Zang DW, Cheema SS (2003) Leukemia inhibitory factor promotes recovery of locomotor function following spinal cord injury in the mouse. J Neurotrauma 20:1215–1222

    Article  PubMed  Google Scholar 

  • Zhao X, Ahram A, Berman RF, Muizelaar JP, Lyeth BG (2003) Early loss of astrocytes after experimental traumatic brain injury. Glia 44:140–152

    Article  PubMed  Google Scholar 

  • Ziv Y, Avidan H, Pluchino S, Martino G, Schwartz M (2006) Synergy between immune cells and adult neural stem/progenitor cells promotes functional recovery from spinal cord injury. Proc Natl Acad Sci USA 103:13174–13179

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinil K. Shah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Shah, S.K., Jimenez, F., Walker, P.A. (2011). Neural Progenitor Cells for Traumatic Brain and Spinal Cord Injury: Endogenous Cell Rescue Versus Replacement Mechanisms. In: Charles, S. (eds) Progenitor Cell Therapy for Neurological Injury. Stem Cell Biology and Regenerative Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-965-9_4

Download citation

Publish with us

Policies and ethics