Skip to main content

Stem Cell Delivery Methods and Routes

  • Chapter
  • First Online:
Progenitor Cell Therapy for Neurological Injury

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

A long-held tenet of cell therapies has been that a biologically relevant dose of cells must be delivered to the site of injury and at least transiently engraft. It naturally follows that strategies to optimize these endpoints would be pursued as a translational goal. Optimization of progenitor cell efficacy requires delivery of the implanted progenitor cells to the site of neurological injury without significant effect on cell viability and function. An ideal delivery vehicle would provide high levels of cellular engraftment without affecting viability. Delivery vehicles include intravenous infusion, intra-arterial infusion, direct implantation (with or without synthetic scaffolds), and intrathecal infusion. In addition, preliminary investigation into novel forms of delivery such as cellular manipulation to improve engraftment and the seeding of extruded biocompatible polymer nanofiber scaffolds is under way. We will discuss the potential benefits and untoward effects associated with each method of delivery. Also, emerging data suggest that the tenet of local delivery/engraftment to achieve a positive biological effect is cell type-specific and not necessary in all circumstances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CNS:

Central nervous system

FDA:

US Food and Drug Administration

HSC:

Hematopoietic stem cell

hUCBC:

Human umbilical cord blood cell

IL:

Interleukin

MAPC:

Multipotent adult progenitor cell

MCAO:

Middle cerebral artery occlusion

MSC:

Mesenchymal stromal cell

NF-κB:

Nuclear factor-kappa-B

NGF:

Nerve growth factor

NgR-Ab:

Nogo receptor antibody

NSC:

Neural stem cell

PLL:

Poly-l-lysine

SDF-1:

Stromal cell-derived factor-1

TBI:

Traumatic brain injury

TLR:

Toll-like receptor

References

  • Allers C, Sierralta WD, Neubauer S, Rivera F, Minguell JJ, Conget PA (2004) Dynamic of distribution of human bone marrow-derived mesenchymal stem cells after transplantation into adult unconditioned mice. Transplantation 78:503–508

    Article  PubMed  Google Scholar 

  • Bachstetter AD, Pabon MM, Cole MJ, Hudson CE, Sanberg PR, Willing AE, Bickford PC, Gemma C (2008) Peripheral injection of human umbilical cord blood stimulates neurogenesis in the aged rat brain. BMC Neurosci 9:22

    Article  PubMed  Google Scholar 

  • Bernardo ME, Zaffaroni N, Novara F, Cometa AM, Avanzini MA, Moretta A, Montagna D, Maccario R, Villa R, Daidone MG, Zuffardi O, Locatelli F (2007) Human bone marrow derived mesenchymal stem cells do not undergo transformation after long-term in vitro culture and do not exhibit telomere maintenance mechanisms. Cancer Res 67:9142–9149

    Article  PubMed  CAS  Google Scholar 

  • Bible E, Chau DY, Alexander MR, Price J, Shakesheff KM, Modo M (2009) The support of neural stem cells transplanted into stroke-induced brain cavities by PLGA particles. Biomaterials 30:2985–2994

    Article  PubMed  CAS  Google Scholar 

  • Boomsma RA, Swaminathan PD, Geenen DL (2007) Intravenously injected mesenchymal stem cells home to viable myocardium after coronary occlusion and preserve systolic function without altering infarct size. Int J Cardiol 122:17–28

    Article  PubMed  Google Scholar 

  • Castro RF, Jackson KA, Goodell MA, Robertson CS, Liu H, Shine HD (2002) Failure of bone marrow cells to transdifferentiate into neural cells in vivo. Science 297:1299

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Sanberg PR, Li Y, Wang L, Lu M, Willing AE, Sanchez-Ramos J, Chopp M (2001) Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke 32:2682–2688

    Article  PubMed  CAS  Google Scholar 

  • Choumerianou DM, Dimitriou H, Perdikogianni C, Martimianaki G, Riminucci M, Kalmanti M (2008) Study of oncogenic transformation in ex vivo expanded mesenchymal cells, from paediatric bone marrow. Cell Prolif 41:909–922

    Article  PubMed  CAS  Google Scholar 

  • Coyne TM, Marcus AJ, Woodbury D, Black IB (2006) Marrow stromal cells transplanted to the adult brain are rejected by an inflammatory response and transfer donor labels to host neurons and glia. Stem Cells 24:2483–2492

    Article  PubMed  Google Scholar 

  • Devine SM, Cobbs C, Jennings M, Bartholomew A, Hoffman R (2003) Mesenchymal stem cells distribute to a wide range of tissues following systemic infusion into nonhuman primates. Blood 101:2999–3001

    Article  PubMed  CAS  Google Scholar 

  • El Khoury R, Misra V, Sharma S, Cox CS, Walker P, Grotta JC, Gee A, Suzuki S, Savitz SI (2010) The effect of transcatheter injections on cell viability and cytokine release of mononuclear cells. AJNR Am J Neuroradiol Apr 15 31(8):1488–92

    Google Scholar 

  • Elmadbouh I, Haider H, Jiang S, Idris NM, Lu G, Ashraf M (2007) Ex vivo delivered stromal cell-derived factor-1alpha promotes stem cell homing and induces angiomyogenesis in the infarcted myocardium. J Mol Cell Cardiol 42:792–803

    Article  PubMed  CAS  Google Scholar 

  • Fan L, Du F, Cheng BC, Peng H, Liu SQ (2008) Migration and distribution of bone marrow stromal cells in injured spinal cord with different transplantation techniques. Chin J Traumatol 11:94–97

    PubMed  Google Scholar 

  • FDA (2009a) Draft guidance for industry: Somatic cell therapy for cardiac disease

    Google Scholar 

  • FDA (2009b) Guidance for FDA reviewers and sponsors: Content and review of chemistry, manufacturing, and control (CMC) information for human somatic cell therapy Investigation New Drug Applications (INDs)

    Google Scholar 

  • Fischer UM, Harting MT, Jimenez F, Monzon-Posadas WO, Xue H, Savitz SI, Laine GA, Cox CS Jr (2008) Pulmonary passage is a major obstacle for intravenous stem cell delivery: the pulmonary first-pass effect. Stem Cells Dev 18(5):683–692

    Google Scholar 

  • Fischer UM, Harting MT, Jimenez F, Monzon-Posadas WO, Xue H, Savitz SI, Laine GA, Cox CS Jr (2009) Pulmonary passage is a major obstacle for intravenous stem cell delivery: the pulmonary first-pass effect. Stem Cells Dev 18:683–692

    Article  PubMed  CAS  Google Scholar 

  • Flax JD, Aurora S, Yang C, Simonin C, Wills AM, Billinghurst LL, Jendoubi M, Sidman RL, Wolfe JH, Kim SU, Snyder EY (1998) Engraftable human neural stem cells respond to developmental cues, replace neurons, and express foreign genes. Nat Biotechnol 16:1033–1039

    Article  PubMed  CAS  Google Scholar 

  • Fujiwara Y, Tanaka N, Ishida O, Fujimoto Y, Murakami T, Kajihara H, Yasunaga Y, Ochi M (2004) Intravenously injected neural progenitor cells of transgenic rats can migrate to the injured spinal cord and differentiate into neurons, astrocytes and oligodendrocytes. Neurosci Lett 366:287–291

    Article  PubMed  CAS  Google Scholar 

  • Griffith LG, Naughton G (2002) Tissue engineering – current challenges and expanding opportunities. Science 295:1009–1014

    Article  PubMed  CAS  Google Scholar 

  • Guillot PV, Cui W, Fisk NM, Polak DJ (2007) Stem cell differentiation and expansion for clinical applications of tissue engineering. J Cell Mol Med 11:935–944

    Article  PubMed  CAS  Google Scholar 

  • Guzman R, De Los Angeles A, Cheshier S, Choi R, Hoang S, Liauw J, Schaar B, Steinberg G (2008) Intracarotid injection of fluorescence activated cell-sorted CD49d-positive neural stem cells improves targeted cell delivery and behavior after stroke in a mouse stroke model. Stroke 39:1300–1306

    Article  PubMed  Google Scholar 

  • Harting MT, Jimenez F, Cox CS Jr (2008) The pulmonary first-pass effect, xenotransplantation and translation to clinical trials – a commentary. Brain 131:e100; author reply e101

    Article  PubMed  Google Scholar 

  • Harting MT, Jimenez F, Xue H, Fischer UM, Baumgartner J, Dash PK, Cox CS (2009a) Intravenous mesenchymal stem cell therapy for traumatic brain injury. J Neurosurg 110:1189–1197

    Article  PubMed  CAS  Google Scholar 

  • Harting MT, Jimenez F, Xue H, Fischer UM, Baumgartner J, Dash PK, Cox CS (2009b) Intravenous mesenchymal stem cell therapy for traumatic brain injury. J Neurosurg 110(6):1189–1197

    Google Scholar 

  • Harting MT, Sloan LE, Jimenez F, Baumgartner J, Cox CS Jr (2009c) Subacute neural stem cell therapy for traumatic brain injury. J Surg Res 153:188–194

    Article  PubMed  CAS  Google Scholar 

  • Hung SC, Pochampally RR, Hsu SC, Sanchez C, Chen SC, Spees J, Prockop DJ (2007) Short-term exposure of multipotent stromal cells to low oxygen increases their expression of CX3CR1 and CXCR4 and their engraftment in vivo. PLoS ONE 2:e416

    Article  PubMed  Google Scholar 

  • Isakova IA, Baker K, DuTreil M, Dufour J, Gaupp D, Phinney DG (2007) Age- and dose-related effects on MSC engraftment levels and anatomical distribution in the central nervous systems of nonhuman primates: identification of novel MSC subpopulations that respond to guidance cues in brain. Stem Cells 25:3261–3270

    Article  PubMed  CAS  Google Scholar 

  • Jen AC, Wake MC, Mikos AG (1996) Review: Hydrogels for cell immobilization. Biotechnol Bioeng 50:357–364

    Article  PubMed  CAS  Google Scholar 

  • Jongpaiboonkit L, King WJ, Murphy WL (2008) Screening for 3D environments that support human mesenchymal stem cell viability using hydrogel arrays. Tissue Eng Part A 15(2):343–353

    Google Scholar 

  • Klouda L, Mikos AG (2008) Thermoresponsive hydrogels in biomedical applications. Eur J Pharm Biopharm 68:34–45

    Article  PubMed  CAS  Google Scholar 

  • Kopecek J (2007) Hydrogel biomaterials: a smart future? Biomaterials 28:5185–5192

    Article  PubMed  CAS  Google Scholar 

  • Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926

    Article  PubMed  CAS  Google Scholar 

  • Lappalainen RS, Narkilahti S, Huhtala T, Liimatainen T, Suuronen T, Narvanen A, Suuronen R, Hovatta O, Jolkkonen J (2008) The SPECT imaging shows the accumulation of neural progenitor cells into internal organs after systemic administration in middle cerebral artery occlusion rats. Neurosci Lett 440:246–250

    Article  PubMed  CAS  Google Scholar 

  • Lee ST, Chu K, Jung KH, Kim SJ, Kim DH, Kang KM, Hong NH, Kim JH, Ban JJ, Park HK, Kim SU, Park CG, Lee SK, Kim M, Roh JK (2008) Anti-inflammatory mechanism of intravascular neural stem cell transplantation in haemorrhagic stroke. Brain 131:616–629

    Article  PubMed  Google Scholar 

  • Lee RH, Pulin AA, Seo MJ, Kota DJ, Ylostalo J, Larson BL, Semprun-Prieto L, Delafontaine P, Prockop DJ (2009) Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell 5:54–63

    Article  PubMed  CAS  Google Scholar 

  • Liao S, Li B, Ma Z, Wei H, Chan C, Ramakrishna S (2006) Biomimetic electrospun nanofibers for tissue regeneration. Biomed Mater 1:R45–R53

    Article  PubMed  CAS  Google Scholar 

  • Liao W, Xie J, Zhong J, Liu Y, Du L, Zhou B, Xu J, Liu P, Yang S, Wang J, Han Z, Han ZC (2009) Therapeutic effect of human umbilical cord multipotent mesenchymal stromal cells in a rat model of stroke. Transplantation 87:350–359

    Article  PubMed  Google Scholar 

  • Liu W, Jiang X, Fu X, Cui S, Du M, Cai Y, Xu R (2008) Bone marrow stromal cells can be delivered to the site of traumatic brain injury via intrathecal transplantation in rabbits. Neurosci Lett 434:160–164

    Article  PubMed  CAS  Google Scholar 

  • Lu D, Li Y, Wang L, Chen J, Mahmood A, Chopp M (2001a) Intraarterial administration of marrow stromal cells in a rat model of traumatic brain injury. J Neurotrauma 18:813–819

    Article  PubMed  CAS  Google Scholar 

  • Lu D, Mahmood A, Wang L, Li Y, Lu M, Chopp M (2001b) Adult bone marrow stromal cells administered intravenously to rats after traumatic brain injury migrate into brain and improve neurological outcome. Neuroreport 12:559–563

    Article  PubMed  CAS  Google Scholar 

  • Lu D, Sanberg PR, Mahmood A, Li Y, Wang L, Sanchez-Ramos J, Chopp M (2002) Intravenous administration of human umbilical cord blood reduces neurological deficit in the rat after traumatic brain injury. Cell Transplant 11:275–281

    PubMed  Google Scholar 

  • Mahmood A, Lu D, Wang L, Li Y, Lu M, Chopp M (2001) Treatment of traumatic brain injury in female rats with intravenous administration of bone marrow stromal cells. Neurosurgery 49:1196–1203; discussion 1203–1194

    PubMed  CAS  Google Scholar 

  • Mahmood A, Lu D, Wang L, Chopp M (2002) Intracerebral transplantation of marrow stromal cells cultured with neurotrophic factors promotes functional recovery in adult rats subjected to traumatic brain injury. J Neurotrauma 19:1609–1617

    Article  PubMed  Google Scholar 

  • Mahmood A, Lu D, Chopp M (2004) Marrow stromal cell transplantation after traumatic brain injury promotes cellular proliferation within the brain. Neurosurgery 55:1185–1193

    Article  PubMed  Google Scholar 

  • Nemeth K, Leelahavanichkul A, Yuen PS, Mayer B, Parmelee A, Doi K, Robey PG, Leelahavanichkul K, Koller BH, Brown JM, Hu X, Jelinek I, Star RA, Mezey E (2009) Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med 15:42–49

    Article  PubMed  CAS  Google Scholar 

  • Nisbet DR, Crompton KE, Horne MK, Finkelstein DI, Forsythe JS (2008a) Neural tissue engineering of the CNS using hydrogels. J Biomed Mater Res B Appl Biomater 87:251–263

    PubMed  Google Scholar 

  • Nisbet DR, Moses D, Gengenbach TR, Forsythe JS, Finkelstein DI, Horne MK (2008b) Enhancing neurite outgrowth from primary neurones and neural stem cells using thermoresponsive hydrogel scaffolds for the repair of spinal cord injury. J Biomed Mater Res A 89(1):24–35

    Google Scholar 

  • Ohta M, Suzuki Y, Noda T, Ejiri Y, Dezawa M, Kataoka K, Chou H, Ishikawa N, Matsumoto N, Iwashita Y, Mizuta E, Kuno S, Ide C (2004) Bone marrow stromal cells infused into the cerebrospinal fluid promote functional recovery of the injured rat spinal cord with reduced cavity formation. Exp Neurol 187:266–278

    Article  PubMed  CAS  Google Scholar 

  • Pan L, Ren Y, Cui F, Xu Q (2009) Viability and differentiation of neural precursors on hyaluronic acid hydrogel scaffold. J Neurosci Res 87(14):3207–3020

    Google Scholar 

  • Park KI, Teng YD, Snyder EY (2002) The injured brain interacts reciprocally with neural stem cells supported by scaffolds to reconstitute lost tissue. Nat Biotechnol 20:1111–1117

    Article  PubMed  CAS  Google Scholar 

  • Philips MF, Mattiasson G, Wieloch T, Bjorklund A, Johansson BB, Tomasevic G, ­Martinez-Serrano A, Lenzlinger PM, Sinson G, Grady MS, McIntosh TK (2001) Neuroprotective and behavioral efficacy of nerve growth factor-transfected hippocampal progenitor cell transplants after experimental traumatic brain injury. J Neurosurg 94:765–774

    Article  PubMed  CAS  Google Scholar 

  • Potapova IA, Brink PR, Cohen IS, Doronin SV (2008) Culturing of human mesenchymal stem cells as three-dimensional aggregates induces functional expression of CXCR4 that regulates adhesion to endothelial cells. J Biol Chem 283:13100–13107

    Article  PubMed  CAS  Google Scholar 

  • Purcell EK, Seymour JP, Yandamuri S, Kipke DR (2009a) In vivo evaluation of a neural stem cell-seeded prosthesis. J Neural Eng 6:026005

    Article  PubMed  CAS  Google Scholar 

  • Purcell EK, Singh A, Kipke DR (2009b) Alginate Composition Effects on a Neural Stem Cell-Seeded Scaffold. Tissue Eng Part C Methods 15(4):541–550

    Google Scholar 

  • Riess P, Zhang C, Saatman KE, Laurer HL, Longhi LG, Raghupathi R, Lenzlinger PM, Lifshitz J, Boockvar J, Neugebauer E, Snyder EY, McIntosh TK (2002) Transplanted neural stem cells survive, differentiate, and improve neurological motor function after experimental traumatic brain injury. Neurosurgery 51:1043–1052; discussion 1052–1044

    PubMed  Google Scholar 

  • Roybon L, Ma Z, Asztely F, Fosum A, Jacobsen SE, Brundin P, Li JY (2006) Failure of transdifferentiation of adult hematopoietic stem cells into neurons. Stem Cells 24:1594–1604

    Article  PubMed  CAS  Google Scholar 

  • Rubio D, Garcia-Castro J, Martin MC, de la Fuente R, Cigudosa JC, Lloyd AC, Bernad A (2005) Spontaneous human adult stem cell transformation. Cancer Res 65:3035–3039

    PubMed  CAS  Google Scholar 

  • Sands RW, Mooney DJ (2007) Polymers to direct cell fate by controlling the microenvironment. Curr Opin Biotechnol 18:448–453

    Article  PubMed  CAS  Google Scholar 

  • Schrepfer S, Deuse T, Reichenspurner H, Fischbein MP, Robbins RC, Pelletier MP (2007) Stem cell transplantation: the lung barrier. Transplant Proc 39:573–576

    Article  PubMed  CAS  Google Scholar 

  • Shen LH, Li Y, Chen J, Zhang J, Vanguri P, Borneman J, Chopp M (2006) Intracarotid transplantation of bone marrow stromal cells increases axon-myelin remodeling after stroke. Neuroscience 137:393–399

    Article  PubMed  CAS  Google Scholar 

  • Shetty AK, Rao MS, Hattiangady B (2008) Behavior of hippocampal stem/progenitor cells following grafting into the injured aged hippocampus. J Neurosci Res 86:3062–3074

    Article  PubMed  CAS  Google Scholar 

  • Shi M, Li J, Liao L, Chen B, Li B, Chen L, Jia H, Zhao RC (2007) Regulation of CXCR4 expression in human mesenchymal stem cells by cytokine treatment: role in homing efficiency in NOD/SCID mice. Haematologica 92:897–904

    Article  PubMed  Google Scholar 

  • Tomchuck SL, Zwezdaryk KJ, Coffelt SB, Waterman RS, Danka ES, Scandurro AB (2008) Toll-like receptors on human mesenchymal stem cells drive their migration and immunomodulating responses. Stem Cells 26:99–107

    Article  PubMed  CAS  Google Scholar 

  • Vendrame M, Cassady J, Newcomb J, Butler T, Pennypacker KR, Zigova T, Sanberg CD, Sanberg PR, Willing AE (2004) Infusion of human umbilical cord blood cells in a rat model of stroke dose-dependently rescues behavioral deficits and reduces infarct volume. Stroke 35:2390–2395

    Article  PubMed  Google Scholar 

  • Vendrame M, Gemma C, de Mesquita D, Collier L, Bickford PC, Sanberg CD, Sanberg PR, Pennypacker KR, Willing AE (2005) Anti-inflammatory effects of human cord blood cells in a rat model of stroke. Stem Cells Dev 14:595–604

    Article  PubMed  CAS  Google Scholar 

  • Wagers AJ, Sherwood RI, Christensen JL, Weissman IL (2002) Little evidence for developmental plasticity of adult hematopoietic stem cells. Science 297:2256–2259

    Article  PubMed  CAS  Google Scholar 

  • Walczak P, Zhang J, Gilad AA, Kedziorek DA, Ruiz-Cabello J, Young RG, Pittenger MF, van Zijl PC, Huang J, Bulte JW (2008) Dual-modality monitoring of targeted intraarterial delivery of mesenchymal stem cells after transient ischemia. Stroke 39:1569–1574

    Article  PubMed  CAS  Google Scholar 

  • Walker PA, Harting MT, Jimenez F, Shah SK, Pati S, Dash PK, Cox CS (2009a) Direct intrathecal implantation of mesenchymal stromal cells leads to enhanced neuroprotection via an NFkappaB mediated increase in Interleukin 6 (IL-6) production. Stem Cells Dev 19(6):867–876

    Google Scholar 

  • Walker PA, Shah SK, Harting MT, Cox CS (2009b) Progenitor cell therapies for traumatic brain injury: barriers and opportunities in translation. Dis Model Mech 2:23–38

    Article  PubMed  CAS  Google Scholar 

  • Willerth SM, Sakiyama-Elbert SE (2007) Approaches to neural tissue engineering using scaffolds for drug delivery. Adv Drug Deliv Rev 59:325–338

    Article  PubMed  CAS  Google Scholar 

  • Zawadzka M, Lukasiuk K, Machaj EK, Pojda Z, Kaminska B (2009) Lack of migration and neurological benefits after infusion of umbilical cord blood cells in ischemic brain injury. Acta Neurobiol Exp (Wars) 69:46–51

    Google Scholar 

  • Zhao J, Zhang N, Prestwich GD, Wen X (2008) Recruitment of endogenous stem cells for tissue repair. Macromol Biosci 8:836–842

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter A. Walker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Walker, P.A. (2011). Stem Cell Delivery Methods and Routes. In: Charles, S. (eds) Progenitor Cell Therapy for Neurological Injury. Stem Cell Biology and Regenerative Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-965-9_3

Download citation

Publish with us

Policies and ethics