Skip to main content

Towards Modeling and Therapy of Genetic Diseases Using Pluripotent Stem Cells

  • Chapter
Translational Stem Cell Research

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 1202 Accesses

Abstract

Recent advances in basic and preclinical research on human embryonic stem (hES) cells and induced pluripotent stem (hiPS) cells have created the potential for a revolutionary change in medicine. Thanks to several technological developments, both of these cell types can now be derived, expanded, and differentiated under conditions that are compatible with use in cell replacement therapies. Moreover, hiPS cells can be generated from patients’ somatic cells, providing a technically feasible means of overcoming immunological incompatibility between patient and donor cells. All of these achievements have already sparked great interest in the pharmaceutical industry. Along with the continuing efforts of stem cell researchers, this will undoubtedly bring about the future introduction of embryonic and induced pluripotent stem cell science into the clinic. Replacement of missing or damaged cells by healthy, functional cells derived in vitro from pluripotent stem cells is the most obvious clinical application. Eventually, ex vivo repair of genetic mutations in patient-derived somatic cells that are reprogrammed into pluripotent cells and then differentiated into the desired cell types will permit transplantation back into the patient without any risk of immune rejection. A less difficult task, and therefore a shorter-term goal, is to generate mutant pluripotent stem cell lines to facilitate studies of the pathophysiology of various human genetic diseases and for use in drug screening. Indeed, many researchers now see disease modelling and drug screening using mutant cell lines as the first and most important goal of stem cell research, and view cell replacement therapy based on hES or hiPS cells as an extremely challenging and distant goal. Here, the advantages and limitations of the current strategies and the most important achievements in these two streams of pluripotent stem cell research are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Awiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282:1145–7.

    Article  PubMed  CAS  Google Scholar 

  2. Downing GJ, Battey JF. Technical assessment of the first 20 years of research using mouse embryonic stem cell lines. Stem Cells 2004; 22:1168–80.

    Article  PubMed  Google Scholar 

  3. Keirstead HS, Nistor G, Bernal G, Totoiu M, Cloutier F, Sharp K, et al. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J Neurosci 2005; 25:4694–705.

    Article  PubMed  CAS  Google Scholar 

  4. Sharp J, Frame J, Siegenthaler M, Nistor G, Keirstead HS. Human embryonic stem ­cell-derived oligodendrocyte progenitor cell transplants improve recovery after cervical spinal cord injury. Stem Cells 2010; 28:152–163.

    Google Scholar 

  5. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126:663–76.

    Article  PubMed  CAS  Google Scholar 

  6. Daley GQ, Scadden DT. Prospects for stem cell-based therapy. Cell 2008; 132:544–8.

    Article  PubMed  CAS  Google Scholar 

  7. Hochedlinger K, Plath K. Epigenetic reprogramming and induced pluripotency. Development 2009; 136:509–23.

    Article  PubMed  CAS  Google Scholar 

  8. Mackay-Sim A, Silburn P. Stem cells and genetic disease. Cell Prolif 2008; 41:85–93.

    Article  PubMed  Google Scholar 

  9. Maitra A, Arking DE, Shivapurkar N, Ikeda M, Stastny V, Kassauei K, et al. Genomic alterations in cultured human embryonic stem cells. Nat Genet 2005; 37:1099–103.

    Article  PubMed  CAS  Google Scholar 

  10. Imreh MP, Gertow K, Cedervall J, Unger C, Holmberg K, Szöke K, et al. In vitro culture conditions favoring selection of chromosomal abnormalities in human ES cells. J Cell Biochem 2006; 99:508–16.

    Article  PubMed  CAS  Google Scholar 

  11. Baker DEC, Harrison NJ, Maltby E, Smith K, Moore HD, Shaw PJ, et al. Adaptation to culture of human embryonic stem cells and oncogenesis in vivo. Nat Biotechnol 2007; 25:207–15.

    Article  PubMed  CAS  Google Scholar 

  12. Lefort N, Feyeux M, Bas C, Féraud O, Bennaceur-Griscelli A, Tachdjian G, et al. Human embryonic stem cells reveal recurrent genomic instability at 20q11.21. Nat Biotechnol 2008; 26:1364–6.

    Article  PubMed  CAS  Google Scholar 

  13. Spitz C, Mateizel I, Geens M, Mertzanidou A, Staessen C, Vandeskelde Y, et al. Recurrent chromosomal abnormalities in human embryonic stem cells. Nat Biotechnol 2008; 26:1361–3.

    Article  Google Scholar 

  14. Cervantes RB, Stringer JR, Shao C, Tischfield JA, Stambrook PJ. Embryonic stem cells and somatic cells differ in mutation frequency and type. Proc Natl Acad Sci USA 2002; 99:3586–90.

    Article  PubMed  CAS  Google Scholar 

  15. Werbowetski-Ogilvie TE, Bossé M, Stewart M, Schnerch A, Ramos-Mejia V, Rouleau A, et al. Characterization of human embryonic stem cells with features of neoplastic progression. Nat Biotechnol 2009; 27:91–7.

    Article  PubMed  CAS  Google Scholar 

  16. Oliver PL, Bitoun E, Davies KE. Comparative genetic analysis: the utility of mouse genetic systems for studying human monogenic disease. Mamm Genome 2007; 18:412–24.

    Article  PubMed  Google Scholar 

  17. Ben-Nun IF, Benvenisty N. Human embryonic stem cells as a cellular model for human ­disorders. Mol Cell Endocrinol 2006; 252:154–9.

    Article  CAS  Google Scholar 

  18. Zwaka TP, Thomson JA. Homologous recombination in human embryonic stem cells. Nat Biotechnol 2003; 21:319–21.

    Article  PubMed  CAS  Google Scholar 

  19. Zou JZ, Maeder ML, Mali P, Pruett-Miller SM, Thibodeau-Beganny S, Chou BK, et al. Gene targeting of a disease-related gene in human induced pluripotent stem and embryonic stem cells. Cell Stem Cell 2009; 5:97–110.

    Article  PubMed  CAS  Google Scholar 

  20. Hockemeyer D, Soldner F, Beard C, Gao Q, Mitalipova M, DeKelver RC, et al. Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol 2009; 27:851–7.

    Article  PubMed  CAS  Google Scholar 

  21. Dhara SK, Benvenisty N. Gene trap as a tool for genome annotation and analysis of X ­chromosome inactivation in human embryonic stem cells. Nucleic Acid Res 2004; 32:3995–4002.

    Article  PubMed  CAS  Google Scholar 

  22. Davis RP, Costa M, Grandela C, Holland AM, Hatzistavrou T, Micallef SJ, et al. A protocol for removal of antibiotic resistance cassettes from human embryonic stem cells genetically modified by homologous recombination or transgenesis. Nat Protocols 2008; 3:1550–8.

    Article  CAS  Google Scholar 

  23. Ben-Yosef D, Malcov M, Eiges R. PGD-derived human embryonic stem cell lines as a powerful tool for the study of human genetic disorders. Mol Cell Endocrinol 2008; 282:153–8.

    Article  PubMed  CAS  Google Scholar 

  24. Stephenson EL, Mason C, Braude PR. Preimplantation genetic diagnosis as a source of human embryonic stem cells for disease research and drug discovery. BJOG (Int J Obstetric Gyn) 2009; 116:158–65.

    Article  CAS  Google Scholar 

  25. Zhang X, Stojkovic P, Przyborski S, Cooke M, Armstrong L, Lako M, et al. Derivation of human embryonic stem cells from developing and arrested embryos. Stem Cells 2006; 24:2669–76.

    Article  PubMed  CAS  Google Scholar 

  26. Geens M, Mateizel I, Sermon K, De Rycke M, Spits C, Cauffman G, et al. Human embryonic stem cell lines derived from single blastomeres of two 4-cell stage embryos. Hum Reprod 2009; 24:2709–17.

    Article  PubMed  CAS  Google Scholar 

  27. Colman A, Dreesen O. Pluripotent stem cells and disease modelling. Cell Stem Cell 2009; 5:244–7.

    Article  PubMed  CAS  Google Scholar 

  28. Huangfu D, Maehr R, Guo W, Eijkelenboom A, Snitow M, Chen AE, et al. Induction of pluripotent stem cells by defined factors is greatly improved by small molecule compounds. Nat Biotechnol 2008; 26:795–7.

    Article  PubMed  CAS  Google Scholar 

  29. Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 2009; 27:275–80.

    Article  PubMed  CAS  Google Scholar 

  30. Feng B, Ng JH, Heng JC, Ng HH. Molecules that promote or enhance reprogramming of somatic cells to induced pluripotent stem cells. Cell Stem Cell 2009; 4:301–12.

    Article  PubMed  CAS  Google Scholar 

  31. Lyssiotis CA, Foreman RK, Staerk J, Garcia M, Mathur D, Markoulaki S, et al. Reprogramming of murine fibroblasts to induced pluripotent stem cells with chemical complementation of Klf4. Proc Natl Acad Sci USA 2009; 106:8912–7.

    Article  PubMed  Google Scholar 

  32. Okita K, Nakagawa M, Hong HJ, Ichisaka T, Yamanaka S. Generation of mouse induced pluripotent stem cells without viral vectors. Science 2008; 322:949–53.

    Article  PubMed  CAS  Google Scholar 

  33. Woltjen K, Michael IP, Mohseni P, Desai R, Mileikovski M, Hamalainen R, et al. PiggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 2009; 458:766–70.

    Article  PubMed  CAS  Google Scholar 

  34. Sermon KD, Simon C, Braude P, Viville S, Borstlap J, Veiga A. Creation of a registry for human embryonic stem cells carrying an inherited defects: joint collaboration between ESHRE and hESCreg. Hum Reprod 2009; 24:1556–60.

    Article  PubMed  CAS  Google Scholar 

  35. Marchetto MCN, Yeo GW, Kainohana O, Marsala M, Gage FH, Muotri AR. Transcriptional signature and memory retention of human-induced pluripotent stem cells. PLos ONE 2009; 4:e7076.

    Article  PubMed  Google Scholar 

  36. Urbach A, Benvenisty N. Studying early lethality of 45,X0 (Turner’s syndrome) embryos using human embryonic stem cells. PLos ONE 2009; 4:e4175.doi:10.1371/journal.pone.0004175.

  37. Lanfranco F, Kamischke A, Zitzmann M, Nieschlag E. Klinefelter’s syndrome. Lancet 2004; 364:273–83.

    Article  PubMed  CAS  Google Scholar 

  38. Verlinsky Y, Strelchenko N, Kukharenko V, Rechitsky S, Verlinsky O, Galat V, et al. Human embryonic stem cell lines with genetic disorders. Reprod Biomed Online 2005; 10:105–10.

    Article  PubMed  CAS  Google Scholar 

  39. Eiges R, Urbach A, Malcov M, Frumkin T, Schwartz T, Amit A, et al. Developmental study of fragile X syndrome using human embryonic stem cells derived from preimplantation genetically diagnosed embryos. Cell Stem Cell 2007; 1:568–77.

    Article  PubMed  CAS  Google Scholar 

  40. De Temmerman N, Seneca S, Van Steirteghem A, Haentjens P, Van der Elst J, Liebaers I, et al. CTG repeat instability in a human embryonic stem cell line carrying the myotonic dystrophy type 1 mutation. Mol Hum Reprod 2008; 14:405–12.

    Article  PubMed  Google Scholar 

  41. Mateizel I, De Temmerman N, Ullmann U, Cauffman G, Sermon K, Van de Velde, et al. Derivation of human embryonic stem cell lines from embryos obtained after IVF and after PGD for monogenic disorders. Hum Reprod 2006; 21:503–11.

    Article  PubMed  CAS  Google Scholar 

  42. Niclis JC, Trounson AO, Dottori M, Ellisdon AM, Bottomley SP, Verlinsky Y, et al. Human embryonic stem cell models of Huntington disease. Reprod Biomed Online 2009; 19:106–13.

    Article  PubMed  CAS  Google Scholar 

  43. O’Sullivan BP, Freedman SD. Cystic fibrosis. Lancet 2009; 373:1891–904.

    Article  PubMed  Google Scholar 

  44. Pickering SJ, Minger SL, Patel M, Taylor H, Black C, Burns CJ, et al. Generation of a human embryonic stem cell line encoding the cystic fibrosis mutation deltaF508, using preimplantation genetic diagnosis. Reprod BioMed Online 2005; 10:390–7.

    Article  PubMed  Google Scholar 

  45. Deleu S, Gonzales-Merino E, Gaspard N, Nguyen TM, Van der Haeghen P, Lagneaux L, et al. Human cystic fibrosis embryonic stem cell lines derived on placental mesenchymal stromal cells. Reprod Biomed Online 2009; 18:704–16.

    Article  PubMed  CAS  Google Scholar 

  46. Nyhan WL. Disorders of purine and pyrimidine metabolism. Mol Genet Metab 2005; 86:25–33.

    Article  PubMed  CAS  Google Scholar 

  47. Urbach A, Schuldiner M, Benvenisty N. Modeling for Lesch-Nyhan disease by gene targeting in human embryonic stem cells. Stem Cells 2004; 22:635–41.

    Article  PubMed  CAS  Google Scholar 

  48. Beqqali A, Van Eldik W, Mummery C, Passier R. Human stem cells as a model for cardiac differentiation and disease. Cell Mol Life Sci 2009; 66:800–13.

    Article  PubMed  CAS  Google Scholar 

  49. Freund C, Mummery C. Prospects for pluripotent stem cell-derived cardiomyocytes in cardiac cell therapy and as disease models. J Cell Biochem 2009; 107:592–9.

    Article  PubMed  CAS  Google Scholar 

  50. Raya A, Rodríguez-Piza I, Guenechea G, Vassena R, Navarro S, Barrero MJ, et al. ­Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature 2009; 460:53–9.

    Article  PubMed  CAS  Google Scholar 

  51. Hanna J, Wernig M, Markoulaki S, Sun C-W, Meissner A, Cassady JP, et al. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 2007; 318:1920–3.

    Article  PubMed  CAS  Google Scholar 

  52. Wernig M, Zhao J-P, Pruszak J, Hedlund E, Fu D, Soldner F, et al. Neurons derived from reprogrammed fibroblasts functionally integrate into fetal brain and improve symptoms of rat with Parkinson’s disease. Proc Natl Acad Sci USA 2008; 105:5856–61.

    Article  PubMed  CAS  Google Scholar 

  53. Soldner F, Hockemeyer D, Beard C, Gao Q, Bell GW, Cook EG, et al. Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 2009; 136:964–77.

    Article  PubMed  CAS  Google Scholar 

  54. Dimos JT, Rodolfa KT, Niakan KK, Weisenthal LM, Mitsumoto H, Chung W, et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 2008; 321:1218–21.

    Article  PubMed  CAS  Google Scholar 

  55. Ebert AD, Yu JY, Rose FF, Mattis VB, Lorson CL, Thomson JA, et al. Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 2009; 457:277–80.

    Article  PubMed  CAS  Google Scholar 

  56. Lee G, Papapetrou EP, Kim H, Chambers SM, Tomishima MJ, Fasano CA, et al. Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature 2009; 461:402–6.

    Article  PubMed  CAS  Google Scholar 

  57. Park I-H, Arora N, Huo H, Maherali N, Ahfeldt T, Shimamura A, et al. Disease-specific induced pluripotent stem cells. Cell 2008; 134:877–86.

    Article  PubMed  CAS  Google Scholar 

  58. Knoepfler PS. Deconstructing stem cell tumorigenicity: A roadmap to safe regenerative ­medicine. Stem Cells 2009; 27:1050–6.

    Article  PubMed  CAS  Google Scholar 

  59. Kirouac DC, Zandstra PW. The systematic production of cells for cell therapies. Cell Stem Cell 2009; 3:369–81.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Dvořák, P. (2011). Towards Modeling and Therapy of Genetic Diseases Using Pluripotent Stem Cells. In: Hug, K., Hermerén, G. (eds) Translational Stem Cell Research. Stem Cell Biology and Regenerative Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-959-8_7

Download citation

Publish with us

Policies and ethics