Skip to main content

Chimeras and Hybrids – How to Approach Multifaceted Research?

  • Chapter

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

Chimeras and Hybrids – How to Approach a Multifaceted Research?

Since a couple of years now, the creation of chimeras and hybrids has left the realm of myth and legend and entered into the reality of scientific research. The more it advances towards the creation of human-animal mixtures, the more the need for ethical and legal regulation is claimed. In our article, we will clarify different biological definitions concerning mosaics, chimeras and hybrids and contrast them with a new concept for an ethical evaluation of these highly diverse research fields. The proposed concept is illustrated by an example and some fundamental ethical reflections should briefly map the actual debate as well as the needs for further ethical reflection.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    CHIMBRIDS, see http://www.chimbrids.org. J. Taupitz/M. Weschka (eds.), CHIMBRIDS – Chimeras and Hybrids in Comparative European and International Research: Scientific, Ethical, Philosophical and Legal Aspects, Berlin/Heidelberg: Springer 2009.

  2. 2.

    See, e.g., Amanda Onion: Mixing humans and animals for science, ABC news 7.02.2005 http://abcnews.go.com/Technology/Health/story?id = 465202.

  3. 3.

    Legal and moral conflicts arise in more and more cases alongside an increasing tendency to patent biological findings. They cover an amazingly wide field of cases – from singular and collective plaintiffs concerning improper informed consent and misuse of tissue for personal enrichment (see case discussed by Gitter [12]) to violations of native populations genetic autonomy (Tsosie [13]).

  4. 4.

    The debate arose following the publication of Muotri et al. [14].

  5. 5.

    For risks and hurdles of in utero transplantation trials see, e.g., Chen et al. [17]. For work on fetal chimeras, see, e.g., Almeida-Porada et al. [18].

  6. 6.

    Although research in NT-ESC is progressing, and a greater comparability to “normal” ESC has been shown, e.g., in mice (see, e.g., Brambrink et al. [23]), many questions remain open.

  7. 7.

    See, for example, the report of the bioethics council of New Zealand (Toi te taiao [28]).

  8. 8.

    The term pre-embryo applies to human embryos during the first 14 days of development. It is a purely philosophical and political definition. The term is, in this sense, rarely, if ever used in most biological textbooks and original research papers. The philosophical argument refers to the notion of an “undividable individual” as a morally relevant criterion. Biologically, the embryo is regarded as definitely individual after 14 days of development, when the primitive streak has formed.

References

  1. Owen RD. Immunogenetic consequences of vascular anastomoses between bovine twins. Science 1945; 102:400–1.

    Article  PubMed  CAS  Google Scholar 

  2. Rossant J, Spence A. Chimeras and mosaics in mouse mutant analysis. Trends Genet. 1998; 14:358–63.

    Article  PubMed  CAS  Google Scholar 

  3. Bi X, Rong YS. Genome manipulation by homologous recombination in Drosophila. Brief Funct Genomic Proteomic. 2003; 2:142–6.

    Article  PubMed  CAS  Google Scholar 

  4. Sauer B, Henderson N. Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1. Proc Natl Acad Sci USA 1988; 85:5166–70.

    Article  PubMed  CAS  Google Scholar 

  5. Tarkowski AK. Mouse chimaeras revisited: recollections and reflections. Int J Dev Biol. 1998; 42:903–8.

    PubMed  CAS  Google Scholar 

  6. St John J, Lovell-Badge R. Human-animal cytoplasmic hybrid embryos, mitochondria, and an energetic debate. Nat Cell Biol. 2007; 9:988–92.

    Article  PubMed  CAS  Google Scholar 

  7. Strelchenko N, Kukharenko V, Shkumatov A, Verlinsky O, Kuliev A, Verlinsky Y. Reprogramming of human somatic cells by embryonic stem cell cytoplast. Reprod Biomed Online 2006; 12:107–11.

    Article  PubMed  Google Scholar 

  8. Epstein AL, Manservigi R. Herpesvirus/retrovirus chimeric vectors. Curr Gene Ther. 2004; 4:409–16.

    Article  PubMed  CAS  Google Scholar 

  9. Wells DJ, Wells KE. Gene transfer studies in animals: what do they really tell us about the prospects for gene therapy in DMD? Neuromuscul Disord. 2002; 12 Suppl 1:S11–22.

    Article  PubMed  Google Scholar 

  10. Robert JS, Baylis F. Crossing species boundaries. Am J Bioeth. 2003; 3:1–13.

    PubMed  Google Scholar 

  11. Loike JD, Tendler M. Reconstituting a human brain in animals: a Jewish perspective on human sanctity. Kennedy Inst Ethics J. 2008; 18:347–67.

    Article  PubMed  Google Scholar 

  12. Gitter D. Ownership of human tissue: a proposal for federal recognition of human research participants’ property rights in their biological material. Washington and Lee Law Review 2004; 61:257–345.

    Google Scholar 

  13. Tsosie R. Cultural challenges to biotechnology: Native American genetic resources and the concept of cultural harm. J Law Med Ethics 2007; 35:396–411.

    Article  PubMed  Google Scholar 

  14. Muotri AR, Nakashima K, Toni N, Sandler VM, Gage FH. Development of functional human embryonic stem cell-derived neurons in mouse brain. Proc Natl Acad Sci USA 2005; 102:18644–8.

    Article  PubMed  CAS  Google Scholar 

  15. Ourednik V, Ourednik J, Flax JD, Zawada WM, Hutt C, Yang C, et al. Segregation of human neural stem cells in the developing primate forebrain. Science 2001; 293:1820–4.

    Article  PubMed  CAS  Google Scholar 

  16. ÓDoherty A, Ruf S, Mulligan C, Hildreth V, Errington ML, Cooke S, et al. An aneuploid mouse strain carrying human chromosome 21 with Down syndrome phenotypes. Science 2005; 309:2033–7.

    Article  Google Scholar 

  17. Chen JC, Chang ML, Lee H, Muench MO. Prevention of graft rejection by donor type II CD8(+) T cells (Tc2 cells) is not sufficient to improve engraftment in fetal transplantation. Fetal Diagn Ther 2005; 20:35–43.

    Article  PubMed  Google Scholar 

  18. Almeida-Porada G, Porada CD, Chamberlain J, Torabi A, Zanjani ED. Formation of human hepatocytes by human hematopoietic stem cells in sheep. Blood 2004; 104:2582–90.

    Article  PubMed  CAS  Google Scholar 

  19. Chen Y, He ZX, Liu A, Wang K, Mao WW, Chu JX, et al. Embryonic stem cells generated by nuclear transfer of human somatic nuclei into rabbit oocytes. Cell Res. 2003; 13:251–63.

    Article  PubMed  Google Scholar 

  20. Baker DE, Harrison NJ, Maltby E, Smith K, Moore HD, Shaw PJ, et al. Adaptation to ­culture of human embryonic stem cells and oncogenesis in vivo. Nat Biotechnol. 2007; 25:207–15.

    Article  PubMed  CAS  Google Scholar 

  21. Werbowetski-Ogilvie TE, Bosse M, Stewart M, Schnerch A, Ramos-Mejia V, Rouleau A, et al. Characterization of human embryonic stem cells with features of neoplastic progression. Nat Biotechnol. 2009; 27:91–7.

    Article  PubMed  CAS  Google Scholar 

  22. Simerly C, Dominko T, Navara C, Payne C, Capuano S, Gosman G, et al. Molecular correlates of primate nuclear transfer failures. Science 2003; 300:297.

    Article  PubMed  Google Scholar 

  23. Brambrink T, Hochedlinger K, Bell G, Jaenisch R. ES cells derived from cloned and fertilized blastocysts are transcriptionally and functionally indistinguishable. Proc Natl Acad Sci USA 2006; 103:933–8.

    Article  PubMed  CAS  Google Scholar 

  24. Sasaki K, Nagao Y, Kitano Y, Hasegawa H, Shibata H, Takatoku M, et al. Hematopoietic microchimerism in sheep after in utero transplantation of cultured cynomolgus embryonic stem cells. Transplantation 2005; 79:32–7.

    Article  PubMed  Google Scholar 

  25. Seggewiss R, Pittaluga S, Adler RL, Guenaga FJ, Ferguson C, Pilz IH, et al. Acute myeloid leukemia is associated with retroviral gene transfer to hematopoietic progenitor cells in a rhesus macaque. Blood 2006; 107:3865–7.

    Article  PubMed  CAS  Google Scholar 

  26. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126:663–76.

    Article  PubMed  CAS  Google Scholar 

  27. Yu J, Hu K, Smuga-Otto K, Tian S, Stewart R, Slukvin II, et al. Human induced pluripotent stem cells free of vector and transgene sequences. Science 2009; 324:797–801.

    Article  PubMed  CAS  Google Scholar 

  28. Toi te taiao. The cultural, spiritual and ethical aspects of xenotransplantation: animal-to-human transplantation. Final report of the New Zealand’s Bioethics Council 2005.

    Google Scholar 

  29. Rutgers B, Heeger R. Inherent worth and respect for animal integrity in Vlissingen DM, Fentener van M, Kasanmoentalib S, Visser T, Zwart H, editors. Recognizing the intrinsic value of animals. Beyond animal welfare. Assen; 1999. p. 41–52.

    Google Scholar 

  30. Bovenkerk B, Brom FW, van den Bergh BJ. Brave new birds. The use of “animal integrity” in animal ethics. Hastings Cent Rep. 2002; 32:16–22.

    PubMed  Google Scholar 

  31. Lam TT, Hausen B, Boeke-Purkis K, Paniagua R, Lau M, Hook L, et al. Hyperacute rejection of hDAF-transgenic pig organ xenografts in cynomolgus monkeys: influence of pre-existing anti-pig antibodies and prevention by the alpha GAL glycoconjugate GAS914. Xenotransplantation 2004; 11:517–24.

    Article  PubMed  Google Scholar 

  32. Düwell M. Philosophical presuppositions of practical ethics, in Schaler J, editor. Singer under fire. The dangerous ethicist faces his critics, Chicago & La Salle: Open Court; 2009. p. 395–419.

    Google Scholar 

  33. Düwell M. Ästhetische Erfahrung und Moral. Über die Bedeutung der ästhetischen Erfahrung für die Handlungsspielräume des Menschen. Freiburg i.Br./München: Alber; 2000.

    Google Scholar 

  34. Düwell M. Der moralische Status von Embryonen und Feten. In: Düwell M, Steigleder K, editors. Bioethik–Eine Einführung. Frankfurt a.M.: Suhrkamp; 2003. p. 221–9.

    Google Scholar 

  35. Department of Health and Social Security, Report of the Committee of Inquiry into Human Fertilisation and Embryology (“The Warnock Report”); July 1984, Cmnd 9314.

    Google Scholar 

  36. Buckle S. Arguing from potential. Bioethics 1988; 2:226–53.

    Article  PubMed  Google Scholar 

  37. Oh HJ, Kim MK, Jang G, Kim HJ, Hong SG, Park K et al. Cloning endangered gray wolves (Canis lupus) from somatic cells collected post-mortem. Theriogenology 2008; 70:638–47.

    Article  PubMed  CAS  Google Scholar 

  38. Gómez MC, Pope CE, Ricks DM, Lyons J, Dumas C, Dresser BL. Cloning endangered felids using heterospecific donor oocytes and interspecies embryo transfer. Reprod Fertil Dev. 2008; 21:76–82.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Badura-Lotter, G., Düwell, M. (2011). Chimeras and Hybrids – How to Approach Multifaceted Research?. In: Hug, K., Hermerén, G. (eds) Translational Stem Cell Research. Stem Cell Biology and Regenerative Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-959-8_16

Download citation

Publish with us

Policies and ethics