Advertisement

Oxidative Stress in Alzheimer’s Disease: A Critical Appraisal of the Causes and the Consequences

  • Jaewon Chang
  • Sandra Siedlak
  • Paula Moreira
  • Akihiko Nunomura
  • Rudy J. Castellani
  • Mark A. Smith
  • Xiongwei Zhu
  • George Perry
  • Gemma CasadesusEmail author
Chapter
Part of the Oxidative Stress in Applied Basic Research and Clinical Practice book series (OXISTRESS)

Abstract

Recent advances have shown oxidative damage as one of the hallmark characteristics in neurons in Alzheimer’s Disease (AD). Importantly, such damage is present at the very earliest stages of disease, including mild cognitive impairment, and persists throughout the course of the disease. Therefore, oxidative imbalance is likely important not only as an initiator of disease but may also contribute in propagating the disease process. One aspect of critical importance is developing treatments that target the source rather than the “collateral damage,” but of course this requires knowledge of the source. This review highlights the role of oxidative stress in AD with the aim of critically evaluating the role of oxidative stress as a cause or effect in the development of this disease. In doing so, we consider the sources of reactive oxidative species and their role in AD as well as how oxidative responses intertwine with the pathological hallmarks of the disease.

Keywords

Alzheimer’s disease Amyloid Antioxidant Neurofibrillary tangles Oxidative stress Redox balance Senile plaques Tau phosphorylation 

References

  1. 1.
    Bendlin, B.B., et al. (2010) Midlife predictors of Alzheimer’s disease. Maturitas 65(2):131–137PubMedCrossRefGoogle Scholar
  2. 2.
    Salminen, A., et al. (2009) ER stress in Alzheimer’s disease: a novel neuronal trigger for inflammation and Alzheimer’s pathology. Journal of Neuroinflammation 6(1): 41PubMedCrossRefGoogle Scholar
  3. 3.
    Beyer, N., et al. (2009) ZnT3 mRNA levels are reduced in Alzheimer’s disease post-mortem brain. Molecular Neurodegeneration 4(1): 53PubMedCrossRefGoogle Scholar
  4. 4.
    Zhu, H.L., et al. (2009) Quantitative characterization of heparin binding to Tau protein: Implication for inducer mediated Tau filament formation. Journal of Biological Chemistry 285(6):3592–3599PubMedCrossRefGoogle Scholar
  5. 5.
    Nicolia, V., et al. (2010) B vitamin deficiency promotes tau phosphorylation through regulation of gsk3β and pp2A. Journal of Alzheimer’s Disease 19(3):895–907PubMedGoogle Scholar
  6. 6.
    Isobe, C., T. Abe, and Y. Terayama (2009) Increase in the oxidized/total coenzyme Q-10 ratio in the cerebrospinal fluid of Alzheimer’s disease patients. Dement Geriatr Cogn Disord 28(5):449–454PubMedCrossRefGoogle Scholar
  7. 7.
    Andersen, J.K. (2004) Oxidative stress in neurodegeneration: cause or consequence? Nat Med 10 Suppl: S18–25PubMedCrossRefGoogle Scholar
  8. 8.
    Sayre, L.M., M.A. Smith, and G. Perry (2001) Chemistry and biochemistry of oxidative stress in neurodegenerative disease. Curr Med Chem 8(7): 721–38PubMedCrossRefGoogle Scholar
  9. 9.
    Sharma, S., et al. (2009) Dietary curcumin supplementation counteracts reduction in levels of molecules involved in energy homeostasis after brain trauma. Neuroscience 161(4):1037–1044PubMedCrossRefGoogle Scholar
  10. 10.
    Roberts, G.W., et al. (1991) [beta]A4 amyloid protein deposition in brain after head trauma. The Lancet 338(8780):1422–1423CrossRefGoogle Scholar
  11. 11.
    Pratico, D., et al. (2001) Increased lipid peroxidation precedes amyloid plaque formation in an animal model of Alzheimer amyloidosis. J Neurosci 21(12): 4183–4187PubMedGoogle Scholar
  12. 12.
    Nunomura, A., et al. (2010) Intraneuronal amyloid beta accumulation and oxidative damage to nucleic acids in Alzheimer’s Disease. Neurobiol Dis 37(3):731–737PubMedCrossRefGoogle Scholar
  13. 13.
    Rottkamp, C.A., et al. (2002) The state versus amyloid-beta: the trial of the most wanted criminal in Alzheimer’s Disease. Peptides 23(7): 1333–1341PubMedCrossRefGoogle Scholar
  14. 14.
    Zou, K., et al. (2002) A novel function of monomeric amyloid beta-protein serving as an antioxidant molecule against metal-induced oxidative damage. J Neurosci 22(12): 4833–4841PubMedGoogle Scholar
  15. 15.
    Meloy, S. (2007) Neurally augmented sexual function. Acta Neurochir Suppl 97(1):359-63PubMedGoogle Scholar
  16. 16.
    Gustaw-Rothenberg, K., et al. (2010) Biomarkers in Alzheimer’s disease: past, present and future. Biomark Med 4(1):15–26PubMedCrossRefGoogle Scholar
  17. 17.
    Anouar, E., et al. (2009) Free radical scavenging properties of guaiacol oligomers: a combined experimental and quantum study of the guaiacyl-moiety role. J Phys Chem A 113(50):13881–13891PubMedCrossRefGoogle Scholar
  18. 18.
    Kirkitadze, M.D., G. Bitan, and D.B. Teplow (2002) Paradigm shifts in Alzheimer’s disease and other neurodegenerative disorders: the emerging role of oligomeric assemblies. J Neurosci Res 69(5): p. 567–577PubMedCrossRefGoogle Scholar
  19. 19.
    Gotz, J., et al. (2004) Amyloid-induced neurofibrillary tangle formation in Alzheimer’s disease: insight from transgenic mouse and tissue-culture models. Int J Dev Neurosci 22(7):453–465PubMedCrossRefGoogle Scholar
  20. 20.
    German, D.C. and A.J. Eisch, (2004) Mouse models of Alzheimer’s disease: insight into treatment. Rev Neurosci 15(5):353–369PubMedCrossRefGoogle Scholar
  21. 21.
    Bentahir, M., et al. (2006) Presenilin clinical mutations can affect gamma-secretase activity by different mechanisms. J Neurochem 96(3):732–742PubMedCrossRefGoogle Scholar
  22. 22.
    Kumar-Singh, S., et al. (2006) Mean age-of-onset of familial Alzheimer’s Disease caused by presenilin mutations correlates with both increased Abeta42 and decreased Abeta40. Hum Mutat 27(7): 686–695PubMedCrossRefGoogle Scholar
  23. 23.
    Shioi, J., et al. (2007) FAD mutants unable to increase neurotoxic Abeta 42 suggest that mutation effects on neurodegeneration may be independent of effects on Abeta. J Neurochem 101(3):674–681PubMedCrossRefGoogle Scholar
  24. 24.
    Lee, H.G., et al. (2007) Amyloid-beta in Alzheimer’s Disease: the null versus the alternate hypotheses. J Pharmacol Exp Ther 321(3):823–829PubMedCrossRefGoogle Scholar
  25. 25.
    Walsh, D.M. and D.J. Selkoe (2007) A beta oligomers - a decade of discovery. J Neurochem 101(5): p. 1172–1184PubMedCrossRefGoogle Scholar
  26. 26.
    Catalano, S.M., et al. (2006) The role of amyloid-beta derived diffusible ligands (ADDLs) in Alzheimer’s disease. Curr Top Med Chem 6(6):597–608PubMedCrossRefGoogle Scholar
  27. 27.
    Glabe, C.G. and R. Kayed (2006) Common structure and toxic function of amyloid oligomers implies a common mechanism of pathogenesis. Neurology 66(2 Suppl 1):S74–S78PubMedCrossRefGoogle Scholar
  28. 28.
    Watson, D. et al. (2005) Physicochemical characteristics of soluble oligomeric Abeta and their pathologic role in Alzheimer’s disease. Neurol Res 27(8):869–881PubMedCrossRefGoogle Scholar
  29. 29.
    Selkoe, D.J. (2005) Defining molecular targets to prevent Alzheimer’s Disease. Arch Neurol 62(2):192–195PubMedCrossRefGoogle Scholar
  30. 30.
    King, M.E. (2005) Can tau filaments be both physiologically beneficial and toxic? Biochim Biophys Acta 1739(2-3):260–267PubMedGoogle Scholar
  31. 31.
    Hanger, D.P., et al. (1998) New phosphorylation sites identified in hyperphosphorylated tau (paired helical filament-tau) from Alzheimer’s disease brain using nanoelectrospray mass spectrometry. J Neurochem 71(6):2465–2476PubMedCrossRefGoogle Scholar
  32. 32.
    Stoothoff, W.H. and Johnson G.V. (2005) Tau phosphorylation: physiological and pathological consequences. Biochim Biophys Acta 1739(2-3):280–297PubMedGoogle Scholar
  33. 33.
    Iqbal, K., et al. (1994) Alzheimer paired helical filaments. Restoration of the biological activity by dephosphorylation. FEBS Lett 349(1):104–108CrossRefGoogle Scholar
  34. 34.
    Iqbal, K., et al. (2005) Tau pathology in Alzheimer’s Disease and other tauopathies. Biochim Biophys Acta 1739(2-3):198–210PubMedGoogle Scholar
  35. 35.
    Keck, S., et al. (2003) Proteasome inhibition by paired helical filament-tau in brains of patients with Alzheimer’s disease. J Neurochem 85(1):115–122PubMedCrossRefGoogle Scholar
  36. 36.
    Cras, P., et al. (1995) Extracellular neurofibrillary tangles reflect neuronal loss and provide further evidence of extensive protein cross-linking in Alzheimer’s Disease. Acta Neuropathol 89(4):291–295PubMedCrossRefGoogle Scholar
  37. 37.
    Smith, M.A. (1998) Alzheimer’s Disease. Int Rev Neurobiol 42:1–54PubMedCrossRefGoogle Scholar
  38. 38.
    Castellani, R.J., et al. (2007) Neuropathology and treatment of Alzheimer’s Disease: did we lose the forest for the trees? Expert Rev Neurother 7(5):473–485PubMedCrossRefGoogle Scholar
  39. 39.
    Martin, M.A., et al. (2009) Protection of human HepG2 cells against oxidative stress by the flavonoid epicatechin. Phytother Res 24(4):503–509Google Scholar
  40. 40.
    Esmaeili, M.A. and Sonboli, A. (2009) Antioxidant, free radical scavenging activities of Salvia brachyantha and its protective effect against oxidative cardiac cell injury. Food Chem Toxicol 48(3):846–53PubMedGoogle Scholar
  41. 41.
    Kachadourian, R., et al. (2009) Casiopeina IIgly-induced oxidative stress and mitochondrial dysfunction in human lung cancer A549 and H157 cells. Toxicology 268(3):176–83PubMedCrossRefGoogle Scholar
  42. 42.
    Norberg, E., et al. (2009) Oxidative modification sensitizes mitochondrial apoptosis-inducing factor to calpain-mediated processing. Free Radic Biol Med 48(6):791–797CrossRefGoogle Scholar
  43. 43.
    Sesti, F., Liu, S., and Cai, S.Q. (2009) Oxidation of potassium channels by ROS: a general mechanism of aging and neurodegeneration? Trends Cell Biol 20(1):45–51PubMedCrossRefGoogle Scholar
  44. 44.
    Sayre, L.M., Perry, G. and Smith, M.A. (1999) In situ methods for detection and localization of markers of oxidative stress: application in neurodegenerative disorders. Methods Enzymol 309:133–152PubMedCrossRefGoogle Scholar
  45. 45.
    Nunomura, A., et al. (1999) RNA oxidation is a prominent feature of vulnerable neurons in Alzheimer’s disease. J Neurosci, 1999. 19(6):1959–1964PubMedGoogle Scholar
  46. 46.
    Nunomura, A., et al. (2001) Oxidative damage is the earliest event in Alzheimer’s Disease.J Neuropathol Exp Neurol 60(8):759–767PubMedGoogle Scholar
  47. 47.
    Gabbita, S.P., Lovell, M.A., and Markesbery, W.R. (1998) Increased nuclear DNA oxidation in the brain in Alzheimer’s disease. J Neurochem 71(5): p. 2034–2040PubMedCrossRefGoogle Scholar
  48. 48.
    Lovell, M.A., Gabbita, S.P., and Markesbery, W.R. (1999), Increased DNA oxidation and decreased levels of repair products in Alzheimer’s disease ventricular CSF. J Neurochem 72(2): 771–776PubMedCrossRefGoogle Scholar
  49. 49.
    Smith, M.A., et al. (1997) Widespread peroxynitrite-mediated damage in Alzheimer’s disease. J Neurosci 17(8):2653–2657PubMedGoogle Scholar
  50. 50.
    Smith, M.A., et al. (1996) Oxidative damage in Alzheimer’s. Nature 382(6587):120–121PubMedCrossRefGoogle Scholar
  51. 51.
    Hensley, K., et al. (1998) Electrochemical analysis of protein nitrotyrosine and dityrosine in the Alzheimer brain indicates region-specific accumulation. J Neurosci 18(20):8126–8132PubMedGoogle Scholar
  52. 52.
    Montine, K.S., et al. (2004) Isoprostanes and related products of lipid peroxidation in neurodegenerative diseases. Chem Phys Lipids 128(1-2):117–124PubMedCrossRefGoogle Scholar
  53. 53.
    Montine, K.S., et al. (1998) Distribution of reducible 4-hydroxynonenal adduct ­immunoreactivity in Alzheimer’s Disease is associated with APOE genotype. J Neuropathol Exp Neurol 57(5):415–425PubMedCrossRefGoogle Scholar
  54. 54.
    Montine, K.S., et al. (1997) Immunohistochemical detection of 4-hydroxy-2-nonenal adducts in Alzheimer’s disease is associated with inheritance of APOE4. Am J Pathol 150(2):437–443PubMedGoogle Scholar
  55. 55.
    Sayre, L.M., et al. (1997) 4-Hydroxynonenal-derived advanced lipid peroxidation end products are increased in Alzheimer’s disease. J Neurochem 68(5):2092–2097PubMedCrossRefGoogle Scholar
  56. 56.
    Ando, Y., et al. (1998) Histochemical detection of 4-hydroxynonenal protein in Alzheimer amyloid. J Neurol Sci 156(2):172–176PubMedCrossRefGoogle Scholar
  57. 57.
    Keller, J.N., et al.., (2005) Evidence of increased oxidative damage in subjects with mild cognitive impairment. Neurology 64(7):1152–1156PubMedCrossRefGoogle Scholar
  58. 58.
    Calingasan, N.Y., Uchida, K., and Gibson, G.E. (1999) Protein-bound acrolein: a novel marker of oxidative stress in Alzheimer’s disease. J Neurochem 72(2):751–756PubMedCrossRefGoogle Scholar
  59. 59.
    Smith, M.A., et al. (1994) Advanced Maillard reaction end products are associated with Alzheimer’s Disease pathology. Proc Natl Acad Sci USA 91(12): p. 5710–5714PubMedCrossRefGoogle Scholar
  60. 60.
    Vitek, M.P., et al. (1994) Advanced glycation end products contribute to amyloidosis in Alzheimer’s Disease. Proc Natl Acad Sci USA, 91(11):4766–4770PubMedCrossRefGoogle Scholar
  61. 61.
    Yan, S.D., et al. (1994) Glycated tau protein in Alzheimer’s Disease: a mechanism for induction of oxidant stress. Proc Natl Acad Sci USA, 91(16):7787–7791PubMedCrossRefGoogle Scholar
  62. 62.
    Ledesma, M.D., et al. (1994) Analysis of microtubule-associated protein tau glycation in paired helical filaments. J Biol Chem 269(34):21614–21619PubMedGoogle Scholar
  63. 63.
    Castellani, R.J., et al. (2001) Active glycation in neurofibrillary pathology of Alzheimer’s Disease: N(epsilon)-(carboxymethyl) lysine and hexitol-lysine. Free Radic Biol Med 31(2):175–180PubMedCrossRefGoogle Scholar
  64. 64.
    Perry, G., et al. (2000) How important is oxidative damage? Lessons from Alzheimer’s disease. Free Radic Biol Med 28(5): 831–834PubMedCrossRefGoogle Scholar
  65. 65.
    Ko, L.W., et al. (1999) An immunochemical study on tau glycation in paired helical filaments. Brain Res 830(2): 301–313PubMedCrossRefGoogle Scholar
  66. 66.
    Liu, Q., et al. (2005) Alzheimer-specific epitopes of tau represent lipid peroxidation-induced conformations. Free Radic Biol Med 38(6):746–754PubMedCrossRefGoogle Scholar
  67. 67.
    Sullivan, P.G. and Brown M.R. (2005) Mitochondrial aging and dysfunction in Alzheimer’s disease. Prog Neuropsychopharmacol Biol Psychiatry 29(3):407–410PubMedCrossRefGoogle Scholar
  68. 68.
    Castellani, R.J., et al. (2004) Contribution of redox-active iron and copper to oxidative damage in Alzheimer’s Disease. Ageing Res Rev 3(3): 319–326PubMedCrossRefGoogle Scholar
  69. 69.
    Smith, M.A., et al. (1994) Heme oxygenase-1 is associated with the neurofibrillary pathology of Alzheimer’s disease. Am J Pathol 145(1): 42–47PubMedGoogle Scholar
  70. 70.
    Premkumar, D.R., et al. (1995) Induction of heme oxygenase-1 mRNA and protein in neocortex and cerebral vessels in Alzheimer’s disease. J Neurochem 65(3):1399–1402PubMedCrossRefGoogle Scholar
  71. 71.
    Schipper, H.M., Cisse, S., and Stopa, E.G. (1995) Expression of heme oxygenase-1 in the senescent and Alzheimer-diseased brain. Ann Neurol 37(6):758–768PubMedCrossRefGoogle Scholar
  72. 72.
    Bonilla, E., et al. (1999) Mitochondrial involvement in Alzheimer’s disease. Biochim Biophys Acta 1410(2):171–182PubMedCrossRefGoogle Scholar
  73. 73.
    Aliev, G., et al. (2002) Atherosclerotic lesions and mitochondria DNA deletions in brain microvessels as a central target for the development of human AD and AD-like pathology in aged transgenic mice. Ann N Y Acad Sci 977:45–64PubMedCrossRefGoogle Scholar
  74. 74.
    Pappolla, M.A., et al. (1992) Immunohistochemical evidence of oxidative [corrected] stress in Alzheimer’s disease. Am J Pathol 140(3):621–628PubMedGoogle Scholar
  75. 75.
    De Leo, M.E., et al. (1998) Oxidative stress and overexpression of manganese superoxide dismutase in patients with Alzheimer’s disease. Neurosci Lett 250(3):173–6PubMedCrossRefGoogle Scholar
  76. 76.
    Marcus, D.L., et al. (1998) Increased peroxidation and reduced antioxidant enzyme activity in Alzheimer’s disease. Exp Neurol 150(1):40–44PubMedCrossRefGoogle Scholar
  77. 77.
    Perry, G., et al. (2002) Comparative biology and pathology of oxidative stress in Alzheimer and other neurodegenerative diseases: beyond damage and response. Comp Biochem Physiol C Toxicol Pharmacol 133(4):507–513PubMedCrossRefGoogle Scholar
  78. 78.
    Zhu, X., et al. (2004) Oxidative stress signalling in Alzheimer’s disease. Brain Res ­1000(1-2):32–39PubMedCrossRefGoogle Scholar
  79. 79.
    Kurz, A. and Perneczky, R. (2009) Neurobiology of cognitive disorders. Curr Opin Psychiatry 22(6): 546–551PubMedCrossRefGoogle Scholar
  80. 80.
    Sayre, L.M., et al. (2000) In situ oxidative catalysis by neurofibrillary tangles and senile plaques in Alzheimer’s disease: a central role for bound transition metals. J Neurochem 74(1):270–279PubMedCrossRefGoogle Scholar
  81. 81.
    Nunomura, A., et al. (1999) Neuronal RNA oxidation in Alzheimer’s disease and Down’s syndrome. Ann N Y Acad Sci 893:362–364PubMedCrossRefGoogle Scholar
  82. 82.
    Smith, M.A., et al. (2000) Metabolic, metallic, and mitotic sources of oxidative stress in Alzheimer’s Disease. Antioxid Redox Signal 2(3):413–420PubMedCrossRefGoogle Scholar
  83. 83.
    Lynn, B.C., et al. (2010) Quantitative changes in the mitochondrial proteome from subjects with mild cognitive impairment, early stage, and late stage Alzheimer’s disease. J Alzheimers Dis 19(1):325–339PubMedGoogle Scholar
  84. 84.
    Spindler, M., Beal, M.F., and Henchcliffe, C. (2009) Coenzyme Q10 effects in neurodegenerative disease. Neuropsychiatr Dis Treat 5:597–610PubMedGoogle Scholar
  85. 85.
    Sayre, L.M., Perry, G., and Smith, M.A. (1999) Redox metals and neurodegenerative disease. Curr Opin Chem Biol 3(2): 220–225PubMedCrossRefGoogle Scholar
  86. 86.
    Smith, M.A., et al. (2010) Increased iron and free radical generation in preclinical Alzheimer’s Disease and mild cognitive impairment. J Alzheimers Dis 19(1):363–372PubMedGoogle Scholar
  87. 87.
    Liu, G., et al. (2009) Metal chelators coupled with nanoparticles as potential therapeutic agents for Alzheimer’s disease. J Nanoneurosci 1(1): 42–55PubMedCrossRefGoogle Scholar
  88. 88.
    Moreira, P.I., et al. (2008) Alzheimer’s Disease and the role of free radicals in the pathogenesis of the disease. CNS Neurol Disord Drug Targets 7(1):3–10PubMedCrossRefGoogle Scholar
  89. 89.
    Mattson, M.P. (2006) Neuronal life-and-death signaling, apoptosis, and neurodegenerative disorders. Antioxid Redox Signal 8(11-12):1997–2006PubMedCrossRefGoogle Scholar
  90. 90.
    Marlatt, M.W., et al. (2005) Therapeutic opportunities in Alzheimer’s Disease: one for all or all for one? Curr Med Chem 12(10): 1137–1147PubMedCrossRefGoogle Scholar
  91. 91.
    Veurink, G., et al. (2003) Reduction of inclusion body pathology in ApoE-deficient mice fed a combination of antioxidants. Free Radic Biol Med 34(8):1070–1077PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Jaewon Chang
  • Sandra Siedlak
  • Paula Moreira
  • Akihiko Nunomura
  • Rudy J. Castellani
  • Mark A. Smith
  • Xiongwei Zhu
  • George Perry
  • Gemma Casadesus
    • 1
    Email author
  1. 1.Department of NeuroscienceCase Western Reserve UniversityClevelandUSA

Personalised recommendations