Advertisement

MPTP and Oxidative Stress: It’s Complicated!

  • V. Jackson-LewisEmail author
  • M. A. Tocilescu
  • R. DeVries
  • D. M. Alessi
  • S. Przedborski
Chapter
Part of the Oxidative Stress in Applied Basic Research and Clinical Practice book series (OXISTRESS)

Abstract

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is the tool of choice for modeling Parkinson’s Disease (PD) in animals. Originally synthesized as a “designer drug” by drug users, MPTP, while not giving us the definitive answer as to the etiology of Parkinson’s disease, has enlightened many of us researchers about the molecules and mechanisms involved in dopamine neuron death. Herein, we provide information about some of the events that are involved here and try to make it clear just how complicated the death of the dopamine neuron in the MPTP model and possibly in PD seems to be.

Keywords

Cytokines Dopamine Mitochondria Monoamine oxidase MPTP Nitric oxide Superoxide 

References

  1. 1.
    Dauer W, Przedborski S. Parkinson’s disease: mechanisms and models. Neuron 2003; 39(6):889–909.Google Scholar
  2. 2.
    Mogi M, Harada M, Riederer P, Narabayashi H, Fujita K, Nagatsu T. Tumor necrosis ­factor-alpha (TNF-alpha) increases both in the brain and in the cerebrospinal fluid from parkinsonian patients. Neurosci Lett 1994; 165(1-2):208–210.Google Scholar
  3. 3.
    Mogi M, Harada M, Narabayashi H, Inagaki H, Minami M, Nagatsu T. Interleukin (IL)-1 beta, IL-2, IL-4, IL-6 and transforming growth factor-alpha levels are elevated in ventricular cerebrospinal fluid in juvenile parkinsonism and Parkinson’s disease. Neurosci Lett 1996; 211(1):13–16.Google Scholar
  4. 4.
    Mogi M, Togari A, Kondo T et al. Caspase activities and tumor necrosis factor receptor R1 (p55) level are elevated in the substantia nigra from parkinsonian brain. J Neural Transm 2000; 107(3):335–341.Google Scholar
  5. 5.
    McGeer PL, Itagaki S, Boyes BE, McGeer EG. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 1988; 38(8):1285–1291.Google Scholar
  6. 6.
    Banati RB, Daniel SE, Blunt SB. Glial pathology but absence of apoptotic nigral neurons in long- standing Parkinson’s disease. Mov Disord 1998; 13(2):221–227.Google Scholar
  7. 7.
    DiMauro S. Mitochondrial involvement in Parkinson’s disease: The controversy continues. Neurology 1993; 43:2170–2172.Google Scholar
  8. 8.
    Hunot S, Boissiere F, Faucheux B et al. Nitric oxide synthase and neuronal vulnerability in Parkinson’s disease. Neuroscience 1996; 72(2):355–363.Google Scholar
  9. 9.
    Ramsey CP, Giasson BI. Role of mitochondrial dysfunction in Parkinson’s disease: Implications for treatment. Drugs Aging 2007; 24(2):95–105.Google Scholar
  10. 10.
    Zhou C, Huang Y, Przedborski S. Oxidative stress in Parkinson’s disease: a mechanism of pathogenic and therapeutic significance. Ann N Y Acad Sci 2008; 1147:93–104.Google Scholar
  11. 11.
    Vives-Bauza C, de Vries RL, Tocilescu MA, Przedborski S. Is there a pathogenic role for mitochondria in Parkinson’s disease? Parkinsonism Relat Disord 2009; 15 Suppl 3:S241–S244.Google Scholar
  12. 12.
    McGeer PL, McGeer EG, Itagaki S, Mizukawa K. Anatomy and pathology of the basal ganglia. Can J Neurol Sci 1987; 14(3 Suppl):363–372.Google Scholar
  13. 13.
    Miller WC, DeLong MR. Parkinsonian symptomatology. An anatomical and physiological analysis. Ann N Y Acad Sci 1988; 515:287–302.Google Scholar
  14. 14.
    Langston JW, Forno LS, Tetrud J, Reeves AG, Kaplan JA, Karluk D. Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure. Ann Neurol 1999; 46(4):598–605.Google Scholar
  15. 15.
    Snow BJ, Vingerhoets FJ, Langston JW, Tetrud JW, Sossi V, Calne DB. Pattern of dopaminergic loss in the striatum of humans with MPTP induced parkinsonism. J Neurol Neurosurg Psychiat 2000; 68(3):313–316.Google Scholar
  16. 16.
    Jackson-Lewis V, Jakowec M, Burke RE, Przedborski S. Time course and morphology of dopaminergic neuronal death caused by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Neurodegeneration 1995; 4:257–269.Google Scholar
  17. 17.
    Hald A, Lotharius J. Oxidative stress and inflammation in Parkinson’s disease: is there a causal link? Exp Neurol 2005; 193(2):279–290.Google Scholar
  18. 18.
    Reiter RJ. Oxidative processes and antioxidative defense mechanisms in the aging brain. FASEB J 1995; 9(7):526–533.Google Scholar
  19. 19.
    Gesi M, Santinami A, Ruffoli R, Conti G, Fornai F. Novel aspects of dopamine oxidative metabolism (confounding outcomes take place of certainties). Pharmacol Toxicol 2001; 89(5):217–224.Google Scholar
  20. 20.
    Graham DG, Tiffany SM, Bell WR, Jr., Gutknecht WF. Autoxidation versus covalent binding of quinones as the mechanism of toxicity of dopamine, 6-hydroxydopamine, and related ­compounds toward C1300 neuroblastoma cells in vitro. Mol Pharmacol 1978; 14(4):644–653.Google Scholar
  21. 21.
    Sian J, Dexter DT, Lees AJ, Daniel S, Jenner P, Marsden CD. Glutathione-related enzymes in brain in Parkinson’s disease. Ann Neurol 1994; 36:356–361.Google Scholar
  22. 22.
    Sofic E, Paulus W, Jellinger K, Riederer P, Youdim MB. Selective increase of iron in substantia nigra zona compacta of parkinsonian brains. J Neurochem 1991; 56(3):978–982.Google Scholar
  23. 23.
    Dexter DT, Wells FR, Lees AJ et al. Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson’s disease. J Neurochem 1989; 52(6):1830–1836.Google Scholar
  24. 24.
    Alam ZI, Jenner A, Daniel SE et al. Oxidative DNA damage in the parkinsonian brain: an apparent selective increase in 8-hydroxyguanine levels in substantia nigra. J Neurochem 1997; 69(3):1196–1203.Google Scholar
  25. 25.
    Yoritaka A, Hattori N, Uchida K, Tanaka M, Stadtman ER, Mizuno Y. Immunohistochemical detection of 4-hydroxynonenal protein adducts in Parkinson disease. Proc Natl Acad Sci USA 1996; 93(7):2696–2701.Google Scholar
  26. 26.
    Zhang J, Perry G, Smith MA et al. Parkinson’s disease is associated with oxidative damage to cytoplasmic DNA and RNA in substantia nigra neurons. Am J Pathol 1999; 154(5):1423–1429.Google Scholar
  27. 27.
    Picklo MJ, Amarnath V, McIntyre JO, Graham DG, Montine TJ. 4-Hydroxy-2(E)-nonenal inhibits CNS mitochondrial respiration at multiple sites. J Neurochem 1999; 72(4):1617–1624.Google Scholar
  28. 28.
    Graham DG. Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones. Mol Pharmacol 1978; 14:633–643.Google Scholar
  29. 29.
    Ungerstedt U. Postsynaptique supersensitivity after 6-hydroxydopamine induced degeneration of the nigro-striatal system in the rat brain. Acta Physiol Scand 1971; Suppl. 367:69–93.Google Scholar
  30. 30.
    Przedborski S, Levivier M, Jiang H et al. Dose-dependent lesions of the dopaminergic nigrostriatal pathway induced by intrastriatal injection of 6-hydroxydopamine. Neuroscience 1995; 67(3):631–647.Google Scholar
  31. 31.
    Marti MJ, James CJ, Oo TF, Kelly WJ, Burke RE. Early developmental destruction of terminals in the striatal target induces apoptosis in dopamine neurons of the substantia nigra. J Neurosci 1997; 17(6):2030–2039.Google Scholar
  32. 32.
    Holtz WA, Turetzky JM, Jong YJ, O’Malley KL. Oxidative stress-triggered unfolded protein response is upstream of intrinsic cell death evoked by parkinsonian mimetics. J Neurochem 2006; 99(1):54–69.Google Scholar
  33. 33.
    Glinka Y, Gassen M, Youdim MB. Mechanism of 6-hydroxydopamine neurotoxicity. J Neural Transm Suppl 1997; 50:55–66.Google Scholar
  34. 34.
    Depino AM, Earl C, Kaczmarczyk E et al. Microglial activation with atypical proinflammatory cytokine expression in a rat model of Parkinson’s disease. Eur J Neurosci 2003; 18(10):2731–2742.Google Scholar
  35. 35.
    Talpade DJ, Greene JG, Higgins DS, Jr., Greenamyre JT. In vivo labeling of mitochondrial complex I (NADH:ubiquinone oxidoreductase) in rat brain using [(3)H]dihydrorotenone. J Neurochem 2000; 75(6):2611–2621.Google Scholar
  36. 36.
    Schuler F, Casida JE. Functional coupling of PSST and ND1 subunits in NADH:ubiquinone oxidoreductase established by photoaffinity labeling. Biochim Biophys Acta 2001; 1506(1):79–87.Google Scholar
  37. 37.
    Ferrante RJ, Schulz JB, Kowall NW, Beal MF. Systemic administration of rotenone produces selective damage in the striatum and globus pallidus, but not in the substantia nigra. Brain Res 1997; 753(1):157–162.Google Scholar
  38. 38.
    Thiffault C, Langston JW, Di Monte DA. Increased striatal dopamine turnover following acute administration of rotenone to mice. Brain Res 2000; 885(2):283–288.Google Scholar
  39. 39.
    Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT. Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 2000; 3(12):1301–1306.Google Scholar
  40. 40.
    Lapointe N, St-Hilaire M, Martinoli MG et al. Rotenone induces non-specific central nervous system and systemic toxicity. FASEB J 2004; 18(6):717–719.Google Scholar
  41. 41.
    Zhu C, Vourc’h P, Fernagut PO et al. Variable effects of chronic subcutaneous administration of rotenone on striatal histology. J Comp Neurol 2004; 478(4):418–426.Google Scholar
  42. 42.
    Sherer TB, Betarbet R, Kim JH, Greenamyre JT. Selective microglial activation in the rat rotenone model of Parkinson’s disease. Neurosci Lett 2003; 341(2):87–90.Google Scholar
  43. 43.
    Mori F, Nishie M, Kakita A, Yoshimoto M, Takahashi H, Wakabayashi K. Relationship among alpha-synuclein accumulation, dopamine synthesis, and neurodegeneration in Parkinson disease substantia nigra. J Neuropathol Exp Neurol 2006; 65(8):808–815.Google Scholar
  44. 44.
    Pham CL, Leong SL, Ali FE et al. Dopamine and the dopamine oxidation product 5,6-dihydroxylindole promote distinct on-pathway and off-pathway aggregation of alpha-synuclein in a pH-dependent manner. J Mol Biol 2009; 387(3):771–785.Google Scholar
  45. 45.
    Berry C, La VC, Nicotera P. Paraquat and Parkinson’s disease. Cell Death Differ 2010.Google Scholar
  46. 46.
    Przedborski S, Ischiropoulos H. Reactive oxygen and nitrogen species: weapons of neuronal destruction in models of Parkinson’s disease. Antioxid Redox Signaling 2005; 7(5-6):685–693.Google Scholar
  47. 47.
    Widdowson PS, Farnworth MJ, Simpson MG, Lock EA. Influence of age on the passage of paraquat through the blood-brain barrier in rats: a distribution and pathological examination. Hum Exp Toxicol 1996; 15(3):231–236.Google Scholar
  48. 48.
    Shimizu K, Ohtaki K, Matsubara K et al. Carrier-mediated processes in blood–brain barrier penetration and neural uptake of paraquat. Brain Res 2001; 906(1-2):135–142.Google Scholar
  49. 49.
    Naylor JL, Widdowson PS, Simpson MG, Farnworth M, Ellis MK, Lock EA. Further evidence that the blood/brain barrier impedes paraquat entry into the brain. Hum Exp Toxicol 1995; 14(7):587–594.Google Scholar
  50. 50.
    Bonneh-Barkay D, Reaney SH, Langston WJ, Di Monte DA. Redox cycling of the herbicide paraquat in microglial cultures. Brain Res Mol Brain Res 2005; 134(1):52–56.Google Scholar
  51. 51.
    Bonneh-Barkay D, Langston WJ, Di Monte DA. Toxicity of redox cycling pesticides in primary mesencephalic cultures. Antioxid Redox Signal 2005; 7(5-6):649–653.Google Scholar
  52. 52.
    McCormack AL, Atienza JG, Langston JW, Di Monte DA. Decreased susceptibility to oxidative stress underlies the resistance of specific dopaminergic cell populations to paraquat-induced degeneration. Neuroscience 2006; 141(2):929–937.Google Scholar
  53. 53.
    Ossowska K, Wardas J, Kuter K et al. Influence of paraquat on dopaminergic transporter in the rat brain. Pharmacol Rep 2005; 57(3):330–335.Google Scholar
  54. 54.
    Peng J, Mao XO, Stevenson FF, Hsu M, Andersen JK. The herbicide paraquat induces dopaminergic nigral apoptosis through sustained activation of the JNK pathway. J Biol Chem 2004; 279(31):32626–32632.Google Scholar
  55. 55.
    Przedborski S, Vila M. The 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model: a tool to explore the pathogenesis of Parkinson’s disease. Ann N Y Acad Sci 2003; 991:189–198.Google Scholar
  56. 56.
    Liberatore G, Jackson-Lewis V, Vukosavic S et al. Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nat Med 1999; 5(12):1403–1409.Google Scholar
  57. 57.
    Przedborski S, Tieu K, Perier C, Vila M. MPTP as a Mitochondrial Neurotoxic Model of Parkinson’s Disease. J Bioenerg Biomembr 2004; 36(4):375–379.Google Scholar
  58. 58.
    Przedborski S, Jackson-Lewis V. ROS and Parkinson’s disease: a view to a kill. In: Poli G, Cadenas E, Packer L, editors. Free radicals in brain pathophysiology. New York: Marcel Dekker, Inc.; 2000 p. 273–290.Google Scholar
  59. 59.
    Mallajosyula JK, Kaur D, Chinta SJ et al. MAO-B elevation in mouse brain astrocytes results in Parkinson’s pathology. PLoS ONE 2008; 3(2):e1616.Google Scholar
  60. 60.
    Teismann P, Tieu K, Cohen O et al. Pathogenic role of glial cells in Parkinson’s disease. Mov Disord 2003; 18(2):121–129.Google Scholar
  61. 61.
    Abbott NJ. Developmental neurobiology. The milieu is the message. Nature 1988; 332(6164):490–491.Google Scholar
  62. 62.
    Spina MB, Cohen G. Dopamine turnover and glutathione oxidation: implications for Parkinson’s disease. Proc Natl Acad Sci USA 1988; 86:1398–1400.Google Scholar
  63. 63.
    Hermida-Ameijeiras A, Mendez-Alvarez E, Sanchez-Iglesias S, Sanmartin-Suarez C, Soto-Otero R. Autoxidation and MAO-mediated metabolism of dopamine as a potential cause of oxidative stress: role of ferrous and ferric ions. Neurochem Int 2004; 45(1):103–116.Google Scholar
  64. 64.
    Lamensdorf I, Eisenhofer G, Harvey-White J, Hayakawa Y, Kirk K, Kopin IJ. Metabolic stress in PC12 cells induces the formation of the endogenous dopaminergic neurotoxin, 3,4-dihydroxyphenylacetaldehyde. J Neurosci Res 2000; 60(4):552–558.Google Scholar
  65. 65.
    Kristal BS, Conway AD, Brown AM et al. Selective dopaminergic vulnerability: 3,4-dihydroxyphenylacetaldehyde targets mitochondria. Free Radic Biol Med 2001; 30(8):924–931.Google Scholar
  66. 66.
    Burke WJ, Li SW, Williams EA, Nonneman R, Zahm DS. 3,4-Dihydroxyphenylacetaldehyde is the toxic dopamine metabolite in vivo: implications for Parkinson’s disease pathogenesis. Brain Res 2003; 989(2):205–213.Google Scholar
  67. 67.
    Burke WJ, Li SW, Chung HD et al. Neurotoxicity of MAO metabolites of catecholamine neurotransmitters: role in neurodegenerative diseases. Neurotoxicology 2004; 25(1-2):101–115.Google Scholar
  68. 68.
    Slivka A, Cohen G. Hydroxyl radical attack on dopamine. J Biol Chem 1985; 260:15466–15472.Google Scholar
  69. 69.
    Borah A, Mohanakumar KP. Melatonin inhibits 6-hydroxydopamine production in the brain to protect against experimental parkinsonism in rodents. J Pineal Res 2009; 47(4):293–300.Google Scholar
  70. 70.
    Cui M, Aras R, Christian WV et al. The organic cation transporter-3 is a pivotal modulator of neurodegeneration in the nigrostriatal dopaminergic pathway. Proc Natl Acad Sci USA 2009; 106(19):8043–8048.Google Scholar
  71. 71.
    Storch A, Ludolph AC, Schwarz J. Dopamine transporter: involvement in selective dopaminergic neurotoxicity and degeneration. J Neural Transm 2004; 111(10-11):1267–1286.Google Scholar
  72. 72.
    Kurosaki R, Muramatsu Y, Watanabe H et al. Role of dopamine transporter against MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) neurotoxicity in mice. Metab Brain Dis 2003; 18(2):139–146.Google Scholar
  73. 73.
    Serra PA, Pluchino S, Marchetti B, Desole MS, Miele E. The MPTP mouse model: cues on DA release and neural stem cell restorative role. Parkinsonism Relat Disord 2008; 14 Suppl 2:S189–S193.Google Scholar
  74. 74.
    Chen MK, Kuwabara H, Zhou Y et al. VMAT2 and dopamine neuron loss in a primate model of Parkinson’s disease. J Neurochem 2008; 105(1):78–90.Google Scholar
  75. 75.
    Teismann P, Tieu K, Choi DK et al. Cyclooxygenase-2 is instrumental in Parkinson’s disease neurodegeneration. Proc Natl Acad Sci USA 2003; 100:5473–5478.Google Scholar
  76. 76.
    Rosei MA, Blarzino C, Foppoli C, Mosca L, Coccia R. Lipoxygenase-catalyzed oxidation of catecholamines. Biochem Biophys Res Commun 1994; 200(1):344–350.Google Scholar
  77. 77.
    Mattammal MB, Haring JH, Chung HD, Raghu G, Strong R. An endogenous dopaminergic neurotoxin: Implication for Parkinson’s disease. Neurodegeneration 1995; 4:271–281.Google Scholar
  78. 78.
    Foppoli C, Coccia R, Cini C, Rosei MA. Catecholamines oxidation by xanthine oxidase. Biochim Biophys Acta 1997; 1334(2-3):200–206.Google Scholar
  79. 79.
    Forno LS, DeLanney LE, Irwin I, Di Monte D, Langston JW. Astrocytes and Parkinson’s disease. Prog Brain Res 1992; 94:429–436.Google Scholar
  80. 80.
    Mirza B, Hadberg H, Thomsen P, Moos T. The absence of reactive astrocytosis is indicative of a unique inflammatory process in Parkinson’s disease. Neuroscience 2000; 95(2):425–432.Google Scholar
  81. 81.
    Vila M, Wu DC, Przedborski S. Engineered modeling and the secrets of Parkinson’s disease. Trends Neurosci 2001; 24(11 Suppl):S49–S55.Google Scholar
  82. 82.
    Batchelor PE, Liberatore GT, Wong JY et al. Activated macrophages and microglia induce dopaminergic sprouting in the injured striatum and express brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor. J Neurosci 1999; 19(5):1708–1716.Google Scholar
  83. 83.
    Kreutzberg GW. Microglia: a sensor for pathological events in the CNS. Trends Neurosci 1996; 19(8):312–318.Google Scholar
  84. 84.
    Banati RB, Gehrmann J, Schubert P, Kreutzberg GW. Cytotoxicity of microglia. Glia 1993; 7(1):111–118.Google Scholar
  85. 85.
    Gehrmann J, Banati RB, Wiessner C, Hossmann KA, Kreutzberg GW. Reactive microglia in cerebral ischaemia: an early mediator of tissue damage? Neuropathol Appl Neurobiol 1995; 21(4):277–289.Google Scholar
  86. 86.
    Hopkins SJ, Rothwell NJ. Cytokines and the nervous system. I: Expression and recognition. Trends Neurosci 1995; 18(2):83–88.Google Scholar
  87. 87.
    Bacon KB, Harrison JK. Chemokines and their receptors in neurobiology: perspectives in physiology and homeostasis. J Neuroimmunol 2000; 104(1):92–97.Google Scholar
  88. 88.
    Ferger B, Leng A, Mura A, Hengerer B, Feldon J. Genetic ablation of tumor necrosis factor-alpha (TNF-alpha) and pharmacological inhibition of TNF-synthesis attenuates MPTP toxicity in mouse striatum. J Neurochem 2004; 89(4):822–833.Google Scholar
  89. 89.
    Nagatsu T, Mogi M, Ichinose H, Togari A. Changes in cytokines and neurotrophins in Parkinson’s disease. J Neural Transm Suppl 2000;(60):277–290.Google Scholar
  90. 90.
    Hebert G, Arsaut J, Dantzer R, motes-Mainard J. Time-course of the expression of inflammatory cytokines and matrix metalloproteinases in the striatum and mesencephalon of mice injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, a dopaminergic neurotoxin. Neurosci Lett 2003; 349(3):191–195.Google Scholar
  91. 91.
    Ciesielska A, Joniec I, Kurkowska-Jastrzebska I et al. Influence of age and gender on cytokine expression in a murine model of Parkinson’s disease. Neuroimmunomodulation 2007; 14(5):255–265.Google Scholar
  92. 92.
    Pattarini R, Smeyne RJ, Morgan JI. Temporal mRNA profiles of inflammatory mediators in the murine 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrimidine model of Parkinson’s disease. Neuroscience 2007; 145(2):654–668.Google Scholar
  93. 93.
    Sriram K, Matheson JM, Benkovic SA, Miller DB, Luster MI, O’Callaghan JP. Deficiency of TNF receptors suppresses microglial activation and alters the susceptibility of brain regions to MPTP-induced neurotoxicity: role of TNF-alpha. FASEB J 2006; 20(6):670–682.Google Scholar
  94. 94.
    Ferger B, Leng A, Mura A, Hengerer B, Feldon J. Genetic ablation of tumor necrosis factor-alpha (TNF-alpha) and pharmacological inhibition of TNF-synthesis attenuates MPTP toxicity in mouse striatum. J Neurochem 2004; 89(4):822–833.Google Scholar
  95. 95.
    Wu DC, Teismann P, Tieu K et al. NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. Proc Natl Acad Sci USA 2003; 100:6145–6150.Google Scholar
  96. 96.
    Yasuda Y, Shimoda T, Uno K et al. The effects of MPTP on the activation of microglia/astrocytes and cytokine/chemokine levels in different mice strains. J Neuroimmunol 2008; 204(1-2):43–51.Google Scholar
  97. 97.
    Farina C, Aloisi F, Meinl E. Astrocytes are active players in cerebral innate immunity. Trends in Immunology 2007; 28(3):138–145.Google Scholar
  98. 98.
    Wu DC, Jackson-Lewis V, Vila M et al. Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease. J Neurosci 2002; 22(5):1763–1771.Google Scholar
  99. 99.
    Hunot S, Brugg B, Ricard D et al. Nuclear translocation of NF-kappaB is increased in dopaminergic neurons of patients with Parkinson disease. Proc Natl Acad Sci USA 1997; 94(14):7531–7536.Google Scholar
  100. 100.
    Karin M, Lin A. NF-kappaB at the crossroads of life and death. Nat Immunol 2002; 3(3):221–227.Google Scholar
  101. 101.
    Aoki E, Yano R, Yokoyama H, Kato H, Araki T. Role of nuclear transcription factor kappa B (NF-kappaB) for MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahyropyridine)-induced apoptosis in nigral neurons of mice. Exp Mol Pathol 2009; 86(1):57–64.Google Scholar
  102. 102.
    Perez-Otano I, McMillian MK, Chen J, Bing G, Hong JS, Pennypacker KR. Induction of NF-kB-like transcription factors in brain areas susceptible to kainate toxicity. Glia 1996; 16(4):306–315.Google Scholar
  103. 103.
    Przedborski S. Neuroinflammation and Parkinson’s disease. In: Koller WC, Melamed E, editors. Parkinson’s disease and related disorders. New York: Elsevier; 2007 p. 535–551.Google Scholar
  104. 104.
    Jackson-Lewis V, Smeyne RJ. MPTP and SNpc DA neuronal vulnerability: role of dopamine, superoxide and nitric oxide in neurotoxicity. Minireview. Neurotox Res 2005; 7(3):193–202.Google Scholar
  105. 105.
    Teismann P, Vila M, Choi DK et al. COX-2 and neurodegeneration in Parkinson’s disease. Ann N Y Acad Sci 2003; 991:272–277.Google Scholar
  106. 106.
    Przedborski S, Kostic V, Jackson-Lewis V et al. Transgenic mice with increased Cu/Zn-superoxide dismutase activity are resistant to N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity. J Neurosci 1992; 12(5):1658–1667.Google Scholar
  107. 107.
    Fridovich I. Superoxide dismutases. In: Meister A, editor. Advances in enzymology, Vol. 58. New York: Wiley; 1986 p. 61–97.Google Scholar
  108. 108.
    Jaarsma D, Rognoni F, van Duijn W, Verspaget HW, Haasdijk ED, Holstege JC. CuZn superoxide dismutase (SOD1) accumulates in vacuolated mitochondria in transgenic mice expressing amyotrophic lateral sclerosis-linked SOD1 mutations. Acta Neuropathol (Berl) 2001; 102(4):293–305.Google Scholar
  109. 109.
    Higgins CM, Jung C, Ding H, Xu Z. Mutant CuZn superoxide dismutase that causes motoneuron degeneration is present in mitochondria in the CNS. J Neurosci 2002; 22(6):RC215.Google Scholar
  110. 110.
    Mattiazzi M, D’Aurelio M, Gajewski CD et al. Mutated human SOD1 causes dysfunction of oxidative phosphorylation in mitochondria of transgenic mice. J Biol Chem 2002; 277(33):29626–29633.Google Scholar
  111. 111.
    Liu J, Lillo C, Jonsson PA et al. Toxicity of familial ALS-linked SOD1 mutants from selective recruitment to spinal mitochondria. Neuron 2004; 43(1):5–17.Google Scholar
  112. 112.
    Pasinelli P, Belford ME, Lennon N et al. Amyotrophic lateral sclerosis-associated SOD1 mutant proteins bind and aggregate with Bcl-2 in spinal cord mitochondria. Neuron 2004; 43(1):19–30.Google Scholar
  113. 113.
    Vijayvergiya C, Beal MF, Buck J, Manfredi G. Mutant superoxide dismutase 1 forms aggregates in the brain mitochondrial matrix of amyotrophic lateral sclerosis mice. J Neurosci 2005; 25(10):2463–2470.Google Scholar
  114. 114.
    Lindenau J, Noack H, Possel H, Asayama K, Wolf G. Cellular distribution of superoxide dismutases in the rat CNS. Glia 2000; 29(1):25–34.Google Scholar
  115. 115.
    Andreassen OA, Ferrante RJ, Dedeoglu A et al. Mice with a partial deficiency of manganese superoxide dismutase show increased vulnerability to the mitochondrial toxins malonate, 3- nitropropionic acid, and MPTP. Exp Neurol 2001; 167(1):189–195.Google Scholar
  116. 116.
    Culotta VC, Yang M, O’Halloran TV. Activation of superoxide dismutases: putting the metal to the pedal. Biochim Biophys Acta 2006; 1763(7):747–758.Google Scholar
  117. 117.
    Przedborski S, Jackson-Lewis V, Kostic V, Carlson E, Epstein CJ, Cadet JL. Superoxide dismutase, catalase, and glutathione peroxidase activities in copper/zinc-superoxide dismutase transgenic mice. J Neurochem 1992; 58:1760–1767.Google Scholar
  118. 118.
    Benov L, Sztejnberg L, Fridovich I. Critical evaluation of the use of hydroethidine as a measure of superoxide anion radical. Free Radic Biol Med 1998; 25(7):826–831.Google Scholar
  119. 119.
    Schmued LC, Hopkins KJ. Fluoro-Jade: novel fluorochromes for detecting toxicant-induced neuronal degeneration. Toxicol Pathol 2000; 28(1):91–99.Google Scholar
  120. 120.
    Hoang T, Choi DK, Nagai M et al. Neuronal NOS and cyclooxygenase-2 contribute to DNA damage in a mouse model of Parkinson disease. Free Radic Biol Med 2009; 47(7):1049–1056.Google Scholar
  121. 121.
    Chen H, Zhang SM, Hernan MA et al. Nonsteroidal anti-inflammatory drugs and the risk of Parkinson disease. Arch Neurol 2003; 60(8):1059–1064.Google Scholar
  122. 122.
    Babior BM. NADPH oxidase: an update. Blood 1999; 93(5):1464–1476.Google Scholar
  123. 123.
    Liochev SI, Fridovich I. Superoxide and nitric oxide: consequences of varying rates of production and consumption: a theoretical treatment. Free Radic Biol Med 2002; 33(1):137–141.Google Scholar
  124. 124.
    Przedborski S, Dawson TM. The role of nitric oxide in Parkinson’s disease. In: Mouradian MM, editor. Parkinson’s disease. Methods and protocols. New Jersey: Humana Press; 2001 p. 113–136.Google Scholar
  125. 125.
    Fridovich I. Superoxide radical and superoxide dismutases. Annu Rev Biochem 1995; 64:97–112.Google Scholar
  126. 126.
    Przedborski S, Jackson-Lewis V, Yokoyama R, Shibata T, Dawson VL, Dawson TM. Role of neuronal nitric oxide in MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-induced dopaminergic neurotoxicity. Proc Natl Acad Sci USA 1996; 93:4565–4571.Google Scholar
  127. 127.
    Hunot S, Dugas N, Faucheux B et al. FceRII/CD23 is expressed in Parkinson’s disease and induces, in vitro, production of nitric oxide and tumor necrosis factor-alpha in glial cells. J Neurosci 1999; 19(9):3440–3447.Google Scholar
  128. 128.
    O’Callaghan JP, Sriram K, Miller DB. Defining “neuroinflammation”. Ann N Y Acad Sci 2008; 1139:318–330.Google Scholar
  129. 129.
    Radi R, Cassina A, Hodara R, Quijano C, Castro L. Peroxynitrite reactions and formation in mitochondria. Free Radic Biol Med 2002; 33(11):1451–1464.Google Scholar
  130. 130.
    Dringen R, Pawlowski PG, Hirrlinger J. Peroxide detoxification by brain cells. J Neurosci Res 2005; 79(1-2):157–165.Google Scholar
  131. 131.
    Blanchard-Fillion B, Souza JM, Friel T et al. Nitration and inactivation of tyrosine hydroxylase by peroxynitrite. J Biol Chem 2001; 276(49):46017–46023.Google Scholar
  132. 132.
    Quijano C, Romero N, Radi R. Tyrosine nitration by superoxide and nitric oxide fluxes in biological systems: modeling the impact of superoxide dismutase and nitric oxide diffusion. Free Radic Biol Med 2005; 39(6):728–741.Google Scholar
  133. 133.
    Daveu C, Servy C, Dendane M, Marin P, Ducrocq C. Oxidation and nitration of ­catecholamines by nitrogen oxides derived from nitric oxide. Nitric Oxide 1997; 1(3):234–243.Google Scholar
  134. 134.
    Przedborski S, Jackson-Lewis V, Djaldetti R et al. The parkinsonian toxin MPTP: action and mechanism. Restor Neurol Neurosci 2000; 16:135–142.Google Scholar
  135. 135.
    Szabo C, Ischiropoulos H, Radi R. Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat Rev Drug Discov 2007; 6(8):662–680.Google Scholar
  136. 136.
    Hatefi Y. The mitochondrial electron transport and oxidative phosphorylation system. Annu Rev Biochem 1985; 54:1015–1069.Google Scholar
  137. 137.
    Abrahams JP, Leslie AG, Lutter R, Walker JE. Structure at 2.8 A resolution of F1-ATPase from bovine heart mitochondria. Nature 1994; 370(6491):621–628.Google Scholar
  138. 138.
    Boyer PD. The ATP synthase–a splendid molecular machine. Annu Rev Biochem 1997; 66:717–749.Google Scholar
  139. 139.
    Nakamoto RK. Molecular Features of Energy Coupling in the F(0)F(1) ATP Synthase. News Physiol Sci 1999; 14:40–46.Google Scholar
  140. 140.
    Fridovich I. Superoxide dismutases. Annu Rev Biochem 1975; 44:147.Google Scholar
  141. 141.
    Brand MD, Affourtit C, Esteves TC et al. Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins. Free Radic Biol Med 2004; 37(6):755–767.Google Scholar
  142. 142.
    Boveris A, Cadenas E, Stoppani AO. Role of ubiquinone in the mitochondrial generation of hydrogen peroxide. Biochem J 1976; 156(2):435–444.Google Scholar
  143. 143.
    Cadenas E, Boveris A, Ragan CI, Stoppani AO. Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef-heart mitochondria. Arch Biochem Biophys 1977; 180(2):248–257.Google Scholar
  144. 144.
    Drose S, Brandt U. The mechanism of mitochondrial superoxide production by the cytochrome bc1 complex. J Biol Chem 2008; 283(31):21649–21654.Google Scholar
  145. 145.
    Borek A, Sarewicz M, Osyczka A. Movement of the iron-sulfur head domain of cytochrome bc(1) transiently opens the catalytic Q(o) site for reaction with oxygen. Biochemistry 2008; 47(47):12365–12370.Google Scholar
  146. 146.
    Turrens JF, Boveris A. Generation of superoxide anion by NADH dehydrogenase of bovine heart mitochondria. Biochem J 1980; 191:421–427.Google Scholar
  147. 147.
    Kushnareva Y, Murphy AN, Andreyev A. Complex I-mediated reactive oxygen species generation: modulation by cytochrome c and NAD(P)+ oxidation-reduction state. Biochem J 2002; 368(Pt 2):545–553.Google Scholar
  148. 148.
    Galkin A, Brandt U. Superoxide radical formation by pure complex I (NADH:ubiquinone oxidoreductase) from Yarrowia lipolytica. J Biol Chem 2005; 280(34):30129–30135.Google Scholar
  149. 149.
    Kussmaul L, Hirst J. The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria. Proc Natl Acad Sci U S A 2006; 103(20):7607–7612.Google Scholar
  150. 150.
    Desai VG, Feuers RJ, Hart RW, Ali SF. MPP+-induced neurotoxicity in mouse is age-dependent: Evidenced by the selective inhibition of complexes of electron transport. Brain Res 1996; 715(1-2):1–8.Google Scholar
  151. 151.
    Ramsay RR, Krueger MJ, Youngster SK, Gluck MR, Casida JE, Singer TP. Interaction of 1-methyl-4-phenylpyridinium ion (MPP+) and its analogs with the rotenone/piericidin binding site of NADH dehydrogenase. J Neurochem 1991; 56:1184–1190.Google Scholar
  152. 152.
    Richardson JR, Caudle WM, Guillot TS et al. Obligatory role for complex I inhibition in the dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Toxicol Sci 2007; 95(1):196–204.Google Scholar
  153. 153.
    Bayir H, Kagan VE, Clark RS et al. Neuronal NOS-mediated nitration and inactivation of manganese superoxide dismutase in brain after experimental and human brain injury. J Neurochem 2007; 101(1):168–181.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • V. Jackson-Lewis
    • 1
    Email author
  • M. A. Tocilescu
  • R. DeVries
  • D. M. Alessi
  • S. Przedborski
  1. 1.Center for Motor Neuron Biology and Disease, Departments of NeurologyColumbia UniversityNew YorkUSA

Personalised recommendations