Advertisement

Oxidative Stress in Cardiovascular Disease: Potential Biomarkers and Their Measurements

  • Subhendu Mukherjee
  • Dipak K. DasEmail author
Chapter
  • 1.1k Downloads
Part of the Oxidative Stress in Applied Basic Research and Clinical Practice book series (OXISTRESS)

Abstract

The oxygen atmosphere surrounding us produces continuous oxidative stress because of the incomplete reduction of the O2 molecule. Oxidative stress mainly occurs in any system when the generation of reactive oxygen species (ROS) exceeds the system’s ability to neutralize and eliminate them. This imbalance of ROS can result from various pathways. Overproduction of ROS and their limited removal can result from mitochondrial respiratory chain, a lack of antioxidant capacity, exposure to environmental or behavioral stressors, etc. Such accumulation of ROS or oxidative stress can cause damage to all biomolecules, including lipids, proteins, and DNA. For this reason, oxidative stress has been implicated in a growing list of human diseases such as cancer, atherosclerosis, Parkinson’s disease, heart failure, myocardial infarction, Alzheimer’s disease, fragile X syndrome, etc., as well as in the aging process. Chronic heart disease is the major cause of death worldwide in the present era, and it is known that oxidative stress plays a crucial role in the morbidity and mortality due to cardiovascular disease. It is therefore very important to measure oxidative stress to check health. There are many techniques available to measure it. The major techniques include measurement of lipid peroxidation products, volatile hydrocarbons in breath, and oxidized DNA bases in urine. In this review, we will discuss potential biomarkers in cardiovascular disease and the methods of measuring oxidative stress.

Keywords

Free radical Hydroxyl ion Malonaldehyde Nitric oxide Oxidative stress Reactive oxygen species 

References

  1. 1.
    Lennon, S. V.; Martin, S. J.; Cotter, T. G., Dose-dependent induction of apoptosis in human tumour cell lines by widely diverging stimuli. Cell Prolif 1991, 24 (2), 203–14.PubMedCrossRefGoogle Scholar
  2. 2.
    Turko, I. V.; Marcondes, S.; Murad, F., Diabetes-associated nitration of tyrosine and inactivation of succinyl-CoA:3-oxoacid CoA-transferase. Am J Physiol Heart Circ Physiol 2001, 281 (6), H2289–94.PubMedGoogle Scholar
  3. 3.
    Maritim, A. C.; Sanders, R. A.; Watkins, J. B., 3rd, Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol 2003, 17 (1), 24–38.PubMedCrossRefGoogle Scholar
  4. 4.
    Evans, J. L.; Goldfine, I. D.; Maddux, B. A.; Grodsky, G. M., Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr Rev 2002, 23 (5), 599–622.PubMedCrossRefGoogle Scholar
  5. 5.
    Valko, M.; Rhodes, C. J.; Moncol, J.; Izakovic, M.; Mazur, M., Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 2006, 160 (1), 1–40.PubMedCrossRefGoogle Scholar
  6. 6.
    Masutani, H., Oxidative stress response and signaling in hematological malignancies and HIV infection. Int J Hematol 2000, 71 (1), 25–32.PubMedGoogle Scholar
  7. 7.
    Cadenas, E.; Davies, K. J., Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med 2000, 29 (3–4), 222–30.PubMedCrossRefGoogle Scholar
  8. 8.
    Li, C.; Jackson, R. M., Reactive species mechanisms of cellular hypoxia-reoxygenation injury. Am J Physiol Cell Physiol 2002, 282 (2), C227–41.PubMedGoogle Scholar
  9. 9.
    Halliwell, B., Antioxidants in human health and disease. Annu Rev Nutr 1996, 16, 33–50.PubMedCrossRefGoogle Scholar
  10. 10.
    Conner, E. M.; Grisham, M. B., Inflammation, free radicals, and antioxidants. Nutrition 1996, 12 (4), 274–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Halliwell, B.; Gutteridge, J.M.C. Free radicals in biology and medicine, 3rd ed., Oxford University Press 1999.Google Scholar
  12. 12.
    Cadenas, E., Biochemistry of oxygen toxicity. Annu Rev Biochem 1989, 58, 79–110.PubMedCrossRefGoogle Scholar
  13. 13.
    Valko, M.; Izakovic, M.; Mazur, M.; Rhodes, C. J.; Telser, J., Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem 2004, 266 (1-2), 37–56.PubMedCrossRefGoogle Scholar
  14. 14.
    Michiels, C.; Raes, M.; Toussaint, O.; Remacle, J., Importance of Se-glutathione peroxidase, catalase, and Cu/Zn-SOD for cell survival against oxidative stress. Free Radic Biol Med 1994, 17 (3), 235–48.PubMedCrossRefGoogle Scholar
  15. 15.
    Gupta, M.; Dobashi, K.; Greene, E. L.; Orak, J. K.; Singh, I., Studies on hepatic injury and antioxidant enzyme activities in rat subcellular organelles following in vivo ischemia and reperfusion. Mol Cell Biochem 1997, 176 (1-2), 337–47.PubMedCrossRefGoogle Scholar
  16. 16.
    Squadrito, G. L.; Pryor, W. A., Oxidative chemistry of nitric oxide: the roles of superoxide, peroxynitrite, and carbon dioxide. Free Radic Biol Med 1998, 25 (4-5), 392–403.PubMedCrossRefGoogle Scholar
  17. 17.
    Droge, W., Free radicals in the physiological control of cell function. Physiol Rev 2002, 82 (1), 47–95.PubMedGoogle Scholar
  18. 18.
    Dizdaroglu, M.; Jaruga, P.; Birincioglu, M.; Rodriguez, H., Free radical-induced damage to DNA: mechanisms and measurement. Free Radic Biol Med 2002, 32 (11), 1102–15.PubMedCrossRefGoogle Scholar
  19. 19.
    Marnett, L. J., Oxyradicals and DNA damage. Carcinogenesis 2000, 21 (3), 361–70.PubMedCrossRefGoogle Scholar
  20. 20.
    Cooke, M. S.; Evans, M. D.; Dizdaroglu, M.; Lunec, J., Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 2003, 17 (10), 1195–214.PubMedCrossRefGoogle Scholar
  21. 21.
    Brown, G. C.; Borutaite, V., Nitric oxide, mitochondria, and cell death. IUBMB Life 2001, 52 (3-5), 189–95.PubMedCrossRefGoogle Scholar
  22. 22.
    Inoue, M.; Sato, E. F.; Nishikawa, M.; Park, A. M.; Kira, Y.; Imada, I.; Utsumi, K., Mitochondrial generation of reactive oxygen species and its role in aerobic life. Curr Med Chem 2003, 10 (23), 2495–505.PubMedCrossRefGoogle Scholar
  23. 23.
    Esterbauer, H.; Schaur, R. J.; Zollner, H., Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 1991, 11 (1), 81–128.PubMedCrossRefGoogle Scholar
  24. 24.
    Marnett, L. J., Lipid peroxidation-DNA damage by malondialdehyde. Mutat Res 1999, 424 (1-2), 83–95.PubMedGoogle Scholar
  25. 25.
    Stadtman, E. R., Protein oxidation and aging. Science 1992, 257 (5074), 1220–4.PubMedCrossRefGoogle Scholar
  26. 26.
    Stadtman, E. R., Protein oxidation in aging and age-related diseases. Ann N Y Acad Sci 2001, 928, 22–38.PubMedCrossRefGoogle Scholar
  27. 27.
    Levine, R. L.; Stadtman, E. R., Oxidative modification of proteins during aging. Exp Gerontol 2001, 36 (9), 1495–502.PubMedCrossRefGoogle Scholar
  28. 28.
    Oberley, L. W.; Buettner, G. R., Role of superoxide dismutase in cancer: a review. Cancer Res 1979, 39 (4), 1141–9.PubMedGoogle Scholar
  29. 29.
    Gibbons, G. H.; Dzau, V. J., Molecular therapies for vascular diseases. Science 1996, 272 (5262), 689–93.PubMedCrossRefGoogle Scholar
  30. 30.
    Liao, F.; Andalibi, A.; Qiao, J. H.; Allayee, H.; Fogelman, A. M.; Lusis, A. J., Genetic evidence for a common pathway mediating oxidative stress, inflammatory gene induction, and aortic fatty streak formation in mice. J Clin Invest 1994, 94 (2), 877–84.PubMedCrossRefGoogle Scholar
  31. 31.
    Rajagopalan, S.; Meng, X. P.; Ramasamy, S.; Harrison, D. G.; Galis, Z. S., Reactive oxygen species produced by macrophage-derived foam cells regulate the activity of vascular matrix metalloproteinases in vitro. Implications for atherosclerotic plaque stability. J Clin Invest 1996, 98 (11), 2572–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Griendling, K. K.; Minieri, C. A.; Ollerenshaw, J. D.; Alexander, R. W., Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 1994, 74 (6), 1141–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Keaney, J. F., Jr.; Xu, A.; Cunningham, D.; Jackson, T.; Frei, B.; Vita, J. A., Dietary probucol preserves endothelial function in cholesterol-fed rabbits by limiting vascular oxidative stress and superoxide generation. J Clin Invest 1995, 95 (6), 2520–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Pratico, D.; Tangirala, R. K.; Rader, D. J.; Rokach, J.; FitzGerald, G. A., Vitamin E suppresses isoprostane generation in vivo and reduces atherosclerosis in ApoE-deficient mice. Nat Med 1998, 4 (10), 1189–92.PubMedCrossRefGoogle Scholar
  35. 35.
    Tangirala, R. K.; Pratico, D.; FitzGerald, G. A.; Chun, S.; Tsukamoto, K.; Maugeais, C.; Usher, D. C.; Pure, E.; Rader, D. J., Reduction of isoprostanes and regression of advanced atherosclerosis by apolipoprotein E. J Biol Chem 2001, 276 (1), 261–6.PubMedCrossRefGoogle Scholar
  36. 36.
    Shaish, A.; George, J.; Gilburd, B.; Keren, P.; Levkovitz, H.; Harats, D., Dietary beta-carotene and alpha-tocopherol combination does not inhibit atherogenesis in an ApoE-deficient mouse model. Arterioscler Thromb Vasc Biol 1999, 19 (6), 1470–5.PubMedCrossRefGoogle Scholar
  37. 37.
    Terentis, A. C.; Thomas, S. R.; Burr, J. A.; Liebler, D. C.; Stocker, R., Vitamin E oxidation in human atherosclerotic lesions. Circ Res 2002, 90 (3), 333–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Napoli, C.; Witztum, J. L.; Calara, F.; de Nigris, F.; Palinski, W., Maternal hypercholesterolemia enhances atherogenesis in normocholesterolemic rabbits, which is inhibited by antioxidant or lipid-lowering intervention during pregnancy: an experimental model of atherogenic mechanisms in human fetuses. Circ Res 2000, 87 (10), 946–52.PubMedCrossRefGoogle Scholar
  39. 39.
    Febbraio, M.; Podrez, E. A.; Smith, J. D.; Hajjar, D. P.; Hazen, S. L.; Hoff, H. F.; Sharma, K.; Silverstein, R. L., Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice. J Clin Invest 2000, 105 (8), 1049–56.PubMedCrossRefGoogle Scholar
  40. 40.
    Cyrus, T.; Witztum, J. L.; Rader, D. J.; Tangirala, R.; Fazio, S.; Linton, M. F.; Funk, C. D., Disruption of the 12/15-lipoxygenase gene diminishes atherosclerosis in apo E-deficient mice. J Clin Invest 1999, 103 (11), 1597–604.PubMedCrossRefGoogle Scholar
  41. 41.
    Hsich, E.; Segal, B. H.; Pagano, P. J.; Rey, F. E.; Paigen, B.; Deleonardis, J.; Hoyt, R. F.; Holland, S. M.; Finkel, T., Vascular effects following homozygous disruption of p47(phox) : An essential component of NADPH oxidase. Circulation 2000, 101 (11), 1234–6.PubMedCrossRefGoogle Scholar
  42. 42.
    Kirk, E. A.; Dinauer, M. C.; Rosen, H.; Chait, A.; Heinecke, J. W.; LeBoeuf, R. C., Impaired superoxide production due to a deficiency in phagocyte NADPH oxidase fails to inhibit atherosclerosis in mice. Arterioscler Thromb Vasc Biol 2000, 20 (6), 1529–35.PubMedCrossRefGoogle Scholar
  43. 43.
    Barry-Lane, P. A.; Patterson, C.; van der Merwe, M.; Hu, Z.; Holland, S. M.; Yeh, E. T.; Runge, M. S., p47phox is required for atherosclerotic lesion progression in ApoE(-/-) mice. J Clin Invest 2001, 108 (10), 1513–22.PubMedGoogle Scholar
  44. 44.
    Ohara, Y.; Peterson, T. E.; Harrison, D. G., Hypercholesterolemia increases endothelial superoxide anion production. J Clin Invest 1993, 91 (6), 2546–51.PubMedCrossRefGoogle Scholar
  45. 45.
    Warnholtz, A.; Nickenig, G.; Schulz, E.; Macharzina, R.; Brasen, J. H.; Skatchkov, M.; Heitzer, T.; Stasch, J. P.; Griendling, K. K.; Harrison, D. G.; Bohm, M.; Meinertz, T.; Munzel, T., Increased NADH-oxidase-mediated superoxide production in the early stages of atherosclerosis: evidence for involvement of the renin-angiotensin system. Circulation 1999, 99 (15), 2027–33.PubMedCrossRefGoogle Scholar
  46. 46.
    Miller, V. M.; Aarhus, L. L.; Vanhoutte, P. M., Modulation of endothelium-dependent responses by chronic alterations of blood flow. Am J Physiol 1986, 251 (3 Pt 2), H520–7.PubMedGoogle Scholar
  47. 47.
    Laursen, J. B.; Rajagopalan, S.; Galis, Z.; Tarpey, M.; Freeman, B. A.; Harrison, D. G., Role of superoxide in angiotensin II-induced but not catecholamine-induced hypertension. Circulation 1997, 95 (3), 588–93.PubMedCrossRefGoogle Scholar
  48. 48.
    Weiss, D.; Kools, J. J.; Taylor, W. R., Angiotensin II-induced hypertension accelerates the development of atherosclerosis in apoE-deficient mice. Circulation 2001, 103 (3), 448–54.PubMedCrossRefGoogle Scholar
  49. 49.
    Li, D. Y.; Zhang, Y. C.; Philips, M. I.; Sawamura, T.; Mehta, J. L., Upregulation of endothelial receptor for oxidized low-density lipoprotein (LOX-1) in cultured human coronary artery endothelial cells by angiotensin II type 1 receptor activation. Circ Res 1999, 84 (9), 1043–9.PubMedCrossRefGoogle Scholar
  50. 50.
    Poltronieri, R.; Cevese, A.; Sbarbati, A., Protective effect of selenium in cardiac ischemia and reperfusion. Cardioscience 1992, 3 (3), 155–60.PubMedGoogle Scholar
  51. 51.
    Gross, G. J.; Farber, N. E.; Hardman, H. F.; Warltier, D. C., Beneficial actions of superoxide dismutase and catalase in stunned myocardium of dogs. Am J Physiol 1986, 250 (3 Pt 2), H372–7.PubMedGoogle Scholar
  52. 52.
    Opie, L. H., Reperfusion injury and its pharmacologic modification. Circulation 1989, 80 (4), 1049–62.PubMedCrossRefGoogle Scholar
  53. 53.
    Kloner, R. A.; Przyklenk, K.; Whittaker, P., Deleterious effects of oxygen radicals in ischemia/reperfusion. Resolved and unresolved issues. Circulation 1989, 80 (5), 1115–27.PubMedCrossRefGoogle Scholar
  54. 54.
    Kilgore, K. S.; Lucchesi, B. R., Reperfusion injury after myocardial infarction: the role of free radicals and the inflammatory response. Clin Biochem 1993, 26 (5), 359–70.PubMedCrossRefGoogle Scholar
  55. 55.
    Kramer, J. H.; Arroyo, C. M.; Dickens, B. F.; Weglicki, W. B., Spin-trapping evidence that graded myocardial ischemia alters post-ischemic superoxide production. Free Radic Biol Med 1987, 3 (2), 153–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Garlick, P. B.; Davies, M. J.; Hearse, D. J.; Slater, T. F., Direct detection of free radicals in the reperfused rat heart using electron spin resonance spectroscopy. Circ Res 1987, 61 (5), 757–60.PubMedCrossRefGoogle Scholar
  57. 57.
    Zweier, J. L.; Flaherty, J. T.; Weisfeldt, M. L., Direct measurement of free radical generation following reperfusion of ischemic myocardium. Proc Natl Acad Sci USA 1987, 84 (5), 1404–7.PubMedCrossRefGoogle Scholar
  58. 58.
    Godin, D. V.; Garnett, M. E., Altered antioxidant status in the ischemic/reperfused rabbit myocardium: effects of allopurinol. Can J Cardiol 1989, 5 (7), 365–71.PubMedGoogle Scholar
  59. 59.
    Chatham, J. C.; Seymour, A. L.; Harmsen, E.; Radda, G. K., Depletion of myocardial glutathione: its effects on heart function and metabolism during ischaemia and reperfusion. Cardiovasc Res 1988, 22 (11), 833–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Leichtweis, S.; Ji, L. L., Glutathione deficiency intensifies ischaemia-reperfusion induced cardiac dysfunction and oxidative stress. Acta Physiol Scand 2001, 172 (1), 1–10.PubMedCrossRefGoogle Scholar
  61. 61.
    Pyles, L. A.; Fortney, J. E.; Kudlak, J. J.; Gustafson, R. A.; Einzig, S., Plasma antioxidant depletion after cardiopulmonary bypass in operations for congenital heart disease. J Thorac Cardiovasc Surg 1995, 110 (1), 165–71.PubMedCrossRefGoogle Scholar
  62. 62.
    Pietri, S.; Culcasi, M.; Stella, L.; Cozzone, P. J., Ascorbyl free radical as a reliable indicator of free-radical-mediated myocardial ischemic and post-ischemic injury. A real-time continuous-flow ESR study. Eur J Biochem 1990, 193 (3), 845–54.PubMedCrossRefGoogle Scholar
  63. 63.
    Ko, K. M.; Garnett, M. E.; Godin, D. V., Altered antioxidant status in ischemic/reperfused rabbit myocardium: reperfusion time-course study. Can J Cardiol 1990, 6 (7), 299–304.PubMedGoogle Scholar
  64. 64.
    Nishinaka, Y.; Sugiyama, S.; Yokota, M.; Saito, H.; Ozawa, T., The effects of a high dose of ascorbate on ischemia-reperfusion-induced mitochondrial dysfunction in canine hearts. Heart Vessels 1992, 7 (1), 18–23.PubMedCrossRefGoogle Scholar
  65. 65.
    Alberola, A.; Such, L.; Gil, F.; Zaragoza, R.; Morcillo, E. J., Protective effect of N-acetylcysteine on ischaemia-induced myocardial damage in canine heart. Naunyn Schmiedebergs Arch Pharmacol 1991, 343 (5), 505–10.PubMedCrossRefGoogle Scholar
  66. 66.
    Steare, S. E.; Yellon, D. M., The potential for endogenous myocardial antioxidants to protect the myocardium against ischaemia-reperfusion injury: refreshing the parts exogenous antioxidants cannot reach? J Mol Cell Cardiol 1995, 27 (1), 65–74.PubMedCrossRefGoogle Scholar
  67. 67.
    Ho, Y. S.; Magnenat, J. L.; Gargano, M.; Cao, J., The nature of antioxidant defense mechanisms: a lesson from transgenic studies. Environ Health Perspect 1998, 106 Suppl 5, 1219–28.Google Scholar
  68. 68.
    Li, G.; Chen, Y.; Saari, J. T.; Kang, Y. J., Catalase-overexpressing transgenic mouse heart is resistant to ischemia-reperfusion injury. Am J Physiol 1997, 273 (3 Pt 2), H1090–5.PubMedGoogle Scholar
  69. 69.
    Asimakis, G. K.; Lick, S.; Patterson, C., Postischemic recovery of contractile function is impaired in SOD2(+/-) but not SOD1(+/-) mouse hearts. Circulation 2002, 105 (8), 981–6.PubMedCrossRefGoogle Scholar
  70. 70.
    Yoshida, T.; Maulik, N.; Engelman, R. M.; Ho, Y. S.; Das, D. K., Targeted disruption of the mouse Sod I gene makes the hearts vulnerable to ischemic reperfusion injury. Circ Res 2000, 86 (3), 264–9.PubMedCrossRefGoogle Scholar
  71. 71.
    Wang, P.; Chen, H.; Qin, H.; Sankarapandi, S.; Becher, M. W.; Wong, P. C.; Zweier, J. L., Overexpression of human copper, zinc-superoxide dismutase (SOD1) prevents postischemic injury. Proc Natl Acad Sci USA 1998, 95 (8), 4556–60.PubMedCrossRefGoogle Scholar
  72. 72.
    Chen, E. P.; Bittner, H. B.; Davis, R. D.; Van Trigt, P.; Folz, R. J., Physiologic effects of extracellular superoxide dismutase transgene overexpression on myocardial function after ischemia and reperfusion injury. J Thorac Cardiovasc Surg 1998, 115 (2), 450–8; discussion 458–9.Google Scholar
  73. 73.
    Chen, E. P.; Bittner, H. B.; Davis, R. D.; Folz, R. J.; Van Trigt, P., Extracellular superoxide dismutase transgene overexpression preserves postischemic myocardial function in isolated murine hearts. Circulation 1996, 94 (9 Suppl), II412–7.Google Scholar
  74. 74.
    Das, D. K.; Dillmann, W.; Ho, Y. S.; Lin, K. M.; Gloss, B. R., Using genetically engineered mice to study myocardial ischemia-reperfusion injury. Methods Enzymol 2002, 353, 346–65.PubMedCrossRefGoogle Scholar
  75. 75.
    Sharp, B. R.; Jones, S. P.; Rimmer, D. M.; Lefer, D. J., Differential response to myocardial reperfusion injury in eNOS-deficient mice. Am J Physiol Heart Circ Physiol 2002, 282 (6), H2422–6.PubMedGoogle Scholar
  76. 76.
    Jones, S. P.; Hoffmeyer, M. R.; Sharp, B. R.; Ho, Y. S.; Lefer, D. J., Role of intracellular antioxidant enzymes after in vivo myocardial ischemia and reperfusion. Am J Physiol Heart Circ Physiol 2003, 284 (1), H277–82.PubMedGoogle Scholar
  77. 77.
    Kurose, I.; Granger, D. N., Evidence implicating xanthine oxidase and neutrophils in reperfusion-induced microvascular dysfunction. Ann N Y Acad Sci 1994, 723, 158–79.PubMedCrossRefGoogle Scholar
  78. 78.
    Levraut, J.; Iwase, H.; Shao, Z. H.; Vanden Hoek, T. L.; Schumacker, P. T., Cell death during ischemia: relationship to mitochondrial depolarization and ROS generation. Am J Physiol Heart Circ Physiol 2003, 284 (2), H549–58.PubMedGoogle Scholar
  79. 79.
    Petrosillo, G.; Ruggiero, F. M.; Di Venosa, N.; Paradies, G., Decreased complex III activity in mitochondria isolated from rat heart subjected to ischemia and reperfusion: role of reactive oxygen species and cardiolipin. FASEB J 2003, 17 (6), 714–6.PubMedGoogle Scholar
  80. 80.
    Vanden Hoek, T. L.; Shao, Z.; Li, C.; Schumacker, P. T.; Becker, L. B., Mitochondrial electron transport can become a significant source of oxidative injury in cardiomyocytes. J Mol Cell Cardiol 1997, 29 (9), 2441–50.PubMedCrossRefGoogle Scholar
  81. 81.
    Ruuge, E. K.; Kashkarov, K. P.; Lakomkin, V. L.; Timoshin, A. A.; Vasil’eva, E. V., The redox state of coenzyme Q10 in mitochondrial respiratory chain and oxygen-derived free radical generation in cardiac cells. Mol Aspects Med 1997, 18 Suppl, S41–50.Google Scholar
  82. 82.
    Moncada, S.; Higgs, A., The l-arginine-nitric oxide pathway. N Engl J Med 1993, 329 (27), 2002–12.PubMedCrossRefGoogle Scholar
  83. 83.
    Gilmont, R. R.; Dardano, A.; Young, M.; Engle, J. S.; Adamson, B. S.; Smith, D. J., Jr.; Rees, R. S., Effects of glutathione depletion on oxidant-induced endothelial cell injury. J Surg Res 1998, 80 (1), 62–8.PubMedCrossRefGoogle Scholar
  84. 84.
    Aktan, A. O.; Gulluoglu, B. M.; Cingi, A., Prospective multicentre trials in developing countries: willingness of surgeons to participate. Eur J Surg 1998, 164 (10), 733–5.PubMedCrossRefGoogle Scholar
  85. 85.
    Ferrari, R.; Ceconi, C.; Curello, S.; Cargnoni, A.; Condorelli, E.; Belloli, S.; Albertini, A.; Visioli, O., Metabolic changes during post-ischaemic reperfusion. J Mol Cell Cardiol 1988, 20 Suppl 2, 119–33.Google Scholar
  86. 86.
    Schafer, C.; Ladilov, Y.; Inserte, J.; Schafer, M.; Haffner, S.; Garcia-Dorado, D.; Piper, H. M., Role of the reverse mode of the Na+/Ca2+ exchanger in reoxygenation-induced cardiomyocyte injury. Cardiovasc Res 2001, 51 (2), 241–50.PubMedCrossRefGoogle Scholar
  87. 87.
    Piper, H. M.; Abdallah, Y.; Schafer, C., The first minutes of reperfusion: a window of opportunity for cardioprotection. Cardiovasc Res 2004, 61 (3), 365–71.PubMedCrossRefGoogle Scholar
  88. 88.
    Waples, M. J.; Belzer, F. O.; Uehling, D. T., Living donor nephrectomy: a 20-year experience. Urology 1995, 45 (2), 207–10.PubMedCrossRefGoogle Scholar
  89. 89.
    The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. N Engl J Med 1993, 329 (14), 977–86.Google Scholar
  90. 90.
    Brownlee, M., Biochemistry and molecular cell biology of diabetic complications. Nature 2001, 414 (6865), 813–20.PubMedCrossRefGoogle Scholar
  91. 91.
    Maddux, B. A.; See, W.; Lawrence, J. C., Jr.; Goldfine, A. L.; Goldfine, I. D.; Evans, J. L., Protection against oxidative stress-induced insulin resistance in rat L6 muscle cells by micromolar concentrations of alpha-lipoic acid. Diabetes 2001, 50 (2), 404–10.PubMedCrossRefGoogle Scholar
  92. 92.
    Hirsch, I. B.; Brownlee, M., Should minimal blood glucose variability become the gold standard of glycemic control? J Diabetes Complications 2005, 19 (3), 178–81.PubMedCrossRefGoogle Scholar
  93. 93.
    Hirsch, I. B., Intensifying insulin therapy in patients with type 2 diabetes mellitus. Am J Med 2005, 118 Suppl 5A, 21S–6S.Google Scholar
  94. 94.
    Quagliaro, L.; Piconi, L.; Assaloni, R.; Martinelli, L.; Motz, E.; Ceriello, A., Intermittent high glucose enhances apoptosis related to oxidative stress in human umbilical vein endothelial cells: the role of protein kinase C and NAD(P)H-oxidase activation. Diabetes 2003, 52 (11), 2795–804.PubMedCrossRefGoogle Scholar
  95. 95.
    Schiekofer, S.; Andrassy, M.; Chen, J.; Rudofsky, G.; Schneider, J.; Wendt, T.; Stefan, N.; Humpert, P.; Fritsche, A.; Stumvoll, M.; Schleicher, E.; Haring, H. U.; Nawroth, P. P.; Bierhaus, A., Acute hyperglycemia causes intracellular formation of CML and activation of ras, p42/44 MAPK, and nuclear factor kappaB in PBMCs. Diabetes 2003, 52 (3), 621–33.PubMedCrossRefGoogle Scholar
  96. 96.
    Jones, S. C.; Saunders, H. J.; Qi, W.; Pollock, C. A., Intermittent high glucose enhances cell growth and collagen synthesis in cultured human tubulointerstitial cells. Diabetologia 1999, 42 (9), 1113–9.PubMedCrossRefGoogle Scholar
  97. 97.
    Santilli, F.; Cipollone, F.; Mezzetti, A.; Chiarelli, F., The role of nitric oxide in the development of diabetic angiopathy. Horm Metab Res 2004, 36 (5), 319–35.PubMedCrossRefGoogle Scholar
  98. 98.
    Giugliano, D.; Marfella, R.; Coppola, L.; Verrazzo, G.; Acampora, R.; Giunta, R.; Nappo, F.; Lucarelli, C.; D’Onofrio, F., Vascular effects of acute hyperglycemia in humans are reversed by l-arginine. Evidence for reduced availability of nitric oxide during hyperglycemia. Circulation 1997, 95 (7), 1783–90.PubMedCrossRefGoogle Scholar
  99. 99.
    Du, X. L.; Edelstein, D.; Dimmeler, S.; Ju, Q.; Sui, C.; Brownlee, M., Hyperglycemia inhibits endothelial nitric oxide synthase activity by posttranslational modification at the Akt site. J Clin Invest 2001, 108 (9), 1341–8.PubMedGoogle Scholar
  100. 100.
    Beckman, J. S.; Koppenol, W. H., Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol 1996, 271 (5 Pt 1), C1424–37.PubMedGoogle Scholar
  101. 101.
    Spitaler, M. M.; Graier, W. F., Vascular targets of redox signalling in diabetes mellitus. Diabetologia 2002, 45 (4), 476–94.PubMedCrossRefGoogle Scholar
  102. 102.
    Januszewski, A. S.; Alderson, N. L.; Metz, T. O.; Thorpe, S. R.; Baynes, J. W., Role of lipids in chemical modification of proteins and development of complications in diabetes. Biochem Soc Trans 2003, 31 (Pt 6), 1413–6.PubMedCrossRefGoogle Scholar
  103. 103.
    Cosentino, F.; Hishikawa, K.; Katusic, Z. S.; Luscher, T. F., High glucose increases nitric oxide synthase expression and superoxide anion generation in human aortic endothelial cells. Circulation 1997, 96 (1), 25–8.PubMedCrossRefGoogle Scholar
  104. 104.
    Esterbauer, H.; Gebicki, J.; Puhl, H.; Jurgens, G., The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Radic Biol Med 1992, 13 (4), 341–90.PubMedCrossRefGoogle Scholar
  105. 105.
    Spiteller, G., Linoleic acid peroxidation – the dominant lipid peroxidation process in low density lipoprotein – and its relationship to chronic diseases. Chem Phys Lipids 1998, 95 (2), 105–62.PubMedCrossRefGoogle Scholar
  106. 106.
    Baynes, J. W.; Thorpe, S. R., Glycoxidation and lipoxidation in atherogenesis. Free Radic Biol Med 2000, 28 (12), 1708–16.PubMedCrossRefGoogle Scholar
  107. 107.
    Jenkins, A. J.; Best, J. D.; Klein, R. L.; Lyons, T. J., ‘Lipoproteins, glycoxidation and diabetic angiopathy’. Diabetes Metab Res Rev 2004, 20 (5), 349–68.PubMedCrossRefGoogle Scholar
  108. 108.
    Palinski, W.; Rosenfeld, M. E.; Yla-Herttuala, S.; Gurtner, G. C.; Socher, S. S.; Butler, S. W.; Parthasarathy, S.; Carew, T. E.; Steinberg, D.; Witztum, J. L., Low density lipoprotein undergoes oxidative modification in vivo. Proc Natl Acad Sci USA 1989, 86 (4), 1372–6.PubMedCrossRefGoogle Scholar
  109. 109.
    Steinberg, D., Antioxidants in the prevention of human atherosclerosis. Summary of the proceedings of a National Heart, Lung, and Blood Institute Workshop: September 5-6, 1991, Bethesda, Maryland. Circulation 1992, 85 (6), 2337–44.PubMedCrossRefGoogle Scholar
  110. 110.
    Refat, M.; Moore, T. J.; Kazui, M.; Risby, T. H.; Perman, J. A.; Schwarz, K. B., Utility of breath ethane as a noninvasive biomarker of vitamin E status in children. Pediatr Res 1991, 30 (5), 396–403.PubMedCrossRefGoogle Scholar
  111. 111.
    Gutteridge, J. M.; Tickner, T. R., The characterisation of thiobarbituric acid reactivity in human plasma and urine. Anal Biochem 1978, 91 (1), 250–7.PubMedCrossRefGoogle Scholar
  112. 112.
    Ekstrom, T.; Warholm, M.; Kronevi, T.; Hogberg, J., Recovery of malondialdehyde in urine as a 2,4-dinitrophenylhydrazine derivative after exposure to chloroform or hydroquinone. Chem Biol Interact 1988, 67 (1-2), 25–31.PubMedCrossRefGoogle Scholar
  113. 113.
    Boyd, N. F.; McGuire, V., Evidence of lipid peroxidation in premenopausal women with mammographic dysplasia. Cancer Lett 1990, 50 (1), 31–7.PubMedCrossRefGoogle Scholar
  114. 114.
    Dhanakoti, S. N.; Draper, H. H., Response of urinary malondialdehyde to factors that stimulate lipid peroxidation in vivo. Lipids 1987, 22 (9), 643–6.PubMedCrossRefGoogle Scholar
  115. 115.
    Liou, S. H.; Jacobson-Kram, D.; Poirier, M. C.; Nguyen, D.; Strickland, P. T.; Tockman, M. S., Biological monitoring of fire fighters: sister chromatid exchange and polycyclic aromatic hydrocarbon-DNA adducts in peripheral blood cells. Cancer Res 1989, 49 (17), 4929–35.PubMedGoogle Scholar
  116. 116.
    Leanderson, P.; Tagesson, C., Rapid and sensitive detection of hydroxyl radicals formed by activated neutrophils in the presence of chelated iron: hydroxylation of deoxyguanosine to 8-hydroxydeoxyguanosine. Agents Actions 1992, 36 (1-2), 50–7.PubMedCrossRefGoogle Scholar
  117. 117.
    Shigenaga, M. K.; Park, J. W.; Cundy, K. C.; Gimeno, C. J.; Ames, B. N., In vivo oxidative DNA damage: measurement of 8-hydroxy-2’-deoxyguanosine in DNA and urine by high-performance liquid chromatography with electrochemical detection. Methods Enzymol 1990, 186, 521–30.PubMedCrossRefGoogle Scholar
  118. 118.
    Gomes, M.; Santella, R. M., Immunologic methods for the detection of benzo[a]pyrene metabolites in urine. Chem Res Toxicol 1990, 3 (4), 307–10.PubMedCrossRefGoogle Scholar
  119. 119.
    Cundy, K. C.; Kohen, R.; Ames, B. N., Determination of 8-hydroxydeoxyguanosine in human urine: a possible assay for in vivo oxidative DNA damage. Basic Life Sci 1988, 49, 479–82.PubMedGoogle Scholar
  120. 120.
    Lemoyne, M.; Van Gossum, A.; Kurian, R.; Ostro, M.; Axler, J.; Jeejeebhoy, K. N., Breath pentane analysis as an index of lipid peroxidation: a functional test of vitamin E status. Am J Clin Nutr 1987, 46 (2), 267–72.PubMedGoogle Scholar
  121. 121.
    Morita, S.; Snider, M. T.; Inada, Y., Increased N-pentane excretion in humans: a consequence of pulmonary oxygen exposure. Anesthesiology 1986, 64 (6), 730–3.PubMedCrossRefGoogle Scholar
  122. 122.
    Buhl, R.; Jaffe, H. A.; Holroyd, K. J.; Wells, F. B.; Mastrangeli, A.; Saltini, C.; Cantin, A. M.; Crystal, R. G., Systemic glutathione deficiency in symptom-free HIV-seropositive individuals. Lancet 1989, 2 (8675), 1294–8.PubMedCrossRefGoogle Scholar
  123. 123.
    Hughes, H.; Jaeschke, H.; Mitchell, J. R., Measurement of oxidant stress in vivo. Methods Enzymol 1990, 186, 681–5.PubMedCrossRefGoogle Scholar
  124. 124.
    Sies, H.; Akerboom, T. P., Glutathione disulfide (GSSG) efflux from cells and tissues. Methods Enzymol 1984, 105, 445–51.PubMedCrossRefGoogle Scholar
  125. 125.
    Wayner, D. D.; Burton, G. W.; Ingold, K. U.; Barclay, L. R.; Locke, S. J., The relative contributions of vitamin E, urate, ascorbate and proteins to the total peroxyl radical-trapping antioxidant activity of human blood plasma. Biochim Biophys Acta 1987, 924 (3), 408–19.PubMedCrossRefGoogle Scholar
  126. 126.
    Begin, M. E.; Ells, G.; Horrobin, D. F., Polyunsaturated fatty acid-induced cytotoxicity against tumor cells and its relationship to lipid peroxidation. J Natl Cancer Inst 1988, 80 (3), 188–94.PubMedCrossRefGoogle Scholar
  127. 127.
    Gonzalez, M. J., Fish oil, lipid peroxidation and mammary tumor growth. J Am Coll Nutr 1995, 14 (4), 325–35.PubMedGoogle Scholar
  128. 128.
    Zieba, M.; Nowak, D.; Suwalski, M.; Piasecka, G.; Grzelewska-Rzymowska, I.; Tyminska, K.; Kroczynska-Bednarek, J.; Kwiatkowska, S., Enhanced lipid peroxidation in cancer tissue homogenates in non-small cell lung cancer. Monaldi Arch Chest Dis 2001, 56 (2), 110–4.PubMedGoogle Scholar
  129. 129.
    Cordis, G. A.; Maulik, N.; Das, D. K., Detection of oxidative stress in heart by estimating the dinitrophenylhydrazine derivative of malonaldehyde. J Mol Cell Cardiol 1995, 27 (8), 1645–53.PubMedCrossRefGoogle Scholar
  130. 130.
    Habib, M. P.; Clements, N. C.; Garewal, H. S., Cigarette smoking and ethane exhalation in humans. Am J Respir Crit Care Med 1995, 151 (5), 1368–72.PubMedGoogle Scholar
  131. 131.
    Halliwell, B., Lipid peroxidation, antioxidants and cardiovascular disease: how should we move forward? Cardiovasc Res 2000, 47 (3), 410–8.PubMedCrossRefGoogle Scholar
  132. 132.
    Roberts, L. J.; Morrow, J. D., Measurement of F(2)-isoprostanes as an index of oxidative stress in vivo. Free Radic Biol Med 2000, 28 (4), 505–13.PubMedCrossRefGoogle Scholar
  133. 133.
    Morrow, J. D.; Hill, K. E.; Burk, R. F.; Nammour, T. M.; Badr, K. F.; Roberts, L. J., 2nd, A series of prostaglandin F2-like compounds are produced in vivo in humans by a non-cyclooxygenase, free radical-catalyzed mechanism. Proc Natl Acad Sci USA 1990, 87 (23), 9383–7.PubMedCrossRefGoogle Scholar
  134. 134.
    Morrow, J. D.; Awad, J. A.; Boss, H. J.; Blair, I. A.; Roberts, L. J., 2nd, Non-cyclooxygenase-derived prostanoids (F2-isoprostanes) are formed in situ on phospholipids. Proc Natl Acad Sci USA 1992, 89 (22), 10721–5.PubMedCrossRefGoogle Scholar
  135. 135.
    Morrow, J. D.; Roberts, L. J., The isoprostanes: unique bioactive products of lipid peroxidation. Prog Lipid Res 1997, 36 (1), 1–21.PubMedCrossRefGoogle Scholar
  136. 136.
    Floyd, R. A.; Watson, J. J.; Wong, P. K.; Altmiller, D. H.; Rickard, R. C., Hydroxyl free radical adduct of deoxyguanosine: sensitive detection and mechanisms of formation. Free Radic Res Commun 1986, 1 (3), 163–72.PubMedCrossRefGoogle Scholar
  137. 137.
    Teixeira, A. J.; Gommers-Ampt, J. H.; Van de Werken, G.; Westra, J. G.; Stavenuiter, J. F.; de Jong, A. P., Method for the analysis of oxidized nucleosides by gas chromatography/mass spectrometry. Anal Biochem 1993, 214 (2), 474–83.PubMedCrossRefGoogle Scholar
  138. 138.
    Halliwell, B., Oxidative stress, nutrition and health. Experimental strategies for optimization of nutritional antioxidant intake in humans. Free Radic Res 1996, 25 (1), 57–74.PubMedCrossRefGoogle Scholar
  139. 139.
    Loft, S.; Vistisen, K.; Ewertz, M.; Tjonneland, A.; Overvad, K.; Poulsen, H. E., Oxidative DNA damage estimated by 8-hydroxydeoxyguanosine excretion in humans: influence of smoking, gender and body mass index. Carcinogenesis 1992, 13 (12), 2241–7.PubMedCrossRefGoogle Scholar
  140. 140.
    Cordis, G. A.; Maulik, G.; Bagchi, D.; Riedel, W.; Das, D. K., Detection of oxidative DNA damage to ischemic reperfused rat hearts by 8-hydroxydeoxyguanosine formation. J Mol Cell Cardiol 1998, 30 (10), 1939–44.PubMedCrossRefGoogle Scholar
  141. 141.
    Zhang, L.; Looney, C. G.; Qi, W. N.; Chen, L. E.; Seaber, A. V.; Stamler, J. S.; Urbaniak, J. R., Reperfusion injury is reduced in skeletal muscle by inhibition of inducible nitric oxide synthase. J Appl Physiol 2003, 94 (4), 1473–8.PubMedGoogle Scholar
  142. 142.
    Vanden Hoek, T. L.; Li, C.; Shao, Z.; Schumacker, P. T.; Becker, L. B., Significant levels of oxidants are generated by isolated cardiomyocytes during ischemia prior to reperfusion. J Mol Cell Cardiol 1997, 29 (9), 2571–83.PubMedCrossRefGoogle Scholar
  143. 143.
    Vasquez-Vivar, J.; Kalyanaraman, B.; Martasek, P.; Hogg, N.; Masters, B. S.; Karoui, H.; Tordo, P.; Pritchard, K. A., Jr., Superoxide generation by endothelial nitric oxide synthase: the influence of cofactors. Proc Natl Acad Sci USA 1998, 95 (16), 9220–5.PubMedCrossRefGoogle Scholar
  144. 144.
    Vicaut, E.; Montalescot, G.; Hou, X.; Stucker, O.; Teisseire, B., Arteriolar vasoconstriction and tachyphylaxis with intraarterial angiotensin II. Microvasc Res 1989, 37 (1), 28–41.PubMedCrossRefGoogle Scholar
  145. 145.
    Kuwahara, K.; Oizumi, N.; Fujisawa, S.; Tanito, M.; Ohira, A., Carteolol hydrochloride protects human corneal epithelial cells from UVB-induced damage in vitro. Cornea 2005, 24 (2), 213–20.PubMedCrossRefGoogle Scholar
  146. 146.
    Cathcart, R.; Schwiers, E.; Ames, B. N., Detection of picomole levels of hydroperoxides using a fluorescent dichlorofluorescein assay. Anal Biochem 1983, 134 (1), 111–6.PubMedCrossRefGoogle Scholar
  147. 147.
    Bass, D. A.; Parce, J. W.; Dechatelet, L. R.; Szejda, P.; Seeds, M. C.; Thomas, M., Flow cytometric studies of oxidative product formation by neutrophils: a graded response to membrane stimulation. J Immunol 1983, 130 (4), 1910–7.PubMedGoogle Scholar
  148. 148.
    Royall, J. A.; Ischiropoulos, H., Evaluation of 2’,7’-dichlorofluorescin and dihydrorhodamine 123 as fluorescent probes for intracellular H2O2 in cultured endothelial cells. Arch Biochem Biophys 1993, 302 (2), 348–55.PubMedCrossRefGoogle Scholar
  149. 149.
    Rao, K. M.; Padmanabhan, J.; Kilby, D. L.; Cohen, H. J.; Currie, M. S.; Weinberg, J. B., Flow cytometric analysis of nitric oxide production in human neutrophils using dichlorofluorescein diacetate in the presence of a calmodulin inhibitor. J Leukoc Biol 1992, 51 (5), 496–500.PubMedGoogle Scholar
  150. 150.
    Kooy, N. W.; Royall, J. A.; Ischiropoulos, H., Oxidation of 2’,7’-dichlorofluorescin by peroxynitrite. Free Radic Res 1997, 27 (3), 245–54.PubMedCrossRefGoogle Scholar
  151. 151.
    Landmesser, U.; Dikalov, S.; Price, S. R.; McCann, L.; Fukai, T.; Holland, S. M.; Mitch, W. E.; Harrison, D. G., Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J Clin Invest 2003, 111 (8), 1201–9.PubMedGoogle Scholar
  152. 152.
    Guzik, T. J.; Mussa, S.; Gastaldi, D.; Sadowski, J.; Ratnatunga, C.; Pillai, R.; Channon, K. M., Mechanisms of increased vascular superoxide production in human diabetes mellitus: role of NAD(P)H oxidase and endothelial nitric oxide synthase. Circulation 2002, 105 (14), 1656–62.PubMedCrossRefGoogle Scholar
  153. 153.
    Gongora, M. C.; Qin, Z.; Laude, K.; Kim, H. W.; McCann, L.; Folz, J. R.; Dikalov, S.; Fukai, T.; Harrison, D. G., Role of extracellular superoxide dismutase in hypertension. Hypertension 2006, 48 (3), 473–81.PubMedCrossRefGoogle Scholar
  154. 154.
    Dudley, S. C., Jr.; Hoch, N. E.; McCann, L. A.; Honeycutt, C.; Diamandopoulos, L.; Fukai, T.; Harrison, D. G.; Dikalov, S. I.; Langberg, J., Atrial fibrillation increases production of superoxide by the left atrium and left atrial appendage: role of the NADPH and xanthine oxidases. Circulation 2005, 112 (9), 1266–73.PubMedCrossRefGoogle Scholar
  155. 155.
    Eskiocak, S.; Gozen, A. S.; Yapar, S. B.; Tavas, F.; Kilic, A. S.; Eskiocak, M., Glutathione and free sulphydryl content of seminal plasma in healthy medical students during and after exam stress. Hum Reprod 2005, 20 (9), 2595–600.PubMedCrossRefGoogle Scholar
  156. 156.
    Zhang, H.; Joseph, J.; Vasquez-Vivar, J.; Karoui, H.; Nsanzumuhire, C.; Martasek, P.; Tordo, P.; Kalyanaraman, B., Detection of superoxide anion using an isotopically labeled nitrone spin trap: potential biological applications. FEBS Lett 2000, 473 (1), 58–62.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Cardiovascular Research CenterUniversity of Connecticut Health Center, School of MedicineFarmingtonUSA

Personalised recommendations