Small Heat Shock Proteins and Doxorubicin-Induced Oxidative Stress in the Heart

  • Karthikeyan Krishnamurthy
  • Ragu Kanagasabai
  • Lawrence J. Druhan
  • Govindasamy IlangovanEmail author
Part of the Oxidative Stress in Applied Basic Research and Clinical Practice book series (OXISTRESS)


Doxorubicin (Dox) and its derivatives are used as chemotherapeutics, either alone or in combination with other agents. Dilated cardiomyopathy and congestive heart failure due to cardiotoxicity continues to be the most serious side effect, imposing severe limitations in the use of these agents despite the arrival of new classes of Dox-derivatives and new formulations. In this chapter we summarize the recent understanding of the mechanism of Dox-induced cardiotoxicity and its relevance to the stress-inducible proteins, with special emphasis on the small heat shock proteins such as Hsp27, Hsp20, etc. The heat shock proteins are expressed as a response to the oxidative stress in the heart due to the redox reactions of these drugs and the generation of reactive oxygen species (ROS). On the other hand, ROS are also known to induce various MAP kinases and phosphorylate and activate the stress-responding transcription factors, including the heat shock factors (HSF). Activation of HSF-1 leads to the induction of a series of heat shock proteins, depending upon the type of exerted stress. Recent studies have confirmed that Dox-induced oxidative stress indeed leads to HSF-1 activation to induction of heat shock proteins, especially small Hsps in the heart. The Dox-induced small Hsps have been found to be involved in cell signaling and can be either cardioprotective or detrimental. Additionally, a few transgenic animal models have shown that selective overexpression of these proteins can be cardioprotective against Dox. These results establish the fact that proper regulation of the function of small Hsps could eliminate cardiotoxicity and serve as a potential therapeutic target to protect the heart from Dox-induced toxicity.


Adriamycin Doxorubicin Heart failure Heat shock factor-1 Oxidative stress Small heat shock proteins 



The studies that are summarized in this chapter, were supported by NIH grants R01HL078796, R21EB004658, R21HL094881 (to G.I.).


  1. 1.
    Fang L, Zhang G, Li C, et al. Discovery of a daunorubicin analogue that exhibits potent antitumor activity and overcomes P-gp-mediated drug resistance. J Med Chem 2006; 49(3):932–941.PubMedCrossRefGoogle Scholar
  2. 2.
    Nadas J, Sun D. Anthracyclines as effective anticancer drugs. Expert Opinion on Drug Discovery 2006; 1(6):549–68.Google Scholar
  3. 3.
    Outomuro D, Grana DR, Azzato F, Milei J. Adriamycin-induced myocardial toxicity: New solutions for an old problem? International Journal of Cardiology 2007; 117(1):6.PubMedCrossRefGoogle Scholar
  4. 4.
    Safra T. Cardiac safety of liposomal anthracyclines. Oncologist 2003; 8 Suppl 2:17–24.PubMedCrossRefGoogle Scholar
  5. 5.
    Wallace KB. Doxorubicin-induced cardiac mitochondrionopathy. Pharmacol Toxicol 2003; 93(3):105–115.PubMedCrossRefGoogle Scholar
  6. 6.
    Hunt SA, Abraham WT, Chin MH, et al. ACC/AHA 2005 Guideline Update for the Diagnosis and Management of Chronic Heart Failure in the Adult: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Update the 2001 Guidelines for the Evaluation and Management of Heart Failure): developed in collaboration with the American College of Chest Physicians and the International Society for Heart and Lung Transplantation: endorsed by the Heart Rhythm Society. Circulation 2005; 112(12):e154–e235.Google Scholar
  7. 7.
    Carson P, Anand I, O’Connor C, et al. Mode of death in advanced heart failure: the Comparison of Medical, Pacing, and Defibrillation Therapies in Heart Failure (COMPANION) trial. J Am Coll Cardiol 2005; 46(12):2329–2334.PubMedCrossRefGoogle Scholar
  8. 8.
    Perez-Soler R, Suarman S, Zou Y, Priebe W. Anthracycline antibiotics, new analogues, methods of deliver and mechanisms of action. Am Chem Soc Symp Ser 1995; 574:300  –319.Google Scholar
  9. 9.
    Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 2004; 56(2):185–229.PubMedCrossRefGoogle Scholar
  10. 10.
    Kang YJ. Antioxidant defense against anthracycline cardiotoxicity by metallothionein. Cardiovasc Toxicol 2007; 7(2):95–100.PubMedCrossRefGoogle Scholar
  11. 11.
    Herman EH, Ferrans VJ. Animal models of anthracycline cardiotoxicity: Basic mechanisms and cardioprotective activity. Progress in Pediatric Cardiology 1997; 8(2):49.CrossRefGoogle Scholar
  12. 12.
    Gianni L, Herman EH, Lipshultz SE, Minotti G, Sarvazyan N, Sawyer DB. Anthracycline cardiotoxicity: from bench to bedside. J Clin Oncol 2008; 26(22):3777–3784.PubMedCrossRefGoogle Scholar
  13. 13.
    Takemura G, Fujiwara H. Doxorubicin-induced cardiomyopathy from the cardiotoxic mechanisms to management. Prog Cardiovasc Dis 2007; 49(5):330  –352.PubMedCrossRefGoogle Scholar
  14. 14.
    Gewirtz DA. A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol 1999;57(7):727–741.PubMedCrossRefGoogle Scholar
  15. 15.
    Kalivendi SV, Kotamraju S, Zhao H, Joseph J, Kalyanaraman B. Doxorubicin-induced apoptosis is associated with increased transcription of endothelial nitric-oxide synthase. Effect of antiapoptotic antioxidants and calcium. J Biol Chem 2001; 276(50):47266–47276.PubMedCrossRefGoogle Scholar
  16. 16.
    Olson RD, Mushlin PS. Doxorubicin cardiotoxicity: analysis of prevailing hypotheses. Faseb J 1990; 4(13):3076–3086.PubMedGoogle Scholar
  17. 17.
    De Beer EL, Bottone AE, Voest EE. Doxorubicin and mechanical performance of cardiac trabeculae after acute and chronic treatment: a review. European Journal of Pharmacology 2001; 415(1):1.CrossRefGoogle Scholar
  18. 18.
    Singal PK, Iliskovic N. Doxorubicin-induced cardiomyopathy. N Engl J Med 1998; 339(13):900–905.PubMedCrossRefGoogle Scholar
  19. 19.
    Powis G. Free radical formation by antitumor quinones. Free Radic Biol Med 1989; 6(1):63–101.PubMedCrossRefGoogle Scholar
  20. 20.
    Sinha BK. Free radicals in anticancer drug pharmacology. Chem Biol Interact 1989; 69(4):293–317.PubMedCrossRefGoogle Scholar
  21. 21.
    Menna P, Recalcati S, Cairo G, Minotti G. An introduction to the metabolic determinants of anthracycline cardiotoxicity. Cardiovasc Toxicol 2007; 7(2):80–85.PubMedCrossRefGoogle Scholar
  22. 22.
    Rasmussen UF, Rasmussen HN. The NADH oxidase system (external) of muscle mitochondria and its role in the oxidation of cytoplasmic NADH. Biochem J 1985; 229(3):631–641.PubMedGoogle Scholar
  23. 23.
    Moller IM, Rasmusson AG, Fredlund KM. NAD(P)H-ubiquinone oxidoreductases in plant mitochondria. J Bioenerg Biomembr 1993; 25(4):377–384.PubMedCrossRefGoogle Scholar
  24. 24.
    Aniya Y, Naito A. Oxidative stress-induced activation of microsomal glutathione S-transferase in isolated rat liver. Biochem Pharmacol 1993; 45(1):37–42.PubMedCrossRefGoogle Scholar
  25. 25.
    Pawlowska J, Priebe W, Paine MJ, Wolf CR, Borowski E, Tarasiuk J. The ability of new sugar-modified derivatives of antitumor anthracycline, daunorubicin, to stimulate NAD(P)H oxidation in different cellular oxidoreductase systems: NADH dehydrogenase, NADPH cytochrome P450 reductase, and xanthine oxidase. Oncol Res 2004; 14(10):469–474.PubMedGoogle Scholar
  26. 26.
    Yee SB, Pritsos CA. Comparison of oxygen radical generation from the reductive activation of doxorubicin, streptonigrin, and menadione by xanthine oxidase and xanthine dehydrogenase. Arch Biochem Biophys 1997; 347(2):235–241.PubMedCrossRefGoogle Scholar
  27. 27.
    Vasquez-Vivar J, Martasek P, Hogg N, Masters BS, Pritchard KA, Jr., Kalyanaraman B. Endothelial nitric oxide synthase-dependent superoxide generation from adriamycin. Biochemistry 1997; 36(38):11293–11297.PubMedCrossRefGoogle Scholar
  28. 28.
    Neilan TG, Blake SL, Ichinose F, et al. Disruption of nitric oxide synthase 3 protects against the cardiac injury, dysfunction, and mortality induced by doxorubicin. Circulation 2007; 116(5):506–514.PubMedCrossRefGoogle Scholar
  29. 29.
    Mordente A, Meucci E, Silvestrini A, Martorana GE, Giardina B. New developments in anthracycline-induced cardiotoxicity. Curr Med Chem 2009; 16(13):1656–1672.PubMedCrossRefGoogle Scholar
  30. 30.
    Gille L, Nohl H. Analyses of the molecular mechanism of adriamycin-induced cardiotoxicity. Free Radic Biol Med 1997; 23(5):775–782.PubMedCrossRefGoogle Scholar
  31. 31.
    Sokolove PM. Interactions of adriamycin aglycones with mitochondria may mediate adriamycin cardiotoxicity. Int J Biochem 1994; 26(12):1341–1350.PubMedCrossRefGoogle Scholar
  32. 32.
    Aldieri E, Bergandi L, Riganti C, Costamagna C, Bosia A, Ghigo D. Doxorubicin induces an increase of nitric oxide synthesis in rat cardiac cells that is inhibited by iron supplementation. Toxicol Appl Pharmacol 2002; 185(2):85–90.PubMedCrossRefGoogle Scholar
  33. 33.
    Weinstein DM, Mihm MJ, Bauer JA. Cardiac peroxynitrite formation and left ventricular dysfunction following doxorubicin treatment in mice. J Pharmacol Exp Ther 2000; 294(1):396–401.PubMedGoogle Scholar
  34. 34.
    Mihm MJ, Yu F, Weinstein DM, Reiser PJ, Bauer JA. Intracellular distribution of peroxynitrite during doxorubicin cardiomyopathy: evidence for selective impairment of myofibrillar creatine kinase. Br J Pharmacol 2002; 135(3):581–588.PubMedCrossRefGoogle Scholar
  35. 35.
    Oliveira PJ, Santos MS, Wallace KB. Doxorubicin-induced thiol-dependent alteration of cardiac mitochondrial permeability transition and respiration. Biochemistry (Mosc) 2006; 71(2):194–199.CrossRefGoogle Scholar
  36. 36.
    Berthiaume JM, Wallace KB. Adriamycin-induced oxidative mitochondrial cardiotoxicity. Cell Biol Toxicol 2007; 23(1):15–25.PubMedCrossRefGoogle Scholar
  37. 37.
    Wallace KB. Adriamycin-induced interference with cardiac mitochondrial calcium homeostasis. Cardiovasc Toxicol 2007; 7(2):101–107.PubMedCrossRefGoogle Scholar
  38. 38.
    Tao Z, Withers HG, Penefsky HS, Goodisman J, Souid AK. Inhibition of cellular respiration by doxorubicin. Chem Res Toxicol 2006; 19(8):1051–1058.PubMedCrossRefGoogle Scholar
  39. 39.
    Tokarska-Schlattner M, Zaugg M, Zuppinger C, Wallimann T, Schlattner U. New insights into doxorubicin-induced cardiotoxicity: the critical role of cellular energetics. J Mol Cell Cardiol 2006; 41(3):389–405.PubMedCrossRefGoogle Scholar
  40. 40.
    Gambliel HA, Burke BE, Cusack BJ, et al. Doxorubicin and C-13 deoxydoxorubicin effects on ryanodine receptor gene expression. Biochem Biophys Res Commun 2002; 291(3):433–438.PubMedCrossRefGoogle Scholar
  41. 41.
    Berthiaume JM, Wallace KB. Persistent alterations to the gene expression profile of the heart subsequent to chronic Doxorubicin treatment. Cardiovasc Toxicol 2007; 7(3):178–191.PubMedCrossRefGoogle Scholar
  42. 42.
    Kalyanaraman B, Joseph J, Kalivendi S, Wang S, Konorev E, Kotamraju S. Doxorubicin-induced apoptosis: implications in cardiotoxicity. Mol Cell Biochem 2002; 234–235(1-2):119–124.PubMedCrossRefGoogle Scholar
  43. 43.
    Clementi ME, Giardina B, Di Stasio E, Mordente A, Misiti F. Doxorubicin-derived metabolites induce release of cytochrome C and inhibition of respiration on cardiac isolated mitochondria. Anticancer Res 2003; 23(3B):2445–2450.PubMedGoogle Scholar
  44. 44.
    Wang S, Konorev EA, Kotamraju S, Joseph J, Kalivendi S, Kalyanaraman B. Doxorubicin induces apoptosis in normal and tumor cells via distinctly different mechanisms. intermediacy of H(2)O(2)- and p53-dependent pathways. J Biol Chem 2004; 279(24):25535–25543.PubMedCrossRefGoogle Scholar
  45. 45.
    Goffart S, von Kleist-Retzow JC, Wiesner RJ. Regulation of mitochondrial proliferation in the heart: power-plant failure contributes to cardiac failure in hypertrophy. Cardiovasc Res 2004; 64(2):198–207.PubMedCrossRefGoogle Scholar
  46. 46.
    Sarvazyan N. Visualization of doxorubicin-induced oxidative stress in isolated cardiac myocytes. Am J Physiol 1996; 271(5 Pt 2):H2079–H2085.PubMedGoogle Scholar
  47. 47.
    Parker MA, King V, Howard KP. Nuclear magnetic resonance study of doxorubicin binding to cardiolipin containing magnetically oriented phospholipid bilayers. Biochim Biophys Acta 2001; 1514(2):206–216.PubMedCrossRefGoogle Scholar
  48. 48.
    Chen Y, Saari JT, Kang YJ. Weak antioxidant defenses make the heart a target for damage in copper-deficient rats. Free Radic Biol Med 1994; 17(6):529–536.PubMedCrossRefGoogle Scholar
  49. 49.
    Li G, Chen Y, Saari JT, Kang YJ. Catalase-overexpressing transgenic mouse heart is resistant to ischemia-reperfusion injury. Am J Physiol 1997; 273(3 Pt 2):H1090–H1095.PubMedGoogle Scholar
  50. 50.
    Thornalley PJ, Dodd NJ. Free radical production from normal and adriamycin-treated rat cardiac sarcosomes. Biochem Pharmacol 1985; 34(5):669–674.PubMedCrossRefGoogle Scholar
  51. 51.
    Costa L, Malatesta V, Morazzoni F, Scotti R, Monti E, Paracchini L. Direct detection of paramagnetic species in adriamycin perfused rat hearts. Biochem Biophys Res Commun 1988; 153(1):275–280.PubMedCrossRefGoogle Scholar
  52. 52.
    Myers C, Bonow R, Palmeri S, et al. A randomized controlled trial assessing the prevention of doxorubicin cardiomyopathy by N-acetylcysteine. Semin Oncol 1983; 10(1 Suppl 1):53–55.PubMedGoogle Scholar
  53. 53.
    Singal PK, Pierce GN. Adriamycin stimulates low-affinity Ca2+ binding and lipid peroxidation but depresses myocardial function. Am J Physiol 1986; 250(3 Pt 2):H419–H425.PubMedGoogle Scholar
  54. 54.
    Rossini L, Monti E, Cova D, Piccinini F. Determination of doxorubicin and doxorubicin-3-ol in rat heart. Arch Toxicol Suppl 1986; 9:474–478.PubMedCrossRefGoogle Scholar
  55. 55.
    Olson RD, Mushlin PS, Brenner DE, et al. Doxorubicin cardiotoxicity may be caused by its metabolite, doxorubicinol. Proc Natl Acad Sci USA 1988; 85(10):3585–3589.PubMedCrossRefGoogle Scholar
  56. 56.
    Feder ME, Hofmann GE. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 1999; 61:243–282.PubMedCrossRefGoogle Scholar
  57. 57.
    Ritossa F. Discovery of the heat shock response. Cell Stress Chaperones 1996; 1(2):97–98.PubMedCrossRefGoogle Scholar
  58. 58.
    Gullo CA, Teoh G. Heat shock proteins: to present or not, that is the question. Immunology Letters 2004; 94(1–2):1.PubMedCrossRefGoogle Scholar
  59. 59.
    Pechan PM. Heat shock proteins and cell proliferation. FEBS Lett 1991; 280(1):1–4.PubMedCrossRefGoogle Scholar
  60. 60.
    Helmbrecht K, Zeise E, Rensing L. Chaperones in cell cycle regulation and mitogenic signal transduction: a review. Cell Prolif 2000; 33(6):341–365.PubMedCrossRefGoogle Scholar
  61. 61.
    Craig EA, Weissman JS, Horwich AL. Heat shock proteins and molecular chaperones: mediators of protein conformation and turnover in the cell. Cell 1994; 78(3):365–372.PubMedCrossRefGoogle Scholar
  62. 62.
    Morimoto RI, Tissières A, Georgopoulos C. The biology of heat shock proteins and molecular chaperones. Plainview, N.Y.: Cold Spring Harbor Laboratory Press; 1994.Google Scholar
  63. 63.
    Abe H, Latchman DS. Stress proteins. Berlin; New York: Springer; 1999.Google Scholar
  64. 64.
    Sreedhar AS, Csermely P. Heat shock proteins in the regulation of apoptosis: new strategies in tumor therapy: A comprehensive review. Pharmacology & Therapeutics 2004; 101(3):227.CrossRefGoogle Scholar
  65. 65.
    Low-Friedrich I, von Bredow F, Schoeppe W. In vitro studies on the cardiotoxicity of chemotherapeutics. Chemotherapy 1990; 36(6):416–421.PubMedCrossRefGoogle Scholar
  66. 66.
    Strauss M, Porras N. Differential expression of HSP70 and ultrastructure of heart and liver tissues of rats treated with adriamycin: protective role of L-carnitine. Invest Clin 2007; 48(1):33–43.PubMedGoogle Scholar
  67. 67.
    Ito H, Shimojo T, Fujisaki H, et al. Thermal preconditioning protects rat cardiac muscle cells from doxorubicin-induced apoptosis. Life Sci 1999; 64(9):755–761.PubMedCrossRefGoogle Scholar
  68. 68.
    Ascensao A, Magalhaes J, Soares JM, et al. Endurance training limits the functional alterations of rat heart mitochondria submitted to in vitro anoxia-reoxygenation. Int J Cardiol 2006; 109(2):169–178.PubMedCrossRefGoogle Scholar
  69. 69.
    Chicco AJ, Schneider CM, Hayward R. Exercise training attenuates acute doxorubicin-induced cardiac dysfunction. J Cardiovasc Pharmacol 2006; 47(2):182–189.PubMedCrossRefGoogle Scholar
  70. 70.
    Dai C, Whitesell L, Rogers AB, Lindquist S. Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis. Cell 2007; 130(6):1005–1018.PubMedCrossRefGoogle Scholar
  71. 71.
    Westerheide SD, Morimoto RI. Heat shock response modulators as therapeutic tools for diseases of protein conformation. J Biol Chem 2005; 280(39):33097–33100.PubMedCrossRefGoogle Scholar
  72. 72.
    Sarge KD, Zimarino V, Holm K, Wu C, Morimoto RI. Cloning and characterization of two mouse heat shock factors with distinct inducible and constitutive DNA-binding ability. Genes Dev 1991; 5(10):1902–1911.PubMedCrossRefGoogle Scholar
  73. 73.
    Xiao X, Zuo X, Davis AA, et al. HSF1 is required for extra-embryonic development, postnatal growth and protection during inflammatory responses in mice. Embo J 1999; 18(21):5943–5952.PubMedCrossRefGoogle Scholar
  74. 74.
    Christians E, Davis AA, Thomas SD, Benjamin IJ. Maternal effect of Hsf1 on reproductive success. Nature 2000; 407(6805):693–694.PubMedCrossRefGoogle Scholar
  75. 75.
    Baler R, Dahl G, Voellmy R. Activation of human heat shock genes is accompanied by oligomerization, modification, and rapid translocation of heat shock transcription factor HSF1. Mol Cell Biol 1993; 13(4):2486–2496.PubMedGoogle Scholar
  76. 76.
    Sarge KD, Murphy SP, Morimoto RI. Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress. Mol Cell Biol 1993; 13(3):1392–1407.PubMedGoogle Scholar
  77. 77.
    Fiorenza MT, Farkas T, Dissing M, Kolding D, Zimarino V. Complex expression of murine heat shock transcription factors. Nucleic Acids Res 1995; 23(3):467–474.PubMedCrossRefGoogle Scholar
  78. 78.
    Sakamoto M, Minamino T, Toko H, et al. Upregulation of heat shock transcription factor1 plays a critical role in adaptive cardiac hypertrophy. Circ Res 2006; 99(12):1411–1418.PubMedCrossRefGoogle Scholar
  79. 79.
    Morimoto RI, Santoro MG. Stress-inducible responses and heat shock proteins: new pharmacologic targets for cytoprotection. Nat Biotechnol 1998; 16(9):833–838.PubMedCrossRefGoogle Scholar
  80. 80.
    Pirkkala L, Nykanen P, Sistonen L. Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. Faseb J 2001; 15(7):1118–1131.PubMedCrossRefGoogle Scholar
  81. 81.
    Holmberg CI, Tran SEF, Eriksson JE, Sistonen L. Multisite phosphorylation provides sophisticated regulation of transcription factors. Trends in Biochemical Sciences 2002; 27(12):619.PubMedCrossRefGoogle Scholar
  82. 82.
    Toko H, Minamino T, Komuro I. Role of heat shock transcriptional factor 1 and heat shock proteins in cardiac hypertrophy. Trends Cardiovasc Med 2008; 18(3):88–93.PubMedCrossRefGoogle Scholar
  83. 83.
    Green M, Schuetz TJ, Sullivan EK, Kingston RE. A heat shock-responsive domain of human HSF1 that regulates transcription activation domain function. Mol Cell Biol 1995; 15(6):3354–3362.PubMedGoogle Scholar
  84. 84.
    Newton EM, Knauf U, Green M, Kingston RE. The regulatory domain of human heat shock factor 1 is sufficient to sense heat stress. Mol Cell Biol 1996; 16(3):839–846.PubMedGoogle Scholar
  85. 85.
    Chu B, Soncin F, Price BD, Stevenson MA, Calderwood SK. Sequential phosphorylation by mitogen-activated protein kinase and glycogen synthase kinase 3 represses transcriptional activation by heat shock factor-1. J Biol Chem 1996; 271(48):30847–30857.PubMedCrossRefGoogle Scholar
  86. 86.
    Kline MP, Morimoto RI. Repression of the heat shock factor 1 transcriptional activation domain is modulated by constitutive phosphorylation. Mol Cell Biol 1997; 17(4):2107–2115.PubMedGoogle Scholar
  87. 87.
    Chu B, Zhong R, Soncin F, Stevenson MA, Calderwood SK. Transcriptional activity of heat shock factor 1 at 37 degrees C is repressed through phosphorylation on two distinct serine residues by glycogen synthase kinase 3 and protein kinases Calpha and Czeta. J Biol Chem 1998; 273(29):18640–18646.PubMedCrossRefGoogle Scholar
  88. 88.
    Holmberg CI, Hietakangas V, Mikhailov A, et al. Phosphorylation of serine 230 promotes inducible transcriptional activity of heat shock factor 1. Embo J 2001; 20(14):3800–3810.PubMedCrossRefGoogle Scholar
  89. 89.
    Donnelly TJ, Sievers RE, Vissern FL, Welch WJ, Wolfe CL. Heat shock protein induction in rat hearts. A role for improved myocardial salvage after ischemia and reperfusion? Circulation 1992; 85(2):769–778.PubMedCrossRefGoogle Scholar
  90. 90.
    Zou Y, Zhu W, Sakamoto M, et al. Heat shock transcription factor 1 protects cardiomyocytes from ischemia/reperfusion injury. Circulation 2003; 108(24):3024–3030.PubMedCrossRefGoogle Scholar
  91. 91.
    Kim HP, Morse D, Choi AM. Heat-shock proteins: new keys to the development of cytoprotective therapies. Expert Opin Ther Targets 2006; 10(5):759–769.PubMedCrossRefGoogle Scholar
  92. 92.
    Venkatakrishnan CD, Tewari AK, Moldovan L, et al. Heat shock protects cardiac cells from doxorubicin-induced toxicity by activating p38 MAPK and phosphorylation of small heat shock protein 27. Am J Physiol Heart Circ Physiol 2006; 291(6):H2680–H2691.PubMedCrossRefGoogle Scholar
  93. 93.
    Liu JC, Wan L, He M, Cheng XS. [Protection of myocardiocytes against anoxia-reoxygeneration injury by heat shock protein 70 gene transfection: experiment with rats]. Zhonghua Yi Xue Za Zhi 2007; 87(48):3436–3439.PubMedGoogle Scholar
  94. 94.
    Latchman DS. Heat shock proteins and cardiac protection. Cardiovasc Res 2001; 51(4):637–646.PubMedCrossRefGoogle Scholar
  95. 95.
    Garcia-Cardena G, Fan R, Shah V, et al. Dynamic activation of endothelial nitric oxide synthase by Hsp90. Nature 1998; 392(6678):821–824.PubMedCrossRefGoogle Scholar
  96. 96.
    Song Y, Zweier JL, Xia Y. Determination of the enhancing action of HSP90 on neuronal nitric oxide synthase by EPR spectroscopy. Am J Physiol Cell Physiol 2001; 281(6):C1819–C1824.PubMedGoogle Scholar
  97. 97.
    Yoshida M, Xia Y. Heat shock protein 90 as an endogenous protein enhancer of inducible nitric-oxide synthase. J Biol Chem 2003; 278(38):36953–36958.PubMedCrossRefGoogle Scholar
  98. 98.
    Ilangovan G, Osinbowale S, Bratasz A, et al. Heat shock regulates the respiration of cardiac H9c2 cells through upregulation of nitric oxide synthase. Am J Physiol Cell Physiol 2004; 287(5):C1472–C1481.PubMedCrossRefGoogle Scholar
  99. 99.
    Nosek TM, Brotto MA, Essig DA, et al. Functional properties of skeletal muscle from transgenic animals with upregulated heat shock protein 70. Physiol Genomics 2000; 4(1):25–33.PubMedGoogle Scholar
  100. 100.
    Ray PS, Martin JL, Swanson EA, Otani H, Dillmann WH, Das DK. Transgene overexpression of alphaB crystallin confers simultaneous protection against cardiomyocyte apoptosis and necrosis during myocardial ischemia and reperfusion. Faseb J 2001; 15(2):393–402.PubMedCrossRefGoogle Scholar
  101. 101.
    Hollander JM, Lin KM, Scott BT, Dillmann WH. Overexpression of PHGPx and HSP60/10 protects against ischemia/reoxygenation injury. Free Radic Biol Med 2003; 35(7):742–751.PubMedCrossRefGoogle Scholar
  102. 102.
    Hollander JM, Martin JL, Belke DD, et al. Overexpression of wild-type heat shock protein 27 and a nonphosphorylatable heat shock protein 27 mutant protects against ischemia/reperfusion injury in a transgenic mouse model. Circulation 2004; 110(23):3544–3552.PubMedCrossRefGoogle Scholar
  103. 103.
    Lin KM, Lin B, Lian IY, Mestril R, Scheffler IE, Dillmann WH. Combined and individual mitochondrial HSP60 and HSP10 expression in cardiac myocytes protects mitochondrial function and prevents apoptotic cell deaths induced by simulated ischemia-reoxygenation. Circulation 2001; 103(13):1787–1792.PubMedCrossRefGoogle Scholar
  104. 104.
    Lin KM, Hollander JM, Kao VY, Lin B, Macpherson L, Dillmann WH. Myocyte protection by 10 kD heat shock protein (Hsp10) involves the mobile loop and attenuation of the Ras GTP-ase pathway. Faseb J 2004; 18(9):1004–1006.PubMedGoogle Scholar
  105. 105.
    Cummings CJ, Sun Y, Opal P, et al. Over-expression of inducible HSP70 chaperone suppresses neuropathology and improves motor function in SCA1 mice. Hum Mol Genet 2001; 10(14):1511–1518.PubMedCrossRefGoogle Scholar
  106. 106.
    Dillmann WH, Mestril R. Heat shock proteins in myocardial stress. Z Kardiol 1995; 84 Suppl 4:87–90.PubMedGoogle Scholar
  107. 107.
    Arrigo AP. Hsp27: novel regulator of intracellular redox state. IUBMB Life 2001; 52(6):303–307.PubMedCrossRefGoogle Scholar
  108. 108.
    Arrigo AP. Small stress proteins: chaperones that act as regulators of intracellular redox state and programmed cell death. Biol Chem 1998; 379(1):19–26.PubMedGoogle Scholar
  109. 109.
    Kim SH, Kim D, Jung GS, Um JH, Chung BS, Kang CD. Involvement of c-Jun NH(2)-terminal kinase pathway in differential regulation of heat shock proteins by anticancer drugs. Biochem Biophys Res Commun 1999; 262(2):516–522.PubMedCrossRefGoogle Scholar
  110. 110.
    Vedam K, Nishishima Y, Druhan L, et al. Role of Heat shock Factor-1 activation in the Doxorubicin-induced Heart failure in mice. Am J Physiol Heart Circ Physiol 2010; H1832–H1834.Google Scholar
  111. 111.
    Rajasekaran NS, Connell P, Christians ES, et al. Human alpha B-crystallin mutation causes oxido-reductive stress and protein aggregation cardiomyopathy in mice. Cell 2007; 130(3):427–439.PubMedCrossRefGoogle Scholar
  112. 112.
    Ilangovan G, Venkatakrishnan CD, Bratasz A, et al. Heat shock-induced attenuation of hydroxyl radical generation and mitochondrial aconitase activity in cardiac H9c2 cells. Am J Physiol Cell Physiol 2006; 290(2):C313–C324.PubMedCrossRefGoogle Scholar
  113. 113.
    Venkatakrishnan CD, Dunsmore K, Wong H, et al. HSP27 regulates p53 transcriptional activity in doxorubicin-treated fibroblasts and cardiac H9c2 cells: p21 upregulation and G2/M phase cell cycle arrest. Am J Physiol Heart Circ Physiol 2008; 294(4):H1736–H1744.PubMedCrossRefGoogle Scholar
  114. 114.
    Chua CC, Liu X, Gao J, Hamdy RC, Chua BH. Multiple actions of pifithrin-alpha on doxorubicin-induced apoptosis in rat myoblastic H9c2 cells. Am J Physiol Heart Circ Physiol 2006; 290(6):H2606–H2613.PubMedCrossRefGoogle Scholar
  115. 115.
    Liu X, Chua CC, Gao J, et al. Pifithrin-alpha protects against doxorubicin-induced apoptosis and acute cardiotoxicity in mice. Am J Physiol Heart Circ Physiol 2004; 286(3):H933–H939.PubMedCrossRefGoogle Scholar
  116. 116.
    Zuco V, Zunino F. Cyclic pifithrin-alpha sensitizes wild type p53 tumor cells to antimicrotubule agent-induced apoptosis. Neoplasia 2008; 10(6):587–596.PubMedGoogle Scholar
  117. 117.
    Venkatesan B, Prabhu SD, Venkatachalam K, et al. WNT1-inducible signaling pathway protein-1 activates diverse cell survival pathways and blocks doxorubicin-induced cardiomyocyte death. Cell Signal.(rest of info?)Google Scholar
  118. 118.
    Fan GC, Zhou X, Wang X, et al. Heat shock protein 20 interacting with phosphorylated Akt reduces doxorubicin-triggered oxidative stress and cardiotoxicity. Circ Res 2008; 103(11):1270–1279.PubMedCrossRefGoogle Scholar
  119. 119.
    Wang X, Zingarelli B, O’Connor M, et al. Overexpression of Hsp20 prevents endotoxin-induced myocardial dysfunction and apoptosis via inhibition of NF-kappaB activation. J Mol Cell Cardiol 2009; 47(3):382–390.PubMedCrossRefGoogle Scholar
  120. 120.
    Liu L, Zhang X, Qian B, et al. Over-expression of heat shock protein 27 attenuates doxorubicin-induced cardiac dysfunction in mice. Eur J Heart Fail 2007;9(8):762–769.PubMedCrossRefGoogle Scholar
  121. 121.
    Nozaki N, Shishido T, Takeishi Y, Kubota I. Modulation of doxorubicin-induced cardiac dysfunction in toll-like receptor-2-knockout mice. Circulation 2004; 110(18):2869–2874.PubMedCrossRefGoogle Scholar
  122. 122.
    Zhu W, Soonpaa MH, Chen H, et al. Acute doxorubicin cardiotoxicity is associated with p53-induced inhibition of the mammalian target of rapamycin pathway. Circulation 2009; 119(1):99–106.PubMedCrossRefGoogle Scholar
  123. 123.
    Turakhia S, Venkatakrishnan CD, Dunsmore K, et al. Doxorubicin-induced cardiotoxicity: direct correlation of cardiac fibroblast and H9c2 cell survival and aconitase activity with heat shock protein 27. Am J Physiol Heart Circ Physiol 2007; 293(5):H3111–H3121.PubMedCrossRefGoogle Scholar
  124. 124.
    Sugden PH, Bogoyevitch MA. Intracellular signalling through protein kinases in the heart. Cardiovasc Res 1995; 30(4):478–492.PubMedGoogle Scholar
  125. 125.
    Wang X, Martindale JL, Liu Y, Holbrook NJ. The cellular response to oxidative stress: influences of mitogen-activated protein kinase signalling pathways on cell survival. Biochem J 1998; 333 (Pt 2):291–300.PubMedGoogle Scholar
  126. 126.
    Kyriakis JM, Avruch J. Sounding the alarm: protein kinase cascades activated by stress and inflammation. J Biol Chem 1996; 271(40):24313–24316.PubMedCrossRefGoogle Scholar
  127. 127.
    Sheng Z, Knowlton K, Chen J, Hoshijima M, Brown JH, Chien KR. Cardiotrophin 1 (CT-1) inhibition of cardiac myocyte apoptosis via a mitogen-activated protein kinase-dependent pathway. Divergence from downstream CT-1 signals for myocardial cell hypertrophy. J Biol Chem 1997; 272(9):5783–5791.PubMedCrossRefGoogle Scholar
  128. 128.
    Wang Y, Su B, Sah VP, Brown JH, Han J, Chien KR. Cardiac hypertrophy induced by mitogen-activated protein kinase 7, a specific activator for c-Jun NH2-terminal kinase in ventricular muscle cells. J Biol Chem 1998; 273(10):5423–5426.PubMedCrossRefGoogle Scholar
  129. 129.
    Kang YJ, Zhou ZX, Wang GW, Buridi A, Klein JB. Suppression by metallothionein of doxorubicin-induced cardiomyocyte apoptosis through inhibition of p38 mitogen-activated protein kinases. J Biol Chem 2000; 275(18):13690–13698.PubMedCrossRefGoogle Scholar
  130. 130.
    Arrigo AP. sHsp as novel regulators of programmed cell death and tumorigenicity. Pathol Biol (Paris) 2000; 48(3):280–288.Google Scholar
  131. 131.
    Arrigo AP, Ducasse C. Expression of the anti-apoptotic protein Hsp27 during both the keratinocyte differentiation and dedifferentiation of HaCat cells: expression linked to changes in intracellular protein organization? Exp Gerontol 2002; 37(10–11):1247–1255.PubMedCrossRefGoogle Scholar
  132. 132.
    Arrigo AP, Paul C, Ducasse C, et al. Small stress proteins: novel negative modulators of apoptosis induced independently of reactive oxygen species. Prog Mol Subcell Biol 2002; 28:185–204.PubMedCrossRefGoogle Scholar
  133. 133.
    Arrigo AP, Paul C, Ducasse C, Sauvageot O, Kretz-Remy C. Small stress proteins: modulation of intracellular redox state and protection against oxidative stress. Prog Mol Subcell Biol 2002; 28:171–184.PubMedCrossRefGoogle Scholar
  134. 134.
    Welsh MJ, Gaestel M. Small heat-shock protein family: function in health and disease. Ann NY Acad Sci 1998; 851:28–35.PubMedCrossRefGoogle Scholar
  135. 135.
    Dohke T, Wada A, Isono T, et al. Proteomic analysis reveals significant alternations of cardiac small heat shock protein expression in congestive heart failure. J Card Fail 2006; 12(1):77–84.PubMedCrossRefGoogle Scholar
  136. 136.
    De Souza AI, Wait R, Mitchell AG, Banner NR, Dunn MJ, Rose ML. Heat shock protein 27 is associated with freedom from graft vasculopathy after human cardiac transplantation. Circ Res 2005; 97(2):192–198.PubMedCrossRefGoogle Scholar
  137. 137.
    Tremolada L, Magni F, Valsecchi C, et al. Characterization of heat shock protein 27 phosphorylation sites in renal cell carcinoma. Proteomics 2005; 5(3):788–795.PubMedCrossRefGoogle Scholar
  138. 138.
    Lelj-Garolla B, Mauk AG. Self-association and chaperone activity of Hsp27 are thermally activated. J Biol Chem 2006; 281(12):8169–8174.PubMedCrossRefGoogle Scholar
  139. 139.
    Rice-Evans C, Miller NJ. Total antioxidant status in plasma and body fluids. Methods Enzymol 1994; 234:279–293.PubMedCrossRefGoogle Scholar
  140. 140.
    Yang MH, Schaich KM. Factors affecting DNA damage caused by lipid hydroperoxides and aldehydes. Free Radic Biol Med 1996; 20(2):225–236.PubMedCrossRefGoogle Scholar
  141. 141.
    Fadillioglu E, Erdogan H, Sogut S, Kuku I. Protective effects of erdosteine against doxorubicin-induced cardiomyopathy in rats. J Appl Toxicol 2003;23(1):71–74.PubMedCrossRefGoogle Scholar
  142. 142.
    Vaca CE, Nilsson JA, Fang JL, Grafstrom RC. Formation of DNA adducts in human buccal epithelial cells exposed to acetaldehyde and methylglyoxal in vitro. Chem Biol Interact 1998; 108(3):197–208.PubMedCrossRefGoogle Scholar
  143. 143.
    Cochrane CG. Mechanisms of oxidant injury of cells. Mol Aspects Med 1991; 12(2):137–147.PubMedCrossRefGoogle Scholar
  144. 144.
    Suzuki K, Murtuza B, Sammut IA, et al. Heat shock protein 72 enhances manganese superoxide dismutase activity during myocardial ischemia-reperfusion injury, associated with mitochondrial protection and apoptosis reduction. Circulation 2002;106(12 Suppl 1):I270–1276.PubMedGoogle Scholar
  145. 145.
    Chicco AJ, Hydock DS, Schneider CM, Hayward R. Low-intensity exercise training during doxorubicin treatment protects against cardiotoxicity. J Appl Physiol 2006; 100(2):519–527.PubMedCrossRefGoogle Scholar
  146. 146.
    Chicco AJ, Schneider CM, Hayward R. Voluntary exercise protects against acute doxorubicin cardiotoxicity in the isolated perfused rat heart. Am J Physiol Regul Integr Comp Physiol 2005; 289(2):R424–R431.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Karthikeyan Krishnamurthy
  • Ragu Kanagasabai
  • Lawrence J. Druhan
  • Govindasamy Ilangovan
    • 1
    Email author
  1. 1.Division of Cardiovascular Medicine, Davis Heart and Lung Research InstituteOhio State UniversityColumbusUSA

Personalised recommendations