Skip to main content

Assessment of Oxidative Stress in the Brain of Spontaneously Hypertensive Rat and Stroke-Prone Spontaneously Hypertensive Rat Using by Electron Spin Resonance Spectroscopy

  • Chapter
  • First Online:
Studies on Experimental Models

Abstract

It is well accepted that reactive oxygen species (ROS)-induced oxidative stress is a potential contributor to the pathogenesis of ischemia–reperfusion injury. The vascular system may be the first target of ROS generated during the pathological processes of hypertension and stroke; ROS also have important roles in the pathogenesis of vascular incompetence. The blood–brain barrier-permeable nitroxyl spin probe, 3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl, has the potential to be useful in understanding redox status under conditions of oxidative stress induced by ROS in the rodent brain, using the in vivo electron spin resonance (ESR) technique. These methods have also been applied to the spontaneously hypertensive rat (SHR) and stroke-prone SHR (SHRSP) models of essential hypertension and stroke, respectively. We have previously evaluated the degree of oxidative stress in the brains of SHRSP or SHR, as compared to normal (control) Wistar-Kyoto rat. This chapter focuses on biomedical applications of ESR, especially, the L-band ESR technique, using the rodent disease model. These ESR methods may constitute a useful tool for assessment of oxidative stress in the rodent brain of hypertension and stroke models such as the SHR and SHRSP; in addition, these ESR techniques have the potential to contribute to the development of neuroprotective drugs for treatment of hypertension and stroke in humans, in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Halliwell B, Whiteman M (2004). Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol 142: 231–255

    Article  PubMed  CAS  Google Scholar 

  2. Sies H (1997). Oxidative stress oxidants and antioxidants. Exp Physiol 82: 291–295

    PubMed  CAS  Google Scholar 

  3. Halliwell B (2009). The wanderings of a free radical. Free Radic Biol Med 46: 531–542

    Article  PubMed  CAS  Google Scholar 

  4. Hall ED, Braughler JM (1993). Free radicals in CNS injury. Res Publ Assoc Res Nerv Ment Dis 71: 81–105

    PubMed  CAS  Google Scholar 

  5. Chan PH (1996). Role of oxidants in ischemic brain damage. Stroke 27: 1124–1129

    Article  PubMed  CAS  Google Scholar 

  6. Paravicini TM, Drummond GR, Sobey CG (2004) Reactive oxygen species in the cerebral circulation: physiological roles and therapeutic implications for hypertension and stroke. Drugs 64: 2143–2157

    Article  PubMed  CAS  Google Scholar 

  7. Anzai K, Saito K, Takeshita K, Takahashi S, Miyazaki H, Shoji H, Lee MC, Masumizu T, Ozawa T (2003). Assessment of ESR-CT imaging by comparison with autoradiography for the distribution of a blood-brain-barrier permeable spin probe, MC-PROXYL, to rodent brain. Magn Reson Imaging 21: 765–772

    Article  PubMed  Google Scholar 

  8. Lee MC, Shoji H, Miyazaki H, Yoshino F, Hori N, Toyoda M, Ikeda Y, Anzai K, Ikota N, Ozawa T (2004). Assessment of oxidative stress in the spontaneously hypertensive rat brain using electron spin resonance (ESR) imaging and in vivo L-Band ESR. Hypertens Res 27: 485–492

    Article  PubMed  CAS  Google Scholar 

  9. Lee MC, Shoji H, Miyazaki H, Yoshino F, Hori N, Miyake S, Ikeda Y, Anzai K, Ozawa T (2003). Measurement of oxidative stress in the rodent brain using computerized electron spin resonance tomography. Magn Reson Med Sci 2: 79–84

    Article  PubMed  Google Scholar 

  10. Lee C, Miura K, Liu X, Zweier JL (2000). Biphasic regulation of leukocyte superoxide generation by nitric oxide and peroxynitrite. J Biol Chem 275: 38965–38972

    Article  PubMed  CAS  Google Scholar 

  11. Lee CI, Liu X, Zweier JL (2000). Regulation of xanthine oxidase by nitric oxide and peroxynitrite. J Biol Chem 275: 9369–9376

    Article  PubMed  CAS  Google Scholar 

  12. Kobayashi K, Yoshino F, Takahashi SS, Todoki K, Maehata Y, Komatsu T, Yoshida K, Lee MC (2008). Direct assessments of the antioxidant effects of propofol medium chain triglyceride/long chain triglyceride on the brain of stroke-prone spontaneously hypertensive rats using electron spin resonance spectroscopy. Anesthesiology 109: 426–435

    Article  PubMed  CAS  Google Scholar 

  13. Hagiwara T, Lee CI, Okabe E (2000). Differential sensitivity to hydroxyl radicals of pre- and postjunctional neurovascular transmission in the isolated canine mesenteric vein. Neuropharmacology 39: 1662–1672

    Article  PubMed  CAS  Google Scholar 

  14. Miura Y, Anzai K, Takahashi S, Ozawa T (1997). A novel lipophilic spin probe for the measurement of radiation damage in mouse brain using in vivo electron spin resonance (ESR). FEBS Lett 419: 99–102

    Article  PubMed  CAS  Google Scholar 

  15. Fuchs J, Nitschmann W.H, Packer L, Hankovszky O.H, Hideg K (1990). pKa values and partition coefficients of nitroxide spin probes for membrane bioenergetics measurements. Free Radic Res Commun 10: 315–323

    Article  PubMed  CAS  Google Scholar 

  16. Yokoyama H, Itoh O, Ogata T, Obara H, Ohya-Nishiguchi H, Kamada H (1997). Temporal brain imaging by a rapid scan ESR-CT system in rats receiving intraperitoneal injection of a methyl ester nitroxide radical. Magn Reson Imaging 15: 1079–1084

    Article  PubMed  CAS  Google Scholar 

  17. Sano H, Naruse M, Matsumoto K, Oi T, Utsumi H (2000). A new nitroxyl-probe with high retention in the brain and its application for brain imaging. Free Radic Biol Med 28: 959–969

    Article  PubMed  CAS  Google Scholar 

  18. Miyazaki H, Shoji H, Lee MC (2002). Measurement of oxidative stress in stroke-prone spontaneously hypertensive rat brain using in vivo electron spin resonance spectroscopy. Redox Rep 7: 260–265

    Article  PubMed  CAS  Google Scholar 

  19. Suzuki H, Swei A, Zweifach BW, Schmid-Schonbein GW (1995). In vivo evidence for microvascular oxidative stress in spontaneously hypertensive rats. Hydroethidine microfluorography. Hypertension 25: 1083–1089

    Article  CAS  Google Scholar 

  20. Schnackenberg CG, Welch WJ, Wilcox CS (1998). Normalization of blood pressure and renal vascular resistance in SHR with a membrane-permeable superoxide dismutase mimetic: role of nitric oxide. Hypertension 32: 59–64

    Article  PubMed  CAS  Google Scholar 

  21. Okamoto K, Yamamoto K, Morita N, Ohta Y, Chikugo T, Higashizawa T, Suzuki T (1986). Establishment and use of the M strain of stroke-prone spontaneously hypertensive rat.J Hypertens Suppl 4: S21–24

    PubMed  CAS  Google Scholar 

  22. Chen X, Touyz RM, Park JB, Schiffrin EL (2001). Antioxidant effects of vitamins C and E are associated with altered activation of vascular NADPH oxidase and superoxide dismutase in stroke-prone SHR. Hypertension 38: 606–611

    Article  PubMed  CAS  Google Scholar 

  23. Kishi T, Hirooka Y, Kimura Y, Ito K, Shimokawa H, Takeshita A (2004). Increased Reactive Oxygen Species in Rostral Ventrolateral Medulla Contribute to Neural Mechanisms of Hypertension in Stroke-Prone Spontaneously Hypertensive Rats. Circulation 109: 2357–2362

    Article  PubMed  CAS  Google Scholar 

  24. de Champlain J, Wu R, Girouard H, Karas M, A ELM, Laplante MA, Wu L (2004). Oxidative stress in hypertension. Clin Exp Hypertens 26: 593–601

    Article  PubMed  Google Scholar 

  25. Ikeda K, Negishi H, Yamori Y (2003). Antioxidant nutrients and hypoxia/ischemia brain injury in rodents. Toxicology 189: 55–61

    Article  PubMed  CAS  Google Scholar 

  26. Berliner LJ, Wan XM (1989). In vivo pharmacokinetics by electron magnetic resonance spectroscopy. Magn Reson Med 9: 430–434

    Article  PubMed  CAS  Google Scholar 

  27. Ishida S, Kumashiro H, Tsuchihashi N, Ogata T, Ono M, Kamada H, Yoshida E (1989). In vivo analysis of nitroxide radicals injected into small animals by L-band ESR technique. Phys Med Biol 34: 1317–1323

    Article  PubMed  CAS  Google Scholar 

  28. Ferrari M, Colacicchi S, Gualtieri G, Santini MT, Sotgiu A (1990). Whole mouse nitroxide free radical pharmacokinetics by low frequency electron paramagnetic resonance. Biochem Biophys Res Commun 166: 168–173

    Article  PubMed  CAS  Google Scholar 

  29. Utsumi H, Muto E, Masuda S, Hamada A (1990). In vivo ESR measurement of free radicals in whole mice. Biochem Biophys Res Commun 172: 1342–1348

    Article  PubMed  CAS  Google Scholar 

  30. Miura Y, Ozawa T (2000). Noninvasive study of radiation-induced oxidative damage using in vivo electron spin resonance. Free Radic Biol Med 28: 854–859

    Article  PubMed  CAS  Google Scholar 

  31. Bacic G, Nilges MJ, Magin RL, Walczak T, Swartz HM (1989). In vivo localized ESR spectroscopy reflecting metabolism. Magn Reson Med 10: 266–272

    Article  PubMed  CAS  Google Scholar 

  32. Miura Y, Utsumi H, Hamada A (1992). Effects of inspired oxygen concentration on in vivo redox reaction of nitroxide radicals in whole mice. Biochem Biophys Res Commun 182: 1108–1114

    Article  PubMed  CAS  Google Scholar 

  33. Takeshita K, Hamada A, Utsumi H (1999). Mechanisms related to reduction of radical in mouse lung using an L-band ESR spectrometer. Free Radic Biol Med 26: 951–960

    Article  PubMed  CAS  Google Scholar 

  34. Gomi F, Utsumi H, Hamada A, Matsuo M (1993). Aging retards spin clearance from mouse brain and food restriction prevents its age-dependent retardation. Life Sci 52: 2027–2033

    Article  PubMed  CAS  Google Scholar 

  35. Kuppusamy P, Chzhan M, Vij K, Shteynbuk M, Lefer DJ, Giannella E, Zweier JL (1994). Three-dimensional spectral-spatial EPR imaging of free radicals in the heart: a technique for imaging tissue metabolism and oxygenation. Proc Natl Acad Sci USA 91: 3388–3392

    Article  PubMed  CAS  Google Scholar 

  36. Kuppusamy P, Afeworki M, Shankar RA, Coffin D, Krishna MC, Hahn SM, Mitchell JB, Zweier JL (1998). In vivo electron paramagnetic resonance imaging of tumor heterogeneity and oxygenation in a murine model. Cancer Res 58: 1562–1568

    PubMed  CAS  Google Scholar 

  37. He G, Shankar RA, Chzhan M, Samouilov A, Kuppusamy P, Zweier JL (1999). Noninvasive measurement of anatomic structure and intraluminal oxygenation in the gastrointestinal tract of living mice with spatial and spectral EPR imaging. Proc Natl Acad Sci USA 96: 4586–4591

    Article  PubMed  CAS  Google Scholar 

  38. Takeshita K, Utsumi H, Hamada A (1993). Whole mouse measurement of paramagnetism-loss of nitroxide free radical in lung with a L-band ESR spectrometer. Biochem Mol Biol Int 29: 17–24

    PubMed  CAS  Google Scholar 

  39. Miura Y, Hamada A, Utsumi H (1995). In vivo ESR studies of antioxidant activity on free radical reaction in living mice under oxidative stress. Free Radic Res 22: 209–214

    Article  PubMed  CAS  Google Scholar 

  40. Yamori Y (1989). Predictive and preventive pathology of cardiovascular diseases. Acta Pathol Jpn 39: 683–705

    PubMed  CAS  Google Scholar 

  41. Yamori Y (1999). Implication of hypertensive rat models for primordial nutritional prevention of cardiovascular diseases. Clin Exp Pharmacol Physiol 26: 568–572

    Article  PubMed  CAS  Google Scholar 

  42. Kiprov D (1980). Experimental models of hypertension. Cor Vasa 22: 116–128

    PubMed  CAS  Google Scholar 

  43. Negishi H, Njelekela M, Ikeda K, Sagara M, Noguchi T, Kuga S, Kanda T, Liu L, Nara Y, Tagami M, Yamori Y (2000). Assessment of in vivo oxidative stress in hypertensive rats and hypertensive subjects in Tanzania, Africa. Hypertens Res 23: 285–289

    Article  PubMed  CAS  Google Scholar 

  44. Maeda K, Yasunari K, Sato EF, Yoshikawa J, Inoue M (2003). Activation of protein kinase C and nicotinamide adenine dinucleotide phosphate oxidase in leukocytes of spontaneously hypertensive rats. Hypertens Res 26: 999–1006

    Article  PubMed  CAS  Google Scholar 

  45. Rubanyi GM, Vanhoutte PM (1986). Superoxide anions and hyperoxia inactivate endothelium-derived relaxing factor. Am J Physiol 250: H822–827

    PubMed  CAS  Google Scholar 

  46. Gemba T, Matsunaga K, Ueda M (1992). Changes in extracellular concentration of amino acids in the hippocampus during cerebral ischemia in stroke-prone SHR, stroke- resistant SHR and normotensive rats. Neurosci Lett 135: 184–188

    Article  PubMed  CAS  Google Scholar 

  47. Grunfeld S, Hamilton CA, Mesaros S, McClain SW, Dominiczak AF, Bohr DF, Malinski T (1995). Role of superoxide in the depressed nitric oxide production by the endothelium of genetically hypertensive rats. Hypertension 26: 854–85756

    Article  PubMed  CAS  Google Scholar 

  48. Swartz HM, Sentijurc M, Kocherginsky N (1995). Metabolism and distribution of nitroxides in tissues and organs. In: Kocherginsky N, Swartz HM (ed) Nitroxide spin labels reactions in biology and chemistry. Boca Raton, Florida

    Google Scholar 

  49. Hickenbottom SL, Grotta J (1998). Neuroprotective therapy. Semin Neurol 18: 485–492

    Article  PubMed  CAS  Google Scholar 

  50. Tan DX, Reiter RJ, Manchester LC, Yan MT, El-Sawi M, Sainz RM, Mayo JC, Kohen R, Allegra M, Hardeland R (2002). Chemical and physical properties and potential mechanisms: melatonin as a broad spectrum antioxidant and free radical scavenger. Curr Top Med Chem 2: 181–197

    Article  PubMed  CAS  Google Scholar 

  51. Hans P, Bonhomme V (2006). Why we still use intravenous drugs as the basic regimen for neurosurgical anaesthesia. Curr Opin Anaesthesiol 19: 498–503

    Article  PubMed  Google Scholar 

  52. Kevin LG, Novalija E, Stowe DF (2005). Reactive oxygen species as mediators of cardiac injury and protection: the relevance to anesthesia practice. Anesth Analg 101: 1275–1287

    Article  PubMed  Google Scholar 

  53. Wilson JX, Gelb AW (2002). Free radicals, antioxidants, and neurologic injury: possible relationship to cerebral protection by anesthetics. J Neurosurg Anesthesiol 14: 66–79

    Article  PubMed  Google Scholar 

  54. Kato R, Foex P (2002). Myocardial protection by anesthetic agents against ischemia-reperfusion injury: an update for anesthesiologists. Can J Anaesth 2002; 49: 777–791

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaichi-Chang-il Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Yoshino, F., Kobayashi, K., Lee, MCi. (2011). Assessment of Oxidative Stress in the Brain of Spontaneously Hypertensive Rat and Stroke-Prone Spontaneously Hypertensive Rat Using by Electron Spin Resonance Spectroscopy. In: Basu, S., Wiklund, L. (eds) Studies on Experimental Models. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-956-7_4

Download citation

Publish with us

Policies and ethics