Exercise as a Model to Study Oxidative Stress

  • Mari Carmen Gomez-Cabrera
  • Fabian Sanchis-Gomar
  • Vladimir Essau Martinez-Bello
  • Sandra Ibanez-Sania
  • Ana Lucia Nascimento
  • Li Li Ji
  • Jose VinaEmail author
Part of the Oxidative Stress in Applied Basic Research and Clinical Practice book series (OXISTRESS)


Physical exercise generates free radicals. The major source of radicals in exercise appears to be extracellular. Our experiments show that xanthine oxidase is a key player in the generation of superoxide during exercise. Mitochondrial contribution appears to be less important: during high oxygen utilization by mitochondria in state 3, the proportion of oxygen that is converted to superoxide is on an order of magnitude lower than in resting, state 4 conditions. Exercise-induced radicals constitute a double-edged sword: high intensity ­exercise causes the generation of relatively high concentrations of radicals that cause oxidative stress and eventually damage. On the other hand, low intensity training activates the expression of antioxidant genes and other cell adaptations to exercise. This has practical implications: antioxidant supplements are useful after exhaustive exercise (which causes damage) but should not be used in training (because oxidant-dependent adaptations are prevented). Thus, exercise is an excellent physiological model to understand oxidative stress and subsequent cellular adaptations to such stress.


Antioxidants Exercise Muscle Oxidative stress RONS ROS 


  1. 1.
    Sies H, Cadenas E. Oxidative stress: damage to intact cells and organs. Philos Trans R Soc Lond B Biol Sci 1985;311:617–31.PubMedCrossRefGoogle Scholar
  2. 2.
    Hwang ES, Kim GH. Biomarkers for oxidative stress status of DNA, lipids, and proteins in vitro and in vivo cancer research. Toxicology 2007;229:1–10.PubMedCrossRefGoogle Scholar
  3. 3.
    Commoner B, Townsend J, Pake GE. Free radicals in biological materials. Nature 1954;174:689–91.PubMedCrossRefGoogle Scholar
  4. 4.
    Dillard CJ, Litov RE, Tappel AL. Effects of dietary vitamin E, selenium, and polyunsaturated fats on in vivo lipid peroxidation in the rat as measured by pentane production. Lipids 1978;13:396–402.PubMedCrossRefGoogle Scholar
  5. 5.
    Koren A, Schara M, Sentjurc M. EPR measurements of free radicals during tetanic contractions of frog skeletal muscle. Period Biol 1980;82:399–401.Google Scholar
  6. 6.
    Davies KJ, Quintanilha AT, Brooks GA, Packer L. Free radicals and tissue damage produced by exercise. Biochem Biophys Res Commun 1982;107:1198–205.PubMedCrossRefGoogle Scholar
  7. 7.
    Gomez-Cabrera MC, Martinez A, Santangelo G, Pallardo FV, Sastre J, Vina J. Oxidative stress in marathon runners: interest of antioxidant supplementation. Br J Nutr 2006;96 Suppl 1:S31–3.PubMedCrossRefGoogle Scholar
  8. 8.
    Gomez-Cabrera MC, Pallardo FV, Sastre J, Vina J, Garcia-del-Moral L. Allopurinol and markers of muscle damage among participants in the Tour de France. Jama 2003;289:2503–4.PubMedCrossRefGoogle Scholar
  9. 9.
    Powers SK, Jackson MJ. Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev 2008;88:1243–76.PubMedCrossRefGoogle Scholar
  10. 10.
    Armstrong RB, Ogilvie RW, Schwane JA. Eccentric exercise-induced injury to rat skeletal muscle. J Appl Physiol 1983;54:80–93.PubMedGoogle Scholar
  11. 11.
    Zerba E, Komorovsky TE, Faulkner JA. Free radical injury to skeletal muscles of young, adult and old mice. Am J Physiol 1990;258:C429– C35.PubMedGoogle Scholar
  12. 12.
    Cooper CE, Vollaard NB, Choueiri T, Wilson MT. Exercise, free radicals and oxidative stress. Biochem Soc Trans 2002;30:280–5.PubMedCrossRefGoogle Scholar
  13. 13.
    Boveris A, Chance BC. The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J 1973;143:707–16.Google Scholar
  14. 14.
    Gomez-Cabrera MC, Domenech E, Vina J. Moderate exercise is an antioxidant: upregulation of antioxidant genes by training. Free Radic Biol Med 2008;44:126–31.PubMedCrossRefGoogle Scholar
  15. 15.
    Chance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev 1979;59:527–605.PubMedGoogle Scholar
  16. 16.
    Jackson MJ, Pye D, Palomero J. The production of reactive oxygen and nitrogen species by skeletal muscle. J Appl Physiol 2007;102:1664–70.PubMedCrossRefGoogle Scholar
  17. 17.
    St-Pierre J, Buckingham JA, Roebuck SJ, Brand MD. Topology of superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem 2002;277:44784–90.PubMedCrossRefGoogle Scholar
  18. 18.
    Espinosa A, Leiva A, Pena M, et al. Myotube depolarization generates reactive oxygen species through NAD(P)H oxidase; ROS-elicited Ca2+ stimulates ERK, CREB, early genes. J Cell Physiol 2006;209:379–88.PubMedCrossRefGoogle Scholar
  19. 19.
    Javesghani D, Magder SA, Barreiro E, Quinn MT, Hussain SN. Molecular characterization of a superoxide-generating NAD(P)H oxidase in the ventilatory muscles. Am J Respir Crit Care Med 2002;165:412–8.PubMedGoogle Scholar
  20. 20.
    Cherednichenko G, Zima AV, Feng W, Schaefer S, Blatter LA, Pessah IN. NADH oxidase activity of rat cardiac sarcoplasmic reticulum regulates calcium-induced calcium release. Circ Res 2004;94:478–86.PubMedCrossRefGoogle Scholar
  21. 21.
    Gong MC, Arbogast S, Guo Z, Mathenia J, Su W, Reid MB. Calcium-independent phospholipase A2 modulates cytosolic oxidant activity and contractile function in murine skeletal muscle cells. J Appl Physiol 2006;100:399–405.PubMedCrossRefGoogle Scholar
  22. 22.
    Supinski G, Nethery D, Stofan D, Szweda L, DiMarco A. Oxypurinol administration fails to prevent free radical-mediated lipid peroxidation during loaded breathing. J Appl Physiol 1999;87:1123–31.PubMedGoogle Scholar
  23. 23.
    Hellsten Y, Ahlborg G, Jensen-Urstad M, Sjodin B. Indication of in vivo xanthine oxidase activity in human skeletal muscle during exercise. Acta Physiol Scand 1988;134:159–60.PubMedCrossRefGoogle Scholar
  24. 24.
    Stofan DA, Callahan LA, Di MA, Nethery DE, Supinski GS. Modulation of release of reactive oxygen species by the contracting diaphragm. Am J Respir Crit Care Med 2000;161:891–8.PubMedGoogle Scholar
  25. 25.
    Harris CM, Sanders SA, Massey V. Role of the flavin midpoint potential and NAD binding in determining NAD versus oxygen reactivity of xanthine oxidoreductase. J Biol Chem 1999;274:4561–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Gomez-Cabrera MC, Borras C, Pallardo FV, Sastre J, Ji LL, Vina J. Decreasing xanthine oxidase-mediated oxidative stress prevents useful cellular adaptations to exercise in rats. J Physiol 2005;567:113–20.PubMedCrossRefGoogle Scholar
  27. 27.
    Balon TW, Nadler JL. Nitric oxide release is present from incubated skeletal muscle preparations. J Appl Physiol 1994;77:2519–21.PubMedGoogle Scholar
  28. 28.
    Pattwell DM, McArdle A, Morgan JE, Patridge TA, Jackson MJ. Release of reactive oxygen and nitrogen species from contracting skeletal muscle cells. Free Radic Biol Med 2004;37:1064–72.PubMedCrossRefGoogle Scholar
  29. 29.
    Machlin JM, Bendich A. Free radical tissue damage: protective role of antioxidant nutrients. FASEB J 1987;1:441–5.PubMedGoogle Scholar
  30. 30.
    Sen CK. Oxidants and antioxidants in exercise. J Appl Physiol 1995;79:675–86.PubMedGoogle Scholar
  31. 31.
    Ji LL. Oxidative stress during exercise: implication of antioxidant nutrients. Free Rad Biol Med 1995;18:1079–86.PubMedCrossRefGoogle Scholar
  32. 32.
    Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. Oxford: Clarendon Press, Reino Unido.; 1989.Google Scholar
  33. 33.
    Ji LL. Antioxidant enzyme response to exercise and aging. Med Sci Sports Exerc 1993;25:225–31.PubMedGoogle Scholar
  34. 34.
    Powers SK, Criswell D, Lawler J, et al. Rigorous exercise training increases superoxide dismutase activity in ventricular myocardium. Am J Physiol 1993;265:H2094–8.PubMedGoogle Scholar
  35. 35.
    Gomez-Cabrera MC, Domenech E, Romagnoli M, et al. Oral administration of vitamin C decreases muscle mitochondrial biogenesis and hampers training-induced adaptations in endurance performance. Am J Clin Nutr 2008;87:142–9.PubMedGoogle Scholar
  36. 36.
    Reid MB, Khawli FA, Moody MR. Reactive oxygen in skeletal muscle. III. Contractility of unfatigued muscle. J Appl Physiol 1993;75:1081–7.PubMedGoogle Scholar
  37. 37.
    Sams WM, Jr., Carroll NV, Crantz PL. Effect of dimethylsulfoxide on isolated-innervated skeletal, smooth, and cardiac muscle. Proc Soc Exp Biol Med 1966;122:103–7.PubMedGoogle Scholar
  38. 38.
    Khawli FA, Reid MB. N-acetylcysteine depresses contractile function and inhibits fatigue of diaphragm in vitro. J Appl Physiol 1994;77:317–24.PubMedGoogle Scholar
  39. 39.
    Gomez-Cabrera MC, Close GL, Kayani A, McArdle A, Viña J, Jackson MJ. Effect of xanthine oxidase-generated extracellular superoxide on skeletal muscle force generation. American Journal of Physiology:Regulatory, Integrative and Comparative Physiology 2009;Under review.Google Scholar
  40. 40.
    Ristow M, Zarse K, Oberbach A, et al. Antioxidants prevent health-promoting effects of physical exercise in humans. Proc Natl Acad Sci U S A 2009;106:8665–70.PubMedCrossRefGoogle Scholar
  41. 41.
    Wray DW, Uberoi A, Lawrenson L, Bailey DM, Richardson RS. Oral antioxidants and cardiovascular health in the exercise-trained and untrained elderly: a radically different outcome. Clin Sci (Lond) 2009;116:433–41.CrossRefGoogle Scholar
  42. 42.
    Ji LL, Gomez-Cabrera MC, Steinhafel N, Vina J. Acute exercise activates nuclear factor (NF)-kappaB signaling pathway in rat skeletal muscle. Faseb J 2004;18:1499–506.PubMedCrossRefGoogle Scholar
  43. 43.
    Kobzik L, Reid MB, Bredt DS, Stamler JS. Nitric oxide in skeletal muscle. Nature 1994;372:546–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Reid MB. Invited Review: redox modulation of skeletal muscle contraction: what we know and what we don’t. J Appl Physiol 2001;90:724–31.PubMedCrossRefGoogle Scholar
  45. 45.
    Kang C, O’Moore KM, Dickman JR, Ji LL. Exercise activation of muscle peroxisome proliferator-activated receptor-gamma coactivator-1alpha signaling is redox sensitive. Free Radic Biol Med 2009;47:1394–400.PubMedCrossRefGoogle Scholar
  46. 46.
    Jackson MJ. Free radicals in skin and muscle: damaging agents or signals for adaptation? Proc Nutr Soc 1999;58:673–6.PubMedCrossRefGoogle Scholar
  47. 47.
    Khassaf M, McArdle A, Esanu C, et al. Effect of vitamin C supplements on antioxidant defence and stress proteins in human lymphocytes and skeletal muscle. J Physiol 2003;549:645–52.PubMedCrossRefGoogle Scholar
  48. 48.
    Monteiro HP, Stern A. Redox modulation of tyrosine phosphorylation-dependent signal transduction pathways. Free Radic Biol Med 1996;21:323–33.PubMedCrossRefGoogle Scholar
  49. 49.
    Hoffmann E, Thiefes A, Buhrow D, et al. MEK1-dependent delayed expression of Fos-related antigen-1 counteracts c-Fos and p65 NF-kappaB-mediated interleukin-8 transcription in response to cytokines or growth factors. J Biol Chem 2005;280:9706–18.PubMedCrossRefGoogle Scholar
  50. 50.
    Allen RG, Tresini M. Oxidative stress and gene regulation. Free Radic Biol Med 2000;28:463–99.PubMedCrossRefGoogle Scholar
  51. 51.
    Meyer M, Pahl HL, Baeuerle PA. Regulation of the transcription factors NF-kappa B and AP-1 by redox changes. Chem Biol Interact 1994;91:91–100.PubMedCrossRefGoogle Scholar
  52. 52.
    Ghosh S, Karin M. Missing pieces in the NF-kappaB puzzle. Cell 2002;109 Suppl:S81–96.PubMedCrossRefGoogle Scholar
  53. 53.
    Hollander J, Fiebig R, Gore M, et al. Superoxide dismutase gene expression in skeletal muscle: fiber-specific adaptation to endurance training. Am J Physiol 1999;277:R856–62.PubMedGoogle Scholar
  54. 54.
    Hollander J, Fiebig R, Gore M, Ookawara T, Ohno H, Ji LL. Superoxide dismutase gene expression is activated by a single bout of exercise in rat skeletal muscle. Pflugers Arch 2001;442:426–34.PubMedCrossRefGoogle Scholar
  55. 55.
    Hansen JM, Zhang H, Jones DP. Differential oxidation of thioredoxin-1, thioredoxin-2, and glutathione by metal ions. Free Radic Biol Med 2006;40:138–45.PubMedCrossRefGoogle Scholar
  56. 56.
    Jornot L, Petersen H, Junod AF. Modulation of the DNA binding activity of transcription factors CREP, NFkappaB and HSF by H2O2 and TNF alpha. Differences between in vivo and in vitro effects. FEBS Lett 1997;416:381–6.PubMedCrossRefGoogle Scholar
  57. 57.
    Sen CK, Roy S. Relief from a heavy heart: redox-sensitive NF-kappaB as a therapeutic target in managing cardiac hypertrophy. Am J Physiol Heart Circ Physiol 2005;289:H17–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Goodyear LJ, Chang PY, Sherwood DJ, Dufresne SD, Moller DE. Effects of exercise and insulin on mitogen-activated protein kinase signaling pathways in rat skeletal muscle. Am J Physiol 1996;271:E403–8.PubMedGoogle Scholar
  59. 59.
    Aronson D, Violan MA, Dufresne SD, Zangen D, Fielding RA, Goodyear LJ. Exercise stimulates the mitogen-activated protein kinase pathway in human skeletal muscle. J Clin Invest 1997;99:1251–7.PubMedCrossRefGoogle Scholar
  60. 60.
    van Ginneken MM, de Graaf-Roelfsema E, Keizer HA, et al. Effect of exercise on activation of the p38 mitogen-activated protein kinase pathway, c-Jun NH2 terminal kinase, and heat shock protein 27 in equine skeletal muscle. Am J Vet Res 2006;67:837–44.PubMedCrossRefGoogle Scholar
  61. 61.
    Sumida S, Nakamura H, Yodoi J. Thioredoxin induction of peripheral blood mononuclear cells in mice in response to a single bout of swimming exercise. Gen Physiol Biophys 2004;23:241–9.Google Scholar
  62. 62.
    Zhou M, Lin BZ, Coughlin S, Vallega G, Pilch PF. UCP-3 expression in skeletal muscle: effects of exercise, hypoxia, and AMP-activated protein kinase. Am J Physiol Endocrinol Metab 2000;279:E622–9.PubMedGoogle Scholar
  63. 63.
    Vina J, Gomez-Cabrera MC, Borras C, et al. Mitochondrial biogenesis in exercise and in ageing. Adv Drug Deliv Rev 2009;61:1369–74.PubMedCrossRefGoogle Scholar
  64. 64.
    Clanton TL. Hypoxia-induced reactive oxygen species formation in skeletal muscle. J Appl Physiol 2007;102:2379–88.PubMedCrossRefGoogle Scholar
  65. 65.
    Magalhaes J, Ascensao A, Soares JM, et al. Acute and severe hypobaric hypoxia increases oxidative stress and impairs mitochondrial function in mouse skeletal muscle. J Appl Physiol 2005;99:1247–53.PubMedCrossRefGoogle Scholar
  66. 66.
    Dosek A, Ohno H, Acs Z, Taylor AW, Radak Z. High altitude and oxidative stress. Respir Physiol Neurobiol 2007.Google Scholar
  67. 67.
    Bailey DM, Davies B, Young IS. Intermittent hypoxic training: implications for lipid peroxidation induced by acute normoxic exercise in active men. Clin Sci (Lond) 2001;101:465–75.CrossRefGoogle Scholar
  68. 68.
    Wilber RL, Stray-Gundersen J, Levine BD. Effect of hypoxic “dose” on physiological responses and sea-level performance. Med Sci Sports Exerc 2007;39:1590–9.PubMedCrossRefGoogle Scholar
  69. 69.
    Levine BD, Stray-Gundersen J. A practical approach to altitude training: where to live and train for optimal performance enhancement. Int J Sports Med 1992;13 Suppl 1:S209–12.PubMedCrossRefGoogle Scholar
  70. 70.
    Pialoux V, Mounier R, Brugniaux JV, et al. Thirteen days of “live high-train low” does not affect prooxidant/antioxidant balance in elite swimmers. Eur J Appl Physiol 2009;106:517–24.PubMedCrossRefGoogle Scholar
  71. 71.
    Pialoux V, Mounier R, Rock E, et al. Effects of acute hypoxic exposure on prooxidant/antioxidant balance in elite endurance athletes. Int J Sports Med 2009;30:87–93.PubMedCrossRefGoogle Scholar
  72. 72.
    Radak Z, Asano K, Lee KC, et al. High altitude training increases reactive carbonyl derivatives but not lipid peroxidation in skeletal muscle of rats. Free Radic Biol Med 1997;22:1109–14.PubMedCrossRefGoogle Scholar
  73. 73.
    Devi SA, Vani R, Subramanyam MV, Reddy SS, Jeevaratnam K. Intermittent hypobaric hypoxia-induced oxidative stress in rat erythrocytes: protective effects of vitamin E, vitamin C, and carnitine. Cell Biochem Funct 2007;25:221–31.PubMedCrossRefGoogle Scholar
  74. 74.
    Radak Z, Lee K, Choi W, et al. Oxidative stress induced by intermittent exposure at a simulated altitude of 4000 m decreases mitochondrial superoxide dismutase content in soleus muscle of rats. Eur J Appl Physiol Occup Physiol 1994;69:392–5.PubMedCrossRefGoogle Scholar
  75. 75.
    Wolfe RR. The underappreciated role of muscle in health and disease. Am J Clin Nutr 2006;84:475–82.PubMedGoogle Scholar
  76. 76.
    Cooper CE, Beneke R. Drugs and Ergogenic Aids to Improve Sport Performance. London: Portland Press; 2008.Google Scholar
  77. 77.
    Pette D. Historical Perspectives: plasticity of mammalian skeletal muscle. J Appl Physiol 2001;90:1119–24.PubMedGoogle Scholar
  78. 78.
    McArdle A, van der Meulen JH, Catapano M, Symons MC, Faulkner JA, Jackson MJ. Free radical activity following contraction-induced injury to the extensor digitorum longus muscles of rats. Free Radic Biol Med 1999;26:1085–91.PubMedCrossRefGoogle Scholar
  79. 79.
    Jackson MJ, Edwards RH. Free radicals and trials of antioxidant therapy in muscle diseases. Adv Exp Med Biol 1990;264:485–91.PubMedCrossRefGoogle Scholar
  80. 80.
    Buetler TM, Renard M, Offord EA, Schneider H, Ruegg UT. Green tea extract decreases muscle necrosis in mdx mice and protects against reactive oxygen species. Am J Clin Nutr 2002;75:749–53.PubMedGoogle Scholar
  81. 81.
    Orrell RW, Lane RJ, Ross M. A systematic review of antioxidant treatment for amyotrophic lateral sclerosis/motor neuron disease. Amyotroph Lateral Scler 2008;9:195–211.PubMedCrossRefGoogle Scholar
  82. 82.
    Monici MC, Aguennouz M, Mazzeo A, Messina C, Vita G. Activation of nuclear factor-kappaB in inflammatory myopathies and Duchenne muscular dystrophy. Neurology 2003;60:993–7.PubMedCrossRefGoogle Scholar
  83. 83.
    Harman D. Aging: a theory based on free radical and ratiation chemistry. J Gerontol 1956;11:298–300.PubMedCrossRefGoogle Scholar
  84. 84.
    Kondo H, Miura M, Itokawa Y. Oxidative stress in skeletal muscle atrophied by immobilization. Acta Physiol Scand 1991;142:527–8.PubMedCrossRefGoogle Scholar
  85. 85.
    Ji LL, Gomez-Cabrera MC, Vina J. Role of free radicals and antioxidant signaling in skeletal muscle health and pathology. Infect Disord Drug Targets 2009;9:428–44.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Mari Carmen Gomez-Cabrera
  • Fabian Sanchis-Gomar
  • Vladimir Essau Martinez-Bello
  • Sandra Ibanez-Sania
  • Ana Lucia Nascimento
  • Li Li Ji
  • Jose Vina
    • 1
    Email author
  1. 1.Department of Physiology, Faculty of MedicineUniversity of Valencia, Fundacion Investigacion Hospital Clinico Universitario/INCLIVAValenciaSpain

Personalised recommendations