Skip to main content

Exercise as a Model to Study Interactions Between Oxidative Stress and Inflammation

  • Chapter
  • First Online:
Studies on Experimental Models

Abstract

Inflammation is involved in the pathogenesis of insulin resistance, ­atherosclerosis, neurodegeneration, and tumor growth, and low-grade chronic inflammation appears as a key player in the pathogenesis of several chronic diseases, including type 2 diabetes, cardiovascular disease, cancer and Alzheimer’s disease. Given that regular exercise offers protection against all causes of mortality, primarily by protection against atherosclerosis and insulin resistance, we suggest that exercise may exert some of its beneficial health effects by inducing anti-inflammatory actions. During exercise, skeletal muscles release IL-6 into the circulation and muscle-derived IL-6 mediates anti-inflammatory effects. Supplementation with antioxidative vitamins attenuates the systemic IL-6 response to exercise primarily via inhibition of the IL-6 protein release from contracting skeletal muscle per se. Apparently, antioxidants attenuate some of the normal physiological responses to nondamaging exercise. Therefore, the use of antioxidant supplementation may be less desirable from a long-term health perspective. This point of view is partly supported by large-scale studies showing no effect, or even a detrimental effect, of antioxidant supplementation on morbidity and mortality and by studies showing that antioxidants may blunt some of the metabolic effects of regular exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alessio HM. Exercise-induced oxidative stress. Med Sci Sports Exerc 1993; 25(2):218–224.

    PubMed  CAS  Google Scholar 

  2. Sobal J, Marquart LF. Vitamin/mineral supplement use among athletes: a review of the literature. Int J Sport Nutr 1994; 4(4):320–334.

    PubMed  CAS  Google Scholar 

  3. Rodriguez NR, Di Marco NM, Langley S. American College of Sports Medicine position stand. Nutrition and athletic performance. Med Sci Sports Exerc 2009; 41(3):709–731.

    Article  Google Scholar 

  4. Meydani M, Evans WJ, Handelman G et al. Protective effect of vitamin E on exercise-induced oxidative damage in young and older adults. Am J Physiol 1993; 264(5 Pt 2):R992–R998.

    PubMed  CAS  Google Scholar 

  5. Irrcher I, Ljubicic V, Hood DA. Interactions between ROS and AMP kinase activity in the regulation of PGC-1alpha transcription in skeletal muscle cells. Am J Physiol Cell Physiol 2009; 296(1):C116–C123.

    Article  PubMed  CAS  Google Scholar 

  6. Ji LL, Gomez-Cabrera MC, Vina J. Exercise and hormesis: activation of cellular antioxidant signaling pathway. Ann N Y Acad Sci 2006; 1067:425-35.:425–435.

    Google Scholar 

  7. Jackson MJ, Papa S, Bolanos J et al. Antioxidants, reactive oxygen and nitrogen species, gene induction and mitochondrial function. Mol Aspects Med 2002; 23(1-3):209–285.

    Article  PubMed  CAS  Google Scholar 

  8. Sen CK, Packer L. Antioxidant and redox regulation of gene transcription. FASEB J 1996; 10(7):709–720.

    PubMed  CAS  Google Scholar 

  9. Higuchi M, Cartier LJ, Chen M, Holloszy JO. Superoxide dismutase and catalase in skeletal muscle: adaptive response to exercise. J Gerontol 1985; 40(3):281–286.

    Article  PubMed  CAS  Google Scholar 

  10. Oh-ishi S, Kizaki T, Nagasawa J et al. Effects of endurance training on superoxide dismutase activity, content and mRNA expression in rat muscle. Clin Exp Pharmacol Physiol 1997; 24(5):326–332.

    Article  PubMed  CAS  Google Scholar 

  11. Jackson MJ. Muscle damage during exercise: possible role of free radicals and protective effect of vitamin E. Proc Nutr Soc 1987; 46(1):77–80.

    Article  PubMed  CAS  Google Scholar 

  12. Howald H, Segesser B, Korner WF. Ascorbic acid and athletic performance. Ann NY Acad Sci 1975; 258:458-64.:458–464.

    Google Scholar 

  13. Gey GO, Cooper KH, Bottenberg RA. Effect of ascorbic acid on endurance performance and athletic injury. JAMA 1970; 211(1):105.

    Article  PubMed  CAS  Google Scholar 

  14. Lawrence JD, Bower RC, Riehl WP, Smith JL. Effects of alpha-tocopherol acetate on the swimming endurance of trained swimmers. Am J Clin Nutr 1975; 28(3):205–208.

    PubMed  CAS  Google Scholar 

  15. Petersen EW, Ostrowski K, Ibfelt T et al. Effect of vitamin supplementation on cytokine response and on muscle damage after strenuous exercise. Am J Physiol Cell Physiol 2001; 280(6):C1570–C1575.

    PubMed  CAS  Google Scholar 

  16. Warren JA, Jenkins RR, Packer L, Witt EH, Armstrong RB. Elevated muscle vitamin E does not attenuate eccentric exercise-induced muscle injury. J Appl Physiol 1992; 72(6):2168–2175.

    PubMed  CAS  Google Scholar 

  17. Kaikkonen J, Kosonen L, Nyyssonen K et al. Effect of combined coenzyme Q10 and d-alpha-tocopheryl acetate supplementation on exercise-induced lipid peroxidation and muscular damage: a placebo-controlled double-blind study in marathon runners. Free Radic Res 1998; 29(1):85–92.

    Article  PubMed  CAS  Google Scholar 

  18. McBride JM, Kraemer WJ, Triplett-McBride T, Sebastianelli W. Effect of resistance exercise on free radical production. Med Sci Sports Exerc 1998; 30(1):67–72.

    Article  PubMed  CAS  Google Scholar 

  19. Sumida S, Tanaka K, Kitao H, Nakadomo F. Exercise-induced lipid peroxidation and leakage of enzymes before and after vitamin E supplementation. Int J Biochem 1989; 21(8):835–838.

    Article  PubMed  CAS  Google Scholar 

  20. Rokitzki L, Logemann E, Sagredos AN, Murphy M, Wetzel-Roth W, Keul J. Lipid peroxidation and antioxidative vitamins under extreme endurance stress. Acta Physiol Scand 1994; 151(2):149–158.

    Article  PubMed  CAS  Google Scholar 

  21. Pedersen BK, Febbraio MA. Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev 2008; 88(4):1379–1406.

    Article  PubMed  CAS  Google Scholar 

  22. Fischer CP. Interleukin-6 in acute exercise and training: what is the biological relevance? Exerc Immunol Rev 2006; 12:6-33.:6–33.

    Google Scholar 

  23. Bruunsgaard H, Galbo H, Halkjaer-Kristensen J, Johansen TL, MacLean DA, Pedersen BK. Exercise-induced increase in serum interleukin-6 in humans is related to muscle damage. J Physiol 1997; 499(Pt 3):833–841.

    PubMed  CAS  Google Scholar 

  24. Nieman DC, Nehlsen-Cannarella SL, Fagoaga OR et al. Influence of mode and carbohydrate on the cytokine response to heavy exertion. Med Sci Sports Exerc 1998; 30(5):671–678.

    Article  PubMed  CAS  Google Scholar 

  25. Nehlsen-Cannarella SL, Fagoaga OR, Nieman DC et al. Carbohydrate and the cytokine response to 2.5 h of running. J Appl Physiol 1997; 82(5):1662–1667.

    PubMed  CAS  Google Scholar 

  26. Ullum H, Haahr PM, Diamant M, Palmo J, Halkjaer-Kristensen J, Pedersen BK. Bicycle exercise enhances plasma IL-6 but does not change IL-1 alpha, IL-1 beta, IL-6, or TNF-alpha pre-mRNA in BMNC. J Appl Physiol 1994; 77(1):93–97.

    PubMed  CAS  Google Scholar 

  27. Moldoveanu AI, Shephard RJ, Shek PN. Exercise elevates plasma levels but not gene expression of IL-1beta, IL-6, and TNF-alpha in blood mononuclear cells. J Appl Physiol 2000; 89(4):1499–1504.

    PubMed  CAS  Google Scholar 

  28. Starkie RL, Angus DJ, Rolland J, Hargreaves M, Febbraio MA. Effect of prolonged, submaximal exercise and carbohydrate ingestion on monocyte intracellular cytokine production in humans. J Physiol 2000; 528(Pt 3):647–655.

    Article  PubMed  CAS  Google Scholar 

  29. Croisier JL, Camus G, Venneman I et al. Effects of training on exercise-induced muscle damage and interleukin 6 production. Muscle Nerve 1999; 22(2):208–212.

    Article  PubMed  CAS  Google Scholar 

  30. Steensberg A, van HG, Osada T, Sacchetti M, Saltin B, Klarlund PB. Production of interleukin-6 in contracting human skeletal muscles can account for the exercise-induced increase in plasma interleukin-6. J Physiol 2000; 529 Pt 1:237-42.:237–242.

    Google Scholar 

  31. Thompson D, Williams C, McGregor SJ et al. Prolonged vitamin C supplementation and recovery from demanding exercise. Int J Sport Nutr Exerc Metab 2001; 11(4):466–481.

    PubMed  CAS  Google Scholar 

  32. Vassilakopoulos T, Karatza MH, Katsaounou P, Kollintza A, Zakynthinos S, Roussos C. Antioxidants attenuate the plasma cytokine response to exercise in humans. J Appl Physiol 2003; 94(3):1025–1032.

    PubMed  CAS  Google Scholar 

  33. Kosmidou I, Vassilakopoulos T, Xagorari A, Zakynthinos S, Papapetropoulos A, Roussos C. Production of interleukin-6 by skeletal myotubes: role of reactive oxygen species. Am J Respir Cell Mol Biol 2002; 26(5):587–593.

    PubMed  CAS  Google Scholar 

  34. Fischer CP, Hiscock NJ, Penkowa M et al. Supplementation with vitamins C and E inhibits the release of interleukin-6 from contracting human skeletal muscle. J Physiol 2004; 558(Pt 2):633–645.

    Article  PubMed  CAS  Google Scholar 

  35. Pedersen BK. Edward F. Adolph distinguished lecture: muscle as an endocrine organ: IL-6 and other myokines. J Appl Physiol 2009; 107(4):1006–1014.

    Google Scholar 

  36. Vivekananthan DP, Penn MS, Sapp SK, Hsu A, Topol EJ. Use of antioxidant vitamins for the prevention of cardiovascular disease: meta-analysis of randomised trials. Lancet 2003; 361(9374):2017–2023.

    Article  PubMed  CAS  Google Scholar 

  37. Pedersen BK. The Diseasome of Physical Inactivity- and the role of myokines in muscle-fat cross talk. J Physiol 2009.

    Google Scholar 

  38. Plomgaard P, Nielsen AR, Fischer CP et al. Associations between insulin resistance and TNF-alpha in plasma, skeletal muscle and adipose tissue in humans with and without type 2 diabetes. Diabetologia 2007; 50(12):2562–2571.

    Article  PubMed  CAS  Google Scholar 

  39. Plomgaard P, Keller P, Keller C, Pedersen BK. TNF-alpha, but not IL-6, stimulates plasminogen activator inhibitor-1 expression in human subcutaneous adipose tissue. J Appl Physiol 2005; 98(6):2019–2023.

    Article  PubMed  CAS  Google Scholar 

  40. Lin WW, Karin M. A cytokine-mediated link between innate immunity, inflammation, and cancer. J Clin Invest 2007; 117(5):1175–1183.

    Article  PubMed  CAS  Google Scholar 

  41. Handschin C, Spiegelman BM. The role of exercise and PGC1alpha in inflammation and chronic disease. Nature 2008; 454(7203):463–469.

    Article  PubMed  CAS  Google Scholar 

  42. Plomgaard P, Fischer CP, Ibfelt T, Pedersen BK, van HG. Tumor necrosis factor-alpha modulates human in vivo lipolysis. J Clin Endocrinol Metab 2008; 93(2):543–549.

    Article  CAS  Google Scholar 

  43. van HG, Steensberg A, Sacchetti M et al. Interleukin-6 stimulates lipolysis and fat oxidation in humans. J Clin Endocrinol Metab 2003; 88(7):3005–3010.

    Google Scholar 

  44. Starkie R, Ostrowski SR, Jauffred S, Febbraio M, Pedersen BK. Exercise and IL-6 infusion inhibit endotoxin-induced TNF-alpha production in humans. FASEB J 2003; 17(8):884–886.

    PubMed  CAS  Google Scholar 

  45. Gomez-Cabrera MC, Domenech E, Romagnoli M et al. Oral administration of vitamin C decreases muscle mitochondrial biogenesis and hampers training-induced adaptations in endurance performance. Am J Clin Nutr 2008; 87(1):142–149.

    PubMed  CAS  Google Scholar 

  46. Ristow M, Zarse K, Oberbach A et al. Antioxidants prevent health-promoting effects of physical exercise in humans. Proc Natl Acad Sci U S A 2009; 106(21):8665–8670.

    Article  PubMed  CAS  Google Scholar 

  47. Wray DW, Uberoi A, Lawrenson L, Bailey DM, Richardson RS. Oral antioxidants and cardiovascular health in the exercise-trained and untrained elderly: a radically different outcome. Clin Sci (Lond) 2009; 116(5):433–441.

    Article  CAS  Google Scholar 

  48. J Physiol. 2009 Dec 1;587(Pt 23):5559-68. Epub 2009 Sep 14. The diseasome of physical inactivity--and the role of myokines in muscle--fat cross talk. Pedersen BK.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The Centre of Inflammation and Metabolism is supported by a grant from the Danish National Research Foundation (DG 02-512-555). In addition, support was obtained from the Danish Medical Research Council, and the Commission of the European Communities (contract no. LSHM-CT-2004-005272 EXGENESIS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bente Klarlund Pedersen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Yfanti, C., Nielsen, S., Scheele, C., Pedersen, B.K. (2011). Exercise as a Model to Study Interactions Between Oxidative Stress and Inflammation. In: Basu, S., Wiklund, L. (eds) Studies on Experimental Models. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-956-7_25

Download citation

Publish with us

Policies and ethics