Advertisement

Enhanced Urinary Excretion of Lipid Metabolites Following Exposure to Structurally Diverse Toxicants: A Unique Experimental Model for the Assessment of Oxidative Stress

  • Francis C. Lau
  • Manashi Bagchi
  • Shirley Zafra-Stone
  • Debasis BagchiEmail author
Chapter
  • 1.1k Downloads
Part of the Oxidative Stress in Applied Basic Research and Clinical Practice book series (OXISTRESS)

Abstract

Structurally diverse toxicants in the environment are responsible for the production of reactive oxygen species (ROS) in biological systems. The accumulation of ROS results in oxidative stress and causes damage to macromolecules such as DNA, proteins, lipids and carbohydrates. Consequently, exposure to environmental oxidants increases the occurrence of a number of diseases as well as reproductive and developmental defects. One of the hallmarks of oxidant-induced oxidative stress is the production of fat metabolites caused by lipid peroxidation. Lipid metabolites such as acetaldehyde, acetone, formaldehyde and malondialdehyde can be quantified in biological fluids including serum and urine using high-performance liquid chromatography, gas chromatography and/or mass spectrometry. In this regard, the simultaneous detection of lipid metabolites using these procedures may provide a powerful tool for the rapid, accurate, reproducible and noninvasive assessment of oxidative stress induced by environmental exposure to toxicants. This chapter reviews the application of these methodologies in the evaluation of temporal effects of toxicant exposure on lipid peroxidation in a variety of experimental systems.

Keywords

Acetaldehyde Acetone Formaldehyde Lipid metabolites Lipid peroxidation Malondialdehyde Oxidative stress Toxicants 

References

  1. 1.
    Orrenius S, McConkey DJ, Bellomo G, Nicotera P. Role of Ca2+ in toxic cell killing. Trends Pharmacol Sci. 1989 Jul;10:281–5.PubMedCrossRefGoogle Scholar
  2. 2.
    Pacifici RE, Davies KJ. Protein, lipid and DNA repair systems in oxidative stress: the free-radical theory of aging revisited. Gerontology. 1991;37:166–80.PubMedCrossRefGoogle Scholar
  3. 3.
    Ames BN, Shigenaga MK, Hagen TM. Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci. 1993;90:7915–22.PubMedCrossRefGoogle Scholar
  4. 4.
    Simonian NA, Coyle JT. Oxidative stress in neurodegenerative diseases. Ann Rev Pharmacol Toxicol. 1996;36:83–106.CrossRefGoogle Scholar
  5. 5.
    Barja G, Herrero A. Oxidative damage to mitochondrial DNA is inversely related to maximum life span in the heart and brain of mammals. Faseb J. 2000 Feb;14:312–8.PubMedGoogle Scholar
  6. 6.
    Stadtman ER, Levine RL. Protein oxidation. Ann N Y Acad Sci. 2000;899:191–208.PubMedCrossRefGoogle Scholar
  7. 7.
    Beal MF. Oxidatively modified proteins in aging and disease. Free Radic Biol Med. 2002 May 1;32:797–803.PubMedCrossRefGoogle Scholar
  8. 8.
    Sohal RS. Role of oxidative stress and protein oxidation in the aging process. Free Radic Biol Med. 2002 Jul 1;33:37–44.PubMedCrossRefGoogle Scholar
  9. 9.
    Gianni P, Jan KJ, Douglas MJ, Stuart PM, Tarnopolsky MA. Oxidative stress and the mitochondrial theory of aging in human skeletal muscle. Exp Gerontol. 2004 Sep;39:1391–  400.PubMedCrossRefGoogle Scholar
  10. 10.
    Girotti AW. Lipid hydroperoxide generation, turnover, and effector action in biological systems. J Lipid Res. 1998 Aug;39:1529–42.PubMedGoogle Scholar
  11. 11.
    Contestabile A. Oxidative stress in neurodegeneration: mechanisms and therapeutic perspectives. Curr Top Med Chem. 2001 Dec;1:553–68.PubMedCrossRefGoogle Scholar
  12. 12.
    Cuzzocrea S, Riley DP, Caputi AP, Salvemini D. Antioxidant therapy: a new pharmacological approach in shock, inflammation, and ischemia/reperfusion injury. Pharmacol Rev. 2001 Mar;53:135–59.PubMedGoogle Scholar
  13. 13.
    Evans P, Halliwell B. Micronutrients: oxidant/antioxidant status. Br J Nutr. 2001 May;85 Suppl 2:S67–74.PubMedCrossRefGoogle Scholar
  14. 14.
    Beckman KB, Ames BN. The free radical theory of aging matures. Physiological reviews. 1998 Apr;78:547–81.PubMedGoogle Scholar
  15. 15.
    Halliwell B. Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs & aging. 2001;18:685–716.CrossRefGoogle Scholar
  16. 16.
    Droge W. Free radicals in the physiological control of cell function. Physiological reviews. 2002 Jan;82:47–95.PubMedGoogle Scholar
  17. 17.
    Shigenaga MK, Hagen TM, Ames BN. Oxidative damage and mitochondrial decay in aging. Proc Natl Acad Sci USA. 1994 Nov 8;91:10771–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Sastre J, Pallardo FV, Vina J. The role of mitochondrial oxidative stress in aging. Free Radic Biol Med. 2003 Jul 1;35:1–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Nohl H, Gille L, Staniek K. Intracellular generation of reactive oxygen species by mitochondria. Biochem Pharmacol. 2005 Mar 1;69:719–23.PubMedCrossRefGoogle Scholar
  20. 20.
    Chance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian organs. Physiological reviews. 1979 Jul;59:527–605.PubMedGoogle Scholar
  21. 21.
    Wickens AP. Ageing and the free radical theory. Respir Physiol. 2001 Nov 15;128:379–91.PubMedCrossRefGoogle Scholar
  22. 22.
    McCord JM, Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969 Nov 25;244:6049–55.PubMedGoogle Scholar
  23. 23.
    Maker HS, Weiss C, Silides DJ, Cohen G. Coupling of dopamine oxidation (monoamine oxidase activity) to glutathione oxidation via the generation of hydrogen peroxide in rat brain homogenates. J Neurochem. 1981 Feb;36:589–93.PubMedCrossRefGoogle Scholar
  24. 24.
    Spina MB, Cohen G. Hydrogen peroxide production in dopamine neurons. Basic life sciences. 1988;49:1011–4.PubMedGoogle Scholar
  25. 25.
    Sandri G, Panfili E, Ernster L. Hydrogen peroxide production by monoamine oxidase in isolated rat-brain mitochondria: its effect on glutathione levels and Ca2+ efflux. Biochim Biophys Acta. 1990 Sep 14;1035:300–5.PubMedCrossRefGoogle Scholar
  26. 26.
    Huang J, Philbert MA. Distribution of glutathione and glutathione-related enzyme systems in mitochondria and cytosol of cultured cerebellar astrocytes and granule cells. Brain research. 1995 May 22;680:16–22.PubMedCrossRefGoogle Scholar
  27. 27.
    Halliwell B. Reactive oxygen species and the central nervous system. J Neurochem. 1992 Nov;59:1609–23.PubMedCrossRefGoogle Scholar
  28. 28.
    Halliwell B, Clement MV, Long LH. Hydrogen peroxide in the human body. FEBS Lett. 2000 Dec 1;486:10–3.PubMedCrossRefGoogle Scholar
  29. 29.
    Slivka A, Cohen G. Hydroxyl radical attack on dopamine. J Biol Chem. 1985 Dec 15;260:15466–72.PubMedGoogle Scholar
  30. 30.
    Halliwell B, Gutteridge JM. Biologically relevant metal ion-dependent hydroxyl radical generation. An update. FEBS Lett. 1992 Jul 27;307:108–12.CrossRefGoogle Scholar
  31. 31.
    Halliwell B. Free radicals and antioxidants: a personal view. Nutr Rev. 1994;52:253–65.PubMedCrossRefGoogle Scholar
  32. 32.
    Cavazzoni M, Barogi S, Baracca A, Parenti Castelli G, Lenaz G. The effect of aging and an oxidative stress on peroxide levels and the mitochondrial membrane potential in isolated rat hepatocytes. FEBS Lett. 1999 Apr 16;449:53–6.PubMedCrossRefGoogle Scholar
  33. 33.
    Koshland DE, Jr. The molecule of the year. Science. 1992 Dec 18;258:1861.PubMedCrossRefGoogle Scholar
  34. 34.
    Moncada S, Palmer RM, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991 Jun;43:109–42.PubMedGoogle Scholar
  35. 35.
    Lipton SA, Choi YB, Pan ZH, Lei SZ, Chen HS, Sucher NJ, Loscalzo J, Singel DJ, Stamler JS. A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature. 1993 Aug 12;364:626–32.PubMedCrossRefGoogle Scholar
  36. 36.
    Dawson TM, Dawson VL. Nitric oxide synthase: role as a transmitter/mediator in the brain and endocrine system. Annual review of medicine. 1996;47:219–27.PubMedCrossRefGoogle Scholar
  37. 37.
    Lloyd-Jones DM, Bloch KD. The vascular biology of nitric oxide and its role in atherogenesis. Annual review of medicine. 1996;47:365–75.PubMedCrossRefGoogle Scholar
  38. 38.
    Calabrese V, Bates TE, Stella AM. NO synthase and NO-dependent signal pathways in brain aging and neurodegenerative disorders: the role of oxidant/antioxidant balance. Neurochemical research. 2000 Oct;25:1315–41.PubMedCrossRefGoogle Scholar
  39. 39.
    Shinde UA, Mehta AA, Goyal RK. Nitric oxide: a molecule of the millennium. Indian J Exp Biol. 2000 Mar;38:201–10.PubMedGoogle Scholar
  40. 40.
    Esch T, Stefano GB, Fricchione GL, Benson H. Stress-related diseases - a potential role for nitric oxide. Med Sci Monit. 2002 Jun;8:RA103–18.Google Scholar
  41. 41.
    Virag L, Szabo E, Bakondi E, Bai P, Gergely P, Hunyadi J, Szabo C. Nitric oxide-peroxynitrite-poly(ADP-ribose) polymerase pathway in the skin. Exp Dermatol. 2002 Jun;11:189–202.PubMedCrossRefGoogle Scholar
  42. 42.
    Mariotto S, Menegazzi M, Suzuki H. Biochemical aspects of nitric oxide. Current pharmaceutical design. 2004;10:1627–45.PubMedCrossRefGoogle Scholar
  43. 43.
    Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. The American journal of physiology. 1996 Nov;271:C1424–37.PubMedGoogle Scholar
  44. 44.
    Eiserich JP, Patel RP, O’Donnell VB. Pathophysiology of nitric oxide and related species: free radical reactions and modification of biomolecules. Molecular aspects of medicine. 1998Aug-Oct;19:221–357.PubMedCrossRefGoogle Scholar
  45. 45.
    Vleeming W, Rambali B, Opperhuizen A. The role of nitric oxide in cigarette smoking and nicotine addiction. Nicotine Tob Res. 2002 Aug;4:341–8.PubMedCrossRefGoogle Scholar
  46. 46.
    Crow JP, Beckman JS. The importance of superoxide in nitric oxide-dependent toxicity: evidence for peroxynitrite-mediated injury. Adv Exp Med Biol. 1996;387:147–61.PubMedGoogle Scholar
  47. 47.
    Stamler JS, Singel DJ, Loscalzo J. Biochemistry of nitric oxide and its redox-activated forms. Science. 1992 Dec 18;258:1898–902.PubMedCrossRefGoogle Scholar
  48. 48.
    Patel RP, McAndrew J, Sellak H, White CR, Jo H, Freeman BA, Darley-Usmar VM. Biological aspects of reactive nitrogen species. Biochim Biophys Acta. 1999 May 5;1411:385–400.PubMedCrossRefGoogle Scholar
  49. 49.
    Halliwell B. Antioxidants in human health and disease. Annu Rev Nutr. 1996;16:33–50.PubMedCrossRefGoogle Scholar
  50. 50.
    Berger MM. Can oxidative damage be treated nutritionally? Clin Nutr. 2005 Apr;24:172–83.Google Scholar
  51. 51.
    Perez-Campo R, Lopez-Torres M, Cadenas S, Rojas C, Barja G. The rate of free radical production as a determinant of the rate of aging: evidence from the comparative approach. J Comp Physiol [B]. 1998 Apr;168:149–58.CrossRefGoogle Scholar
  52. 52.
    Dalton TP, Shertzer HG, Puga A. Regulation of gene expression by reactive oxygen. Annu Rev Pharmacol Toxicol. 1999;39:67–101.PubMedCrossRefGoogle Scholar
  53. 53.
    Davies KJ. Oxidative stress, antioxidant defenses, and damage removal, repair, and replacement systems. IUBMB Life. 2000 Oct-Nov;50:279–89.PubMedCrossRefGoogle Scholar
  54. 54.
    Annunziato L, Pannaccione A, Cataldi M, Secondo A, Castaldo P, Di Renzo G, Taglialatela M. Modulation of ion channels by reactive oxygen and nitrogen species: a pathophysiological role in brain aging? Neurobiol Aging. 2002 Sep-Oct;23:819–34.Google Scholar
  55. 55.
    Hughes KA, Reynolds RM. Evolutionary and Mechanistic Theories of Aging. Annu Rev Entomol. 2005 Sep 7;50:421–45.PubMedCrossRefGoogle Scholar
  56. 56.
    Waring P. Redox active calcium ion channels and cell death. Arch Biochem Biophys. 2005 Feb 1;434:33–42.PubMedCrossRefGoogle Scholar
  57. 57.
    Kannan K, Jain SK. Oxidative stress and apoptosis. Pathophysiology. 2000 Sep;7:153–  63.PubMedCrossRefGoogle Scholar
  58. 58.
    Tan S, Schubert D, Maher P. Oxytosis: A novel form of programmed cell death. Curr Top Med Chem. 2001 Dec;1:497–506.PubMedCrossRefGoogle Scholar
  59. 59.
    Rego AC, Oliveira CR. Mitochondrial dysfunction and reactive oxygen species in excitotoxicity and apoptosis: implications for the pathogenesis of neurodegenerative diseases. Neurochemical research. 2003 Oct;28:1563–74.PubMedCrossRefGoogle Scholar
  60. 60.
    Bagchi D, Bagchi M, Hassoun EA, Stohs SJ. Detection of paraquat-induced in vivo lipid peroxidation by gas chromatography/mass spectrometry and high-pressure liquid chromatography. J Anal Toxicol. 1993 Nov-Dec;17:411–4.PubMedGoogle Scholar
  61. 61.
    Bagchi D, Vuchetich PJ, Bagchi M, Hassoun EA, Tran MX, Tang L, Stohs SJ. Induction of oxidative stress by chronic administration of sodium dichromate [chromium VI] and cadmium chloride [cadmium II] to rats. Free Radic Biol Med. 1997;22:471–8.PubMedCrossRefGoogle Scholar
  62. 62.
    Bagchi D, Balmoori J, Bagchi M, Ye X, Williams CB, Stohs SJ. Comparative effects of TCDD, endrin, naphthalene and chromium (VI) on oxidative stress and tissue damage in the liver and brain tissues of mice. Toxicology. 2002 Jun 14;175:73–82.PubMedCrossRefGoogle Scholar
  63. 63.
    Bagchi D, Bagchi M, Hassoun E, Stohs SJ. Carbon-tetrachloride-induced urinary excretion of formaldehyde, malondialdehyde, acetaldehyde and acetone in rats. Pharmacology. 1993 Sep;47:209–16.PubMedCrossRefGoogle Scholar
  64. 64.
    Bagchi D, Bagchi M, Hassoun E, Moser J, Stohs SJ. Effects of carbon tetrachloride, menadione, and paraquat on the urinary excretion of malondialdehyde, formaldehyde, acetaldehyde, and acetone in rats. Journal of biochemical toxicology. 1993 Jun;8:101–6.PubMedCrossRefGoogle Scholar
  65. 65.
    Kopf PG, Huwe JK, Walker MK. Hypertension, cardiac hypertrophy, and impaired vascular relaxation induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin are associated with increased superoxide. Cardiovascular toxicology. 2008 Dec;8:181–93.PubMedCrossRefGoogle Scholar
  66. 66.
    Fukuda I, Tsutsui M, Sakane I, Ashida H. Suppression of cytochrome P450 1A1 expression induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin in mouse hepatoma hepa-1c1c7 cells treated with serum of (-)-epigallocatechin-3-gallate- and green tea extract-administered rats. Biosci Biotechnol Biochem. 2009 May;73:1206–8.PubMedCrossRefGoogle Scholar
  67. 67.
    Sorg O, Zennegg M, Schmid P, Fedosyuk R, Valikhnovskyi R, Gaide O, Kniazevych V, Saurat JH. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) poisoning in Victor Yushchenko: identification and measurement of TCDD metabolites. Lancet. 2009 Oct 3;374:1179–85.PubMedCrossRefGoogle Scholar
  68. 68.
    Collins JJ, Bodner K, Aylward LL, Wilken M, Bodnar CM. Mortality rates among trichlorophenol workers with exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Am J Epidemiol. 2009 Aug 15;170:501–6.PubMedCrossRefGoogle Scholar
  69. 69.
    Moreno-Aliaga MJ, Matsumura F. Endrin inhibits adipocyte differentiation by selectively altering expression pattern of CCAAT/enhancer binding protein-alpha in 3T3-L1 cells. Mol Pharmacol. 1999 Jul;56:91–101.PubMedGoogle Scholar
  70. 70.
    Hassoun EA, Stohs SJ. Comparative teratological studies on TCDD, endrin and lindane in C57BL/6J and DBA/2J mice. Comparative biochemistry and physiology. 1996 Mar;113:393–8.PubMedCrossRefGoogle Scholar
  71. 71.
    Bagchi M, Hassoun E, Akubue P, Bagchi D, Stohs SJ. Comparative effects of endrin on hepatic lipid peroxidation and DNA damage, and nitric oxide production by peritoneal macrophages from C57BL/6J and DBA/2 mice. Comparative biochemistry and physiology. 1993 Jul;105:525–9.CrossRefGoogle Scholar
  72. 72.
    Hassoun EA, Bagchi D, Stohs SJ. TCDD endrin and lindane induced increases in lipid metabolites in maternal sera and amniotic fluids of pregnant C57BL/6J and DBA/2J mice. Res Commun Mol Pathol Pharmacol. 1996 Nov;94:157–69.PubMedGoogle Scholar
  73. 73.
    Hassoun EA, Stohs SJ. TCDD, endrin and lindane induced oxidative stress in fetal and placental tissues of C57BL/6J and DBA/2J mice. Comparative biochemistry and physiology. 1996 Sep;115:11–8.PubMedCrossRefGoogle Scholar
  74. 74.
    Bagchi D, Bagchi M, Hassoun EA, Stohs SJ. In vitro and in vivo generation of reactive oxygen species, DNA damage and lactate dehydrogenase leakage by selected pesticides. Toxicology. 1995 Dec 15;104:129–40.PubMedCrossRefGoogle Scholar
  75. 75.
    Yoon SC. Clinical outcome of paraquat poisoning. Korean J Intern Med. 2009 Jun;24:93–  4.PubMedCrossRefGoogle Scholar
  76. 76.
    Bismuth C, Garnier R, Dally S, Fournier PE, Scherrmann JM. Prognosis and treatment of paraquat poisoning: a review of 28 cases. J Toxicol Clin Toxicol. 1982 Jul;19:461–74.PubMedCrossRefGoogle Scholar
  77. 77.
    Lee KH, Gil HW, Kim YT, Yang JO, Lee EY, Hong SY. Marked recovery from paraquat-induced lung injury during long-term follow-up. Korean J Intern Med. 2009 Jun;24:95  –100.PubMedCrossRefGoogle Scholar
  78. 78.
    Senarathna L, Eddleston M, Wilks MF, Woollen BH, Tomenson JA, Roberts DM, Buckley NA. Prediction of outcome after paraquat poisoning by measurement of the plasma paraquat concentration. QJM. 2009 Apr;102:251–9.PubMedCrossRefGoogle Scholar
  79. 79.
    Jenner P, Olanow W. Oxidative stress and the pathogenesis of Parkinson’s disease. Neurology. 1996;47:S161–S70.PubMedCrossRefGoogle Scholar
  80. 80.
    Costello S, Cockburn M, Bronstein J, Zhang X, Ritz B. Parkinson’s disease and residential exposure to maneb and paraquat from agricultural applications in the central valley of California. Am J Epidemiol. 2009 Apr 15;169:919–26.PubMedCrossRefGoogle Scholar
  81. 81.
    Castello PR, Drechsel DA, Patel M. Mitochondria are a major source of paraquat-induced reactive oxygen species production in the brain. J Biol Chem. 2007 May 11;282:14186–93.PubMedCrossRefGoogle Scholar
  82. 82.
    Somayajulu-Nitu M, Sandhu JK, Cohen J, Sikorska M, Sridhar TS, Matei A, Borowy-Borowski H, Pandey S. Paraquat induces oxidative stress, neuronal loss in substantia nigra region and Parkinsonism in adult rats: neuroprotection and amelioration of symptoms by water-soluble formulation of Coenzyme Q10. BMC Neurosci. 2009;10:88.PubMedCrossRefGoogle Scholar
  83. 83.
    Vuchetich PJ, Bagchi D, Bagchi M, Hassoun EA, Tang L, Stohs SJ. Naphthalene-induced oxidative stress in rats and the protective effects of vitamin E succinate. Free Radic Biol Med. 1996;21:577–90.PubMedCrossRefGoogle Scholar
  84. 84.
    Lim HC, Poulose V, Tan HH. Acute naphthalene poisoning following the non-accidental ingestion of mothballs. Singapore medical journal. 2009 Aug;50:e298–301.PubMedGoogle Scholar
  85. 85.
    Pardini RS, Tilka MA, Pritsos CA, Lin AJ, Sartorelli AC. Characterization of 2,3-bis(chloromethyl)-1,4-naphthoquinone induced mitochondrial swelling. Chemico-biological interactions. 1981 May;35:241–53.PubMedCrossRefGoogle Scholar
  86. 86.
    Pritsos CA, Pardini RS. A redox cycling mechanism of action for 2,3-dichloro-1,4-naphthoquinone with mitochondrial membranes and the role of sulfhydryl groups. Biochem Pharmacol. 1984 Dec 1;33:3771–7.PubMedCrossRefGoogle Scholar
  87. 87.
    Yamauchi T, Komura S, Yagi K. Serum lipid peroxide levels of albino rats administered naphthalene. Biochem Int. 1986 Jul;13:1–6.PubMedGoogle Scholar
  88. 88.
    Germansky M, Jamall IS. Organ-specific effects of naphthalene on tissue peroxidation, glutathione peroxidases and superoxide dismutase in the rat. Archives of toxicology. 1988;61:480–3.PubMedCrossRefGoogle Scholar
  89. 89.
    Bagchi D, Bagchi M, Stohs SJ. Chromium (VI)-induced oxidative stress, apoptotic cell death and modulation of p53 tumor suppressor gene. Mol Cell Biochem. 2001 Jun;222:149–58.PubMedCrossRefGoogle Scholar
  90. 90.
    Cohen MD, Kargacin B, Klein CB, Costa M. Mechanisms of chromium carcinogenicity and toxicity. Critical reviews in toxicology. 1993;23:255–81.PubMedCrossRefGoogle Scholar
  91. 91.
    Ozawa T, Hanaki A. Spin-trapping studies on the reactions of Cr(III) with hydrogen peroxide in the presence of biological reductants: is Cr(III) non-toxic? Biochem Int. 1990 Oct;22:343–52.Google Scholar
  92. 92.
    Bagchi D, Hassoun EA, Bagchi M, Stohs SJ. Chromium-induced excretion of urinary lipid metabolites, DNA damage, nitric oxide production, and generation of reactive oxygen species in Sprague-Dawley rats. Comparative biochemistry and physiology. 1995 Feb;110:177–87.PubMedGoogle Scholar
  93. 93.
    Stohs SJ, Bagchi D, Hassoun E, Bagchi M. Oxidative mechanisms in the toxicity of chromium and cadmium ions. J Environ Pathol Toxicol Oncol. 2000;19:201–13.PubMedGoogle Scholar
  94. 94.
    Bagchi D, Bagchi M, Hassoun EA, Stohs SJ. Cadmium-induced excretion of urinary lipid metabolites, DNA damage, glutathione depletion, and hepatic lipid peroxidation in Sprague-Dawley rats. Biol Trace Elem Res. 1996 May;52:143–54.PubMedCrossRefGoogle Scholar
  95. 95.
    Bagchi D, Joshi SS, Bagchi M, Balmoori J, Benner EJ, Kuszynski CA, Stohs SJ. Cadmium- and chromium-induced oxidative stress, DNA damage, and apoptotic cell death in cultured human chronic myelogenous leukemic K562 cells, promyelocytic leukemic HL-60 cells, and normal human peripheral blood mononuclear cells. Journal of biochemical and molecular toxicology. 2000;14:33–41.PubMedCrossRefGoogle Scholar
  96. 96.
    Strauss RH, Palmer KC, Hayes JA. Acute lung injury induced by cadmium aerosol. I. Evolution of alveolar cell damage. The American journal of pathology. 1976 Sep;84:561–78.PubMedGoogle Scholar
  97. 97.
    Asvadi S, Hayes JA. Acute lung injury induced by cadmium aerosol. II. Free airway cell response during injury and repair. The American journal of pathology. 1978 Jan;90:89–98.PubMedGoogle Scholar
  98. 98.
    Friberg L. Cadmium. Annu Rev Public Health. 1983;4:367–73.CrossRefGoogle Scholar
  99. 99.
    Jarup L, Berglund M, Elinder CG, Nordberg G, Vahter M. Health effects of cadmium exposure--a review of the literature and a risk estimate. Scand J Work Environ Health. 1998;24 Suppl 1:1–51.PubMedGoogle Scholar
  100. 100.
    Hussain T, Ali MM, Chandra SV. Effect of cadmium exposure on lipids, lipid peroxidation and metal distribution in rat brain regions. Ind Health. 1985;23:199–205.PubMedCrossRefGoogle Scholar
  101. 101.
    Manca D, Ricard AC, Trottier B, Chevalier G. In vitro and in vivo responses of rat tissues to cadmium-induced lipid peroxidation. Bull Environ Contam Toxicol. 1991 Jun;46:929–36.PubMedCrossRefGoogle Scholar
  102. 102.
    Manca D, Ricard AC, Trottier B, Chevalier G. Studies on lipid peroxidation in rat tissues following administration of low and moderate doses of cadmium chloride. Toxicology. 1991 May;67:303–23.PubMedCrossRefGoogle Scholar
  103. 103.
    Hussain T, Shukla GS, Chandra SV. Effects of cadmium on superoxide dismutase and lipid peroxidation in liver and kidney of growing rats: in vivo and in vitro studies. Pharmacology & toxicology. 1987 May;60:355–8.CrossRefGoogle Scholar
  104. 104.
    Comporti M. Three models of free radical-induced cell injury. Chemico-biological interactions. 1989;72:1–56.PubMedCrossRefGoogle Scholar
  105. 105.
    Poli G, Albano E, Dianzani MU. The role of lipid peroxidation in liver damage. Chem Phys Lipids. 1987 Nov-Dec;45:117–42.PubMedCrossRefGoogle Scholar
  106. 106.
    Yagi K. Lipid peroxides and human diseases. Chem Phys Lipids. 1987 Nov-Dec;45:337–51.PubMedCrossRefGoogle Scholar
  107. 107.
    Shara MA, Dickson PH, Bagchi D, Stohs SJ. Excretion of formaldehyde, malondialdehyde, acetaldehyde and acetone in the urine of rats in response to 2,3,7,8-tetrachlorodibenzo-p-dioxin, paraquat, endrin and carbon tetrachloride. J Chromatogr. 1992 May 8;576:221–33.PubMedCrossRefGoogle Scholar
  108. 108.
    Ekstrom T, Stahl A, Sigvardsson K, Hogberg J. Lipid peroxidation in vivo monitored as ethane exhalation and malondialdehyde excretion in urine after oral administration of chloroform. Acta pharmacologica et toxicologica. 1986 Apr;58:289–96.PubMedCrossRefGoogle Scholar
  109. 109.
    Ekstrom T, Warholm M, Kronevi T, Hogberg J. Recovery of malondialdehyde in urine as a 2,4-dinitrophenylhydrazine derivative after exposure to chloroform or hydroquinone. Chemico-biological interactions. 1988;67:25–31.PubMedCrossRefGoogle Scholar
  110. 110.
    Brady OL, Elsmie GV. The use of 2:4-dinitrophenylhydrazine as a reagent for aldehydes and ketones. Analyst 1926;51:77–8.CrossRefGoogle Scholar
  111. 111.
    Bagchi D, Shara MA, Bagchi M, Hassoun EA, Stohs SJ. Time-dependent effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on serum and urine levels of malondialdehyde, formaldehyde, acetaldehyde, and acetone in rats. Toxicol Appl Pharmacol. 1993 Nov;123:83–8.PubMedCrossRefGoogle Scholar
  112. 112.
    Bagchi M, Hassoun EA, Bagchi D, Stohs SJ. Endrin-induced increases in hepatic lipid peroxidation, membrane microviscosity, and DNA damage in rats. Arch Environ Contam Toxicol. 1992 Jul;23:1–5.PubMedCrossRefGoogle Scholar
  113. 113.
    Bagchi D, Bagchi M, Hassoun E, Stohs SJ. Endrin-induced urinary excretion of formaldehyde, acetaldehyde, malondialdehyde and acetone in rats. Toxicology. 1992 Oct;75:81–9.PubMedCrossRefGoogle Scholar
  114. 114.
    Smith P, Heath D. Paraquat. CRC Crit Rev Toxicol. 1976 Oct;4:411–45.PubMedGoogle Scholar
  115. 115.
    Sandy MS, Di Monte D, Cohen P, Smith MT. Role of active oxygen in paraquat and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) cytotoxicity. Basic life sci. 1988;49:795-801.PubMedGoogle Scholar
  116. 116.
    Kappus H. Oxidative stress in chemical toxicity. Arch toxicol. 1987;60:144–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Francis C. Lau
  • Manashi Bagchi
  • Shirley Zafra-Stone
  • Debasis Bagchi
    • 1
    • 2
    Email author
  1. 1.InterHealth Research CenterBeniciaUSA
  2. 2.Pharmacological and Pharmaceutical SciencesUniversity of Houston College of PharmacyHoustonUSA

Personalised recommendations