Advertisement

Exhaled Breath Condensate Biomarkers of Airway Inflammation and Oxidative Stress in COPD

  • Paolo MontuschiEmail author
Chapter
  • 1.2k Downloads
Part of the Oxidative Stress in Applied Basic Research and Clinical Practice book series (OXISTRESS)

Abstract

Exhaled breath condensate (EBC) is a noninvasive method for collecting airway secretions and for studying the composition of the airway lining fluid. Several biomolecules, including leukotrienes, prostaglandins, isoprostanes, hydrogen peroxide, nitric oxide-derived products, hydrogen ions, and adenosine triphosphate, have been measured in healthy subjects. Some of these inflammatory mediators are elevated in patients with chronic obstructive pulmonary disease (COPD). Analysis of biomolecules in EBC is potentially useful for monitoring of lung inflammation and oxidative stress, which is an important component of inflammation, in patients with COPD. As it is completely noninvasive, EBC might also be suitable for longitudinal studies, and for monitoring the effects of pharmacological therapy in patients with COPD. Different profiles of biomarkers in EBC might reflect different aspects of lung inflammation or oxidative stress. Identification of selective profiles of biomarkers in EBC in lung diseases might have a value for differential diagnosis in respiratory medicine. However, several methodological aspects have to be formally addressed and standardization of EBC methodology is required before this technique can be considered for application in the clinical setting.

Keywords

Chronic obstructive pulmonary disease Exhaled breath condensate Lung inflammation Noninvasive markers 

Notes

Acknowledgments

Supported by the Catholic University of the Sacred Heart, Fondi di Ateneo 2007–2010.

References

  1. 1.
    Montuschi P (2002) Indirect monitoring of lung inflammation. Nat Rev Drug Discov 1:238–242PubMedCrossRefGoogle Scholar
  2. 2.
    Montuschi P. (2005) New perspectives in monitoring lung inflammation: analysis of exhaled breath condensate. CRC Press, Boca RatonGoogle Scholar
  3. 3.
    Horváth I, Hunt J, Barnes PJ et al. (2005) ATS/ERS Task Force on exhaled breath condensate. Exhaled breath condensate: methodological recommendations and unresolved questions. Eur Respir J 26:523–548PubMedCrossRefGoogle Scholar
  4. 4.
    Anonymous (1999) Recommendations for standardized procedures for the on-line and off-line measurement of exhaled lower respiratory nitric oxide and nasal nitricoxide in adults and children-1999. Official statement of the AmericanThoracic Society 1999. Am J Respir Crit Care Med 160:2104–2117Google Scholar
  5. 5.
    Montuschi P, Barnes PJ (2002) Analysis of exhaled breath condensate for monitoring airway inflammation. Trends Pharmacol Sci 23:232–237PubMedCrossRefGoogle Scholar
  6. 6.
    Montuschi P (2007) Analysis of exhaled breath condensate in respiratory medicine: methodological aspects and potential clinical applications. Ther Adv Respir Med 1:5–23CrossRefGoogle Scholar
  7. 7.
    Effros RM, Hoagland KW, Bosbous M et al. (2002) Dilution of respiratory solutes in exhaled condensates. Am J Respir Crit Care Med 165:663–669PubMedGoogle Scholar
  8. 8.
    Montuschi P (2005) Exhaled breath condensate analysis in patients with COPD. Clin Chim Acta 356:22–34PubMedCrossRefGoogle Scholar
  9. 9.
    Montuschi P, Corradi M, Ciabattoni G et al. (1999) Increased 8-isoprostane, a marker of oxidative stress, in exhaled condensate of asthma patients. Am J Respir Crit Care Med 160:216–220PubMedGoogle Scholar
  10. 10.
    De Benedetto F, Aceto A, Dragani B et al. (2000) Validation of a new technique to assess exhaled hydrogen peroxide: results from normals and COPD patients. Monaldi Arch Chest Dis 55:185–188PubMedGoogle Scholar
  11. 11.
    van Beurden WJ, Harff GA, Dekhuijzen PN et al. (2002) An efficient and reproducible method for measuring hydrogen peroxide in exhaled breath condensate. Respir Med 96:197–203PubMedCrossRefGoogle Scholar
  12. 12.
    Hunt J (2002) Exhaled breath condensate: an evolving tool for non-invasive evaluation of lung disease. J Allergy Clin Immunol 110:28–34PubMedCrossRefGoogle Scholar
  13. 13.
    Montuschi P, Varone F, Valente S et al. (2003) Methodological aspects of exhaled prostanoids measurements. Eur Respir J 22 (Suppl 45):18sGoogle Scholar
  14. 14.
    Gajdocsi R, Brindicci C, Barnes PJ et al. (2003) The reproducibility and accuracy of on-line hydrogen peroxide bioassay and the decreasing effect of storage on H2O2 concentration. Eur Respir J 22 (Suppl 45):279sGoogle Scholar
  15. 15.
    Montuschi P, Kharitonov SA, Ciabattoni G et al. (2003) Exhaled leukotrienes and prostaglandins in COPD. Thorax 58:585–588PubMedCrossRefGoogle Scholar
  16. 16.
    Biernacki WA, Kharitonov SA, Barnes PJ (2003) Increased leukotriene B4 and 8-isoprostane in exhaled breath condensate of patients with exacerbations of COPD. Thorax 58:294–298PubMedCrossRefGoogle Scholar
  17. 17.
    Kostikas K, Gaga M, Papatheodorou G et al. (2005) Leukotriene B4 in exhaled breath condensate and sputum supernatant in patients with COPD and asthma. Chest 127:1553–1559PubMedCrossRefGoogle Scholar
  18. 18.
    Montuschi P, Macagno F, Parente P et al. (2005) Effects of cyclo-oxygenase inhibition on exhaled eicosanoids in patients with COPD. Thorax 60:827–833PubMedCrossRefGoogle Scholar
  19. 19.
    Montuschi P, Collins JV, Ciabattoni G et al. (2000) Exhaled 8-isoprostane as an in vivo biomarker of lung oxidative stress in patients with COPD and healthy smokers. Am J Respir Crit Care Med 162:1175–1177PubMedGoogle Scholar
  20. 20.
    Kostikas K, Papatheodorou G, Psathakis K et al. (2003) Oxidative stress in expired breath condensate of patients with COPD. Chest 124:1373–1380PubMedCrossRefGoogle Scholar
  21. 21.
    Brindicci C, Ito K, Torre O et al. (2009) Effects of aminoguanidine, an inhibitor of inducible nitric oxide synthase, on nitric oxide production and its metabolites in healthy control subjects, healthy smokers, and COPD patients. Chest 135:353–367PubMedCrossRefGoogle Scholar
  22. 22.
    Makris D, Paraskakis E, Korakas P et al. (2008) Exhaled breath condensate 8-isoprostane, clinical parameters, radiological indices and airway inflammation in COPD. Respiration 75:138–144PubMedCrossRefGoogle Scholar
  23. 23.
    Ko FW, Lau CY, Leung TF et al. (2006) Exhaled breath condensate levels of 8-isoprostane, growth related oncogene α and monocyte chemoattractant protein-1 in patients with chronic obstructive pulmonary disease. Respir Med 100:630–638PubMedCrossRefGoogle Scholar
  24. 24.
    Dekhuijzen PN, Aben KK, Dekker I et al. (1996) Increased exhalation of hydrogen peroxide in patients with stable and unstable chronic obstructive pulmonary disease. Am J Respir Crit Care Med 154:813–816PubMedGoogle Scholar
  25. 25.
    Ferreira IM, Hazari MS, Gutierrez C et al. (2001) Exhaled nitric oxide and hydrogen peroxide in patients with chronic obstructive pulmonary disease: effects of inhaled beclomethasone. Am J Respir Crit Care Med 164:1012–1015PubMedGoogle Scholar
  26. 26.
    Oudijk EJ, Gerritsen WB, Nijhuis EH et al. (2006) Expression of priming-associated cellular markers on neutrophils during an exacerbation of COPD. Respir Med 100:1791–1799PubMedCrossRefGoogle Scholar
  27. 27.
    van Beurden WJ, Harff GA, Dekhuijzen PN et al. (2003) Effects of inhaled corticosteroids with different lung deposition on exhaled hydrogen peroxide in stable COPD patients. Respiration 70:242–248PubMedCrossRefGoogle Scholar
  28. 28.
    Corradi M, Montuschi P, Donnelly LE et al. (2001) Increased nitrosothiols in exhaled breath condensate in inflammatory airway diseases. Am J Respir Crit Care Med 163:854–858PubMedGoogle Scholar
  29. 29.
    Osoata GO, Hanazawa T, Brindicci C et al. (2009) Peroxynitrite elevation in exhaled breath condensate of COPD and its inhibition by fudosteine. Chest 135:1513–1520PubMedCrossRefGoogle Scholar
  30. 30.
    Liu J, Sandrini A, Thurston MC et al. (2007) Nitric oxide and exhaled breath nitrite/nitrates in chronic obstructive pulmonary disease patients. Respiration 74:617–623PubMedCrossRefGoogle Scholar
  31. 31.
    Kostikas K, Papatheodorou G, Ganas K et al. (2002) pH in expired breath condensate of patients with inflammatory airway diseases. Am J Respir Crit Care Med 165:1364–1370PubMedCrossRefGoogle Scholar
  32. 32.
    Corradi M, Rubinstein I, Andreoli R et al. (2003) Aldehydes in exhaled breath condensate of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 167:1380–1386PubMedCrossRefGoogle Scholar
  33. 33.
    Lázár Z, Huszár E, Kullmann T et al. (2008) Adenosine triphosphate in exhaled breath condensate of healthy subjects and patients with chronic obstructive pulmonary disease. Inflamm Res 57:367–373PubMedCrossRefGoogle Scholar
  34. 34.
    Gessner C, Scheibe R, Wotzel M et al. (2005) Exhaled breath condensate cytokine patterns in chronic obstructive pulmonary disease. Respir Med 99:1229–1240PubMedCrossRefGoogle Scholar
  35. 35.
    Bucchioni E, Kharitonov SA, Allegra L et al. (2003) High levels of interleukin-6 in the exhaled breath condensate of patients with COPD. Respir Med 97:1299–1302PubMedCrossRefGoogle Scholar
  36. 36.
    Dentener MA, Creutzberg EC, Pennings HJ et al. (2008) Effect of infliximab on local and systemic inflammation in chronic obstructive pulmonary disease: a pilot study. Respiration 76:275–282PubMedCrossRefGoogle Scholar
  37. 37.
    Montuschi P (2005) Analysis of exhaled breath condensate: methodological issues. In: Montuschi P (ed) New perspectives in monitoring lung inflammation: analysis of exhaled breath condensate. CRC Press, Boca RatonGoogle Scholar
  38. 38.
    Montuschi P, Martello S, Felli M et al. (2004) Ion trap liquid chromatography/tandem mass spectrometry analysis of leukotriene B4 in exhaled breath condensate. Rapid Commun Mass Spectrom 18:2723–2729PubMedCrossRefGoogle Scholar
  39. 39.
    Montuschi P, Martello S, Felli M et al. (2005) Liquid chromatography/mass spectrometry analysis of exhaled leukotriene B4 in asthmatic children. Respir Res 6:119PubMedCrossRefGoogle Scholar
  40. 40.
    Montuschi P (2009) LC/MS/MS analysis of leukotriene B4 in exhaled breath condensate for assessing lung inflammation. J Chromatogr B Analyt Technol Biomed Life Sci 877:1272–1280PubMedCrossRefGoogle Scholar
  41. 41.
    Carpenter CT, Price PV, Christman BW (1998) Exhaled breath condensate isoprostanes are elevated in patients with acute lung injury or ARDS. Chest 114:1653–1659PubMedCrossRefGoogle Scholar
  42. 42.
    Syslova K, Kacer P, Kuzma M et al. (2008). Determination of 8-iso-prostaglandin F in exhaled breath condensate using combination of immunoseparation and LC-ESI-MS/MS. J Chromatogr B 867:8–14CrossRefGoogle Scholar
  43. 43.
    Goen T, Muller-Lux A, Dewes P et al. (2005) Sensitive and accurate analyses of free 3-nitrotyrosine in exhaled breath condensate by LC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 826:261–266PubMedCrossRefGoogle Scholar
  44. 44.
    Lärstad M, Söderling AS, Caidahl K et al. (2005) Selective quantification of free 3-nitrotyrosine in exhaled breath condensate in asthma using gas chromatography/tandem mass spectrometry. Nitric Oxide 13:134–144PubMedCrossRefGoogle Scholar
  45. 45.
    Cap P, Chladek J, Pehal F et al. (2004) Gas-chromatography/mass spectrometry analysis of exhaled leukotrienes in asthmatic patients. Thorax 59:465–470PubMedCrossRefGoogle Scholar
  46. 46.
    Vass G, Huszár E, Barát E et al. (2003) Comparison of nasal and oral inhalation during exhaled breath condensate collection. Am J Respir Crit Care Med 167:850–855PubMedCrossRefGoogle Scholar
  47. 47.
    Corradi M, Folesani G, Andreoli R et al. (2003) Aldehydes and glutathione in exhaled breath condensate of children with asthma exacerbation. Am J Respir Crit Care Med 167:395–399PubMedCrossRefGoogle Scholar
  48. 48.
    Montuschi P, Ragazzoni E, Valente S et al. (2003) Validation of 8-isoprostane and prostaglandin E2 measurements in exhaled breath condensate. Inflamm Res 52:502–506PubMedCrossRefGoogle Scholar
  49. 49.
    Montuschi P, Ragazzoni E, Valente S et al. (2003) Validation of leukotriene B4 measurements in exhaled breath condensate. Inflamm Res 52:69–73PubMedCrossRefGoogle Scholar
  50. 50.
    Larstad M, Ljungkvist G, Olin AC et al. (2002) Determination of malondialdehyde in breath condensate by high performance liquid chromatography with fluorescence detection. J Chromatogr B Analyt Technol Biomed Life Sci 766:107–114PubMedCrossRefGoogle Scholar
  51. 51.
    Schleiss MB, Holz O, Behnke M et al. (2000) The concentration of hydrogen peroxide in exhaled air depends on expiratory flow rate. Eur Respir J 16:1115–1118PubMedCrossRefGoogle Scholar
  52. 52.
    Montuschi P, Barnes PJ (2002) Exhaled leukotrienes and prostaglandins in asthma. J Allergy Clin Immunol 109:615–620PubMedCrossRefGoogle Scholar
  53. 53.
    McCafferty JB, Bradshaw TA, Tate S et al. (2004) Effects of breathing pattern and inspired air conditions on breath condensate volume, pH, nitrite, and protein concentrations. Thorax 59:694–698PubMedCrossRefGoogle Scholar
  54. 54.
    Rickmann J, Dauletbaev N, Bratzke H et al. (2001) Breath condensate reflects different compartments of respiratory tract depending on ventilation pattern. Am J Respir Crit Care Med 163:A407Google Scholar
  55. 55.
    Larstad M, Torén K, Oilin A-C (2003) Influence of sampling time on malondialdehyde levels and pH in exhaled breath condensate. Eur Respir J 22 (Suppl 45):38sGoogle Scholar
  56. 56.
    Svensson S, Olin A-C, Torén K (2003) Sampling time is important for the collection of hydrogen peroxide in exhaled breath condensate (EBC). Eur Respir J 22 (Suppl 45):78sGoogle Scholar
  57. 57.
    De Laurentiis G, Paris D, Melck D et al. (2008) Metabonomic analysis of exhaled breath condensate in adults by nuclear magnetic resonance spectroscopy. Eur Respir J 32:1175–1183PubMedCrossRefGoogle Scholar
  58. 58.
    Hoffmann HJ, Tabaksblat LM, Enghild JJ et al. (2008) Human skin keratins are the major proteins in exhaled breath condensate. Eur Respir J 31:380–384PubMedCrossRefGoogle Scholar
  59. 59.
    Effros RM, Hoagland KW, Bosbous M (2002) Dilution of respiratory solutes in exhaled condensates. Am J Respir Crit Care Med 165:663–669PubMedGoogle Scholar
  60. 60.
    Montuschi P, Mondino C, Pistelli R et al. (2003) Profile of prostanoids in exhaled breath condensate in childhood asthma. Eur Respir J 22 (Suppl 45):400sGoogle Scholar
  61. 61.
    Baraldi E, Ghiro L, Piovan V et al. (2003) Increased exhaled 8-isoprostane in childhood asthma. Chest 124:25–31PubMedCrossRefGoogle Scholar
  62. 62.
    Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1(8476):307–310PubMedCrossRefGoogle Scholar
  63. 63.
    Mondino C, Ciabattoni G, Koch P et al. (2004) Effects of inhaled corticosteroids on exhaled leukotrienes and prostanoids in asthmatic children. J Allergy Clin Immunol 114:761–767PubMedCrossRefGoogle Scholar
  64. 64.
    Morrow JD, Hill KE, Burk RF et al. (1990) A series of prostaglandin F2-like compounds are produced in vivo in humans by a non-cyclooxygenase, free radical-catalyzed mechanism. Proc Natl Acad Sci USA 87:9383  –  9387PubMedCrossRefGoogle Scholar
  65. 65.
    Montuschi P, Barnes PJ, Roberts LJ, II (2004) Isoprostanes: markers and mediators of oxidative stress. FASEB J 18:1791–1800PubMedCrossRefGoogle Scholar
  66. 66.
    Montuschi P, Barnes PJ, Roberts LJ, II (2007) Insights into oxidative stress: the isoprostanes. Curr Med Chem 14:703–717PubMedCrossRefGoogle Scholar
  67. 67.
    Mazur W, Stark H, Sovijärvi A et al. (2009) Comparison of 8-isoprostane and interleukin-8 in induced sputum and exhaled breath condensate from asymptomatic and symptomatic smokers. Respiration 78:209–216PubMedCrossRefGoogle Scholar
  68. 68.
    Nowak D, Kalucka S, Bialasiewicz P et al. (2001) Exhalation of H2O2 and thiobarbituric acid reactive substances (TBARs) by healthy subjects. Free Radic Biol Med 30:178–186PubMedCrossRefGoogle Scholar
  69. 69.
    Antczak A, Nowak D, Shariati B et al. (1997) Increased hydrogen peroxide and thiobarbituric acid-reactive products in expired breath condensate of asthmatic patients. Eur Respir J 10:1235–1241PubMedCrossRefGoogle Scholar
  70. 70.
    Nowak D, Kasielski M, Antczak A et al. (1999) Increased content of thiobarbituric acid-reactive substances and hydrogen peroxide in the expired breath condensate of patients with stable chronic obstructive pulmonary disease: no significant effect of cigarette smoking. Respir Med 93:389–396PubMedCrossRefGoogle Scholar
  71. 71.
    Horváth I, Donnelly LE, Kiss A et al. (1998) Combined use of exhaled hydrogen peroxide and nitric oxide in monitoring asthma. Am J Respir Crit Care Med 158:1042–1046PubMedGoogle Scholar
  72. 72.
    Ho LP, Faccenda J, Innes JA et al. (1999) Expired hydrogen peroxide in breath condensate of cystic fibrosis patients. Eur Respir J 13:103–106PubMedCrossRefGoogle Scholar
  73. 73.
    Jobsis Q, Raatgeep HC, Hermans PW et al. (1997) Hydrogen peroxide in exhaled air is increased in stable asthmatic children. Eur Respir J 10:519–521PubMedGoogle Scholar
  74. 74.
    van Beurden WJ, van den Bosch MJ, Janssen WC et al. (2003) Fluorimetric analysis of hydrogen peroxide with automated measurement Clin Lab 49:637–643PubMedGoogle Scholar
  75. 75.
    Zappacosta B, Persichilli S, Mormile F et al. (2001) A fast chemiluminescent method for H2O2 measurement in exhaled breath condensate. Clin Chim Acta 310:187–191PubMedCrossRefGoogle Scholar
  76. 76.
    Hu Y, Zhang Z, Yang C (2008) A sensitive chemiluminescence method for the determination of H2O2 in exhaled breath condensate. Anal Sci 24:201–205PubMedCrossRefGoogle Scholar
  77. 77.
    Mercken EM, Hageman GJ, Schols AM et al. (2005) Rehabilitation decreases exercise-induced oxidative stress in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 172:994–1001PubMedCrossRefGoogle Scholar
  78. 78.
    van Beurden WJ, Smeenk FW, Harff GA et al. (2003) Markers of inflammation and oxidative stress during lower respiratory tract infections in COPD patients. Monaldi Arch Chest Dis 59:273–280PubMedGoogle Scholar
  79. 79.
    Gerritsen WB, Asin J, Zanen P et al. (2005) Markers of inflammation and oxidative stress in exacerbated chronic obstructive pulmonary disease patients. Respir Med 99:84–90PubMedCrossRefGoogle Scholar
  80. 80.
    Kasielski M, Nowak D (2001) Long-term administration of N-acetylcysteine decreases hydrogen peroxide exhalation in subjects with chronic obstructive pulmonary disease. Respir Med 95:448–456PubMedCrossRefGoogle Scholar
  81. 81.
    De Benedetto F, Aceto A, Dragani B et al. (2005) Long-term oral n-acetylcysteine reduces exhaled hydrogen peroxide in stable COPD. Pulm Pharmacol Ther 18:41–47PubMedCrossRefGoogle Scholar
  82. 82.
    Decramer M, Rutten-van Mölken M, Dekhuijzen PN et al. (2005) Effects of N-acetylcysteine on outcomes in chronic obstructive pulmonary disease (Bronchitis Randomized on NAC Cost-Utility Study, BRONCUS): a randomised placebo-controlled trial. Lancet 365:1552–1560PubMedCrossRefGoogle Scholar
  83. 83.
    Rysz J, Stolarek RA, Luczynski R et al. (2007) Increased hydrogen peroxide concentration in the exhaled breath condensate of stable COPD patients after nebulized N-acetylcysteine. Pulm Pharmacol Ther 20:281–289PubMedCrossRefGoogle Scholar
  84. 84.
    Gessner C, Hammerschmidt S, Kuhn H et al. (2007) Breath condensate nitrite correlates with hyperinflation in chronic obstructive pulmonary disease. Respir Med 101:2271–2278PubMedCrossRefGoogle Scholar
  85. 85.
    Balint B, Donnelly LE, Hanazawa T et al. (2001) Increased nitric oxide metabolites in exhaled breath condensate after exposure to tobacco smoke Thorax 56:456–461PubMedCrossRefGoogle Scholar
  86. 86.
    Vaughan J, Ngamtrakulpanit L, Pajewski TN et al. (2003) Exhaled breath condensate pH is a robust and reproducible assay of airway acidity. Eur Respir J 22:889–894PubMedCrossRefGoogle Scholar
  87. 87.
    Terada K, Muro S, Sato S et al. (2008) Impact of gastro-oesophageal reflux disease symptoms on chronic obstructive pulmonary disease exacerbation. Thorax 63:951–955PubMedCrossRefGoogle Scholar
  88. 88.
    Halliwell B (2000) Lipid peroxidation, antioxidants and cardiovascular disease: how should we move forward? Cardiovasc Res 47:410–418PubMedCrossRefGoogle Scholar
  89. 89.
    Scheideler L, Manke HG, Schwulera U et al. (1993) Detection of nonvolatile macromolecules in breath. A possible diagnostic tool? Am Rev Respir Dis 148:778–784PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Pharmacology, Faculty of MedicineCatholic University of the Sacred HeartRomeItaly

Personalised recommendations