Stress Gene Deregulation in Alzheimer Peripheral Blood Mononuclear Cells

  • Olivier C. Maes
  • Howard M. Chertkow
  • Eugenia WangEmail author
  • Hyman M. SchipperEmail author
Part of the Oxidative Stress in Applied Basic Research and Clinical Practice book series (OXISTRESS)


Alzheimer’s disease (AD) is a primary degenerative brain disorder that also affects peripheral tissues such as peripheral blood mononuclear cells (PBMC). Several hypotheses for the pathogenesis of AD are intrinsically related to mechanisms of aging and include excitotoxicity, neuroinflammation, mitochondrial dysfunction, and enhanced oxidative stress. Delineation of biochemical alterations in AD blood components may provide insights into the pathogenesis of sporadic AD and facilitate the development of diagnostic and prognostic biomarkers. Here we describe our published experimental approaches and PBMC gene expression data in sporadic AD, with emphasis on the role of altered redox homeostasis in the development of this common affliction.


Alzheimer’s disease Gene expression Oxidative stress Peripheral blood mononuclear cells 



The content of this chapter is a collection of previously published material, with permission from Elsevier (Neurobiology of Aging, 28/12, Maes et al., Transcriptional profiling of Alzheimer blood mononuclear cells by microarray, pp. 1795–1809, 2007) and Oxford University Press (Journal of Gerontology, Series A, 64(6), Maes et al., Methodology for Discovery of Alzheimer’s Disease Blood-Based Biomarkers, pp. 636–645, 2009). The work was supported by an internal grant from the Sir Mortimer B. Davis-Jewish General Hospital (JGH). The authors gratefully acknowledge the contribution of the medical staff, neuropsychologists, nurses, patients, research coordinators and secretaries of the JGH-McGill Memory Clinic.


  1. 1.
    Chertkow H, Bergman H, Schipper HM, Gauthier S, Bouchard R, Fontaine S, Clarfield AM. 2001. Assessment of suspected dementia. Canadian Journal of Neurological Sciences 28 Suppl 1:S28–41.PubMedGoogle Scholar
  2. 2.
    Ertekin-Taner N. 2007. Genetics of Alzheimer’s disease: a centennial review. Neurologic clinics 25(3):611–667, v.Google Scholar
  3. 3.
    Bertram L, Tanzi RE. 2008. Thirty years of Alzheimer’s disease genetics: the implications of systematic meta-analyses. Nat Rev Neurosci 9(10):768–778.PubMedCrossRefGoogle Scholar
  4. 4.
    Cacabelos R, Fernandez-Novoa L, Lombardi V, Kubota Y, Takeda M. 2005. Molecular genetics of Alzheimer’s disease and aging. Methods and findings in experimental and clinical pharmacology 27 Suppl A:1–573.Google Scholar
  5. 5.
    Schipper HM. 2009. Apolipoprotein E: Implications for AD neurobiology, epidemiology and risk assessment. Neurobiol Aging.Google Scholar
  6. 6.
    Braak H, Braak E. 1996. Evolution of the neuropathology of Alzheimer’s disease. Acta neurologica Scandinavica 165:3–12.PubMedCrossRefGoogle Scholar
  7. 7.
    Cummings BJ, Pike CJ, Shankle R, Cotman CW. 1996. Beta-amyloid deposition and other measures of neuropathology predict cognitive status in Alzheimer’s disease. Neurobiol Aging 17(6):921–933.PubMedCrossRefGoogle Scholar
  8. 8.
    Walsh DM, Selkoe DJ. 2007. A beta oligomers - a decade of discovery. J Neurochem 101(5):1172–1184.PubMedCrossRefGoogle Scholar
  9. 9.
    Hardy J. 2009. The amyloid hypothesis for Alzheimer’s disease: a critical reappraisal. J Neurochem.Google Scholar
  10. 10.
    Castellani RJ, Nunomura A, Lee HG, Perry G, Smith MA. 2008. Phosphorylated tau: toxic, protective, or none of the above. J Alzheimers Dis 14(4):377–383.PubMedGoogle Scholar
  11. 11.
    Quintanilla RA, Matthews-Roberson TA, Dolan PJ, Johnson GV. 2009. Caspase-cleaved tau expression results in mitochondrial dysfunction in cortical neurons. Implications for the pathogenesis of Alzheimer’s disease. The Journal of biological chemistry.Google Scholar
  12. 12.
    Maccioni RB, Rojo LE, Fernandez JA, Kuljis RO. 2009. The role of neuroimmunomodulation in Alzheimer’s disease. Annals of the New York Academy of Sciences 1153:240–246.PubMedCrossRefGoogle Scholar
  13. 13.
    Schipper HM. 2004. Brain iron deposition and the free radical-mitochondrial theory of ageing. Ageing research reviews 3(3):265–301.PubMedCrossRefGoogle Scholar
  14. 14.
    Moreira PI, Honda K, Liu Q, Santos MS, Oliveira CR, Aliev G, Nunomura A, Zhu X, Smith MA, Perry G. 2005. Oxidative stress: the old enemy in Alzheimer’s disease pathophysiology. Curr Alzheimer Res 2(4):403–408.PubMedCrossRefGoogle Scholar
  15. 15.
    Rottkamp CA, Raina AK, Zhu X, Gaier E, Bush AI, Atwood CS, Chevion M, Perry G, Smith MA. 2001. Redox-active iron mediates amyloid-beta toxicity. Free radical biology & medicine 30(4):447–450.CrossRefGoogle Scholar
  16. 16.
    Tabner BJ, El-Agnaf OM, Turnbull S, German MJ, Paleologou KE, Hayashi Y, Cooper LJ, Fullwood NJ, Allsop D. 2005. Hydrogen peroxide is generated during the very early stages of aggregation of the amyloid peptides implicated in Alzheimer’s disease and familial British dementia. The Journal of biological chemistry 280(43):35789–35792.PubMedCrossRefGoogle Scholar
  17. 17.
    Song LY, Song W, Schipper HM. 2007. Astroglia overexpressing heme oxygenase-1 predispose co-cultured PC12 cells to oxidative injury. Journal of Neuroscience Research 85(10):2186–2195.PubMedCrossRefGoogle Scholar
  18. 18.
    Schulz JB, Lindenau J, Seyfried J, Dichgans J. 2000. Glutathione, oxidative stress and neurodegeneration. Eur J Biochem 267(16):4904–4911.PubMedCrossRefGoogle Scholar
  19. 19.
    Lovell MA, Xie C, Markesbery WR. 1998. Decreased glutathione transferase activity in brain and ventricular fluid in Alzheimer’s disease. Neurology 51(6):1562–1566.PubMedCrossRefGoogle Scholar
  20. 20.
    Lovell MA, Markesbery WR. 2007b. Oxidative DNA damage in mild cognitive impairment and late-stage Alzheimer’s disease. Nucleic Acids Res 35(22):7497–7504.PubMedCrossRefGoogle Scholar
  21. 21.
    Nunomura A, Perry G, Aliev G, Hirai K, Takeda A, Balraj EK, Jones PK, Ghanbari H, Wataya T, Shimohama S, Chiba S, Atwood CS, Petersen RB, Smith MA. 2001. Oxidative damage is the earliest event in Alzheimer’s disease. J Neuropathol Exp Neurol 60(8):759–767.PubMedGoogle Scholar
  22. 22.
    Mecocci P, Polidori MC, Cherubini A, Ingegni T, Mattioli P, Catani M, Rinaldi P, Cecchetti R, Stahl W, Senin U, Beal MF. 2002. Lymphocyte oxidative DNA damage and plasma antioxidants in Alzheimer’s disease. Arch Neurol 59(5):794–798.PubMedCrossRefGoogle Scholar
  23. 23.
    Choi J, Malakowsky CA, Talent JM, Conrad CC, Gracy RW. 2002. Identification of oxidized plasma proteins in Alzheimer’s disease. Biochemical & Biophysical Research Communications 293(5):1566–1570.CrossRefGoogle Scholar
  24. 24.
    Yu HL, Chertkow HM, Bergman H, Schipper HM. 2003. Aberrant profiles of native and oxidized glycoproteins in Alzheimer plasma. Proteomics 3(11):2240–2248.PubMedCrossRefGoogle Scholar
  25. 25.
    Percy ME, Andrews DE, Potter H. 2000. Peripheral Markers of Alzheimer’s Disease, Directions From the Alzheimer Pathogenic Pathway. Scinto LFM, Daffner KR, editors. Totowa, New Jersey, USA: Human Press. 191–268 p.Google Scholar
  26. 26.
    Schipper HM. 2007. The role of biologic markers in the diagnosis of Alzheimer’s disease. Alzheimer’s & Dementia 3:325–332.CrossRefGoogle Scholar
  27. 27.
    Ray S, Britschgi M, Herbert C, Takeda-Uchimura Y, Boxer A, Blennow K, Friedman LF, Galasko DR, Jutel M, Karydas A, Kaye JA, Leszek J, Miller BL, Minthon L, Quinn JF, Rabinovici GD, Robinson WH, Sabbagh MN, So YT, Sparks DL, Tabaton M, Tinklenberg J, Yesavage JA, Tibshirani R, Wyss-Coray T. 2007. Classification and prediction of clinical Alzheimer’s diagnosis based on plasma signaling proteins. Nat Med 13(11):1359–1362.PubMedCrossRefGoogle Scholar
  28. 28.
    Maes OC, Schipper HM, Chertkow HM, Wang E. 2009. Methodology for discovery of Alzheimer’s disease blood-based biomarkers. J Gerontol A Biol Sci Med Sci 64(6):636–645.PubMedCrossRefGoogle Scholar
  29. 29.
    Burns DH, Rosendahl S, Bandilla D, Maes OC, Chertkow HM, Schipper HM. 2009. Near-Infrared Spectroscopy of Blood Plasma for Diagnosis of Sporadic Alzheimer’s Disease. J Alzheimers Dis.Google Scholar
  30. 30.
    Gladkevich A, Kauffman HF, Korf J. 2004. Lymphocytes as a neural probe: potential for studying psychiatric disorders. Progress in Neuro-Psychopharmacology & Biological Psychiatry 28(3):559–576.CrossRefGoogle Scholar
  31. 31.
    Maes OC, Schipper HM, Chong G, Chertkow HM, Wang E. 2008. A GSTM3 polymorphism associated with an etiopathogenetic mechanism in Alzheimer’s disease. Neurobiol Aging doi: 10.1016/j.neurobiolaging.2008.03.007.PubMedGoogle Scholar
  32. 32.
    Maes OC, Xu S, Yu B, Chertkow HM, Wang E, Schipper HM. 2007. Transcriptional profiling of Alzheimer blood mononuclear cells by microarray. Neurobiol Aging 28(12):1795–1809.PubMedCrossRefGoogle Scholar
  33. 33.
    Schipper HM, Maes OC, Chertkow HM, Wang E. 2007. MicroRNA expression in Alzheimer blood mononuclear cells. Gene Regulation and Systems Biology 1:263–274.PubMedGoogle Scholar
  34. 34.
    Huang da W, Sherman BT, Lempicki RA. 2009. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature protocols 4(1):44–57.CrossRefGoogle Scholar
  35. 35.
    Bertram L, McQueen MB, Mullin K, Blacker D, Tanzi RE. 2007. Systematic meta-analyses of Alzheimer’s disease genetic association studies: the AlzGene database. Nat Genet 39(1):17–23.PubMedCrossRefGoogle Scholar
  36. 36.
    Xu PT, Li YJ, Qin XJ, Scherzer CR, Xu H, Schmechel DE, Hulette CM, Ervin J, Gullans SR, Haines J, Pericak-Vance MA, Gilbert JR. 2006. Differences in apolipoprotein E3/3 and E4/4 allele-specific gene expression in hippocampus in Alzheimer’s disease. Neurobiology of disease 21(2):256–275.PubMedCrossRefGoogle Scholar
  37. 37.
    Folstein MF, Folstein SE, McHugh PR. 1975. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12(3):189–198.Google Scholar
  38. 38.
    Nadon NL, Mohr D, Becker KG. 2005. National Institute on Aging microarray facility-resources for gerontology research. Journals of Gerontology Series A-Biological Sciences & Medical Sciences 60(4):413–415.CrossRefGoogle Scholar
  39. 39.
    Lovell MA, Markesbery WR. 2007a. Oxidative damage in mild cognitive impairment and early Alzheimer’s disease. J Neurosci Res 85(14):3036–3040.PubMedCrossRefGoogle Scholar
  40. 40.
    Pratico D. 2008. Oxidative stress hypothesis in Alzheimer’s disease: a reappraisal. Trends in pharmacological sciences 29(12):609–615.PubMedCrossRefGoogle Scholar
  41. 41.
    Blalock EM, Geddes JW, Chen KC, Porter NM, Markesbery WR, Landfield PW. 2004. Incipient Alzheimer’s disease: microarray correlation analyses reveal major transcriptional and tumor suppressor responses. Proc Natl Acad Sci U S A 101(7):2173–2178.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Gheens Center on Aging, and Department of Biochemistry and Molecular Biology, School of MedicineUniversity of LouisvilleLouisvilleUSA
  2. 2.Bloomfield Centre for Research in AgingLady Davis Institute for Medical ResearchMontréalCanada
  3. 3.Departments of Neurology, Neurosurgery and Medicine (Geriatrics)McGill UniversityMontréalCanada

Personalised recommendations