Skip to main content

Insights into 5-HT2C Receptor Function Gained from Transgenic Mouse Models

  • Chapter
  • First Online:
5-HT2C Receptors in the Pathophysiology of CNS Disease

Part of the book series: The Receptors ((REC,volume 22))

Abstract

Advances in cellular and molecular biology now allow investigators to generate small DNA constructs that can be substituted for specific genomic loci in mouse embryonic stem cells. The transgenic mice that are derived from embryos implanted with these engineered stem cells are powerful models for understanding protein function at molecular, cellular, tissue, and in vivo behavior levels of organization. Mice engineered to express serotonin-2C receptors (5-HT2CRs) of different functional characteristics have provided key insights into molecular processes ranging from posttranscriptional editing of messenger RNA to regulation of neurotransmitter receptor activity and sensitization. These models also suggest that 5-HT2CRs are key regulators of many important cognitive, emotional, and functional (e.g., maintenance of energy balance) behaviors. 5-HT2CR function has also been linked to a number of clinically important disease states, including those involving resilience to stress, obesity, movement disorders, and seizure disorders. This review will focus on the different lines of evidence that have come from mice with engineered 5-HT2CRs, and how these models have advanced current concepts linking the regulation of neuronal excitation to coordinated performance of multiple behavioral processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdallah L, Bonasera SJ, Hopf FW, et al (2009) Impact of serotonin 2C receptor null mutation on physiology and behavior associated with nigrostriatal dopamine pathway function. J Neurosci 29:8156–8165.

    Article  PubMed  CAS  Google Scholar 

  • Abe H, Kida M, Tsuji K, et al (1989) Feeding cycles entrain circadian rhythms of locomotor activity in CS mice but not in C57BL/6 J mice. Physiol Behav 45:397–401.

    Article  PubMed  CAS  Google Scholar 

  • Abrahamson EE, Moore RY (2001) Suprachiasmatic nucleus in the mouse: retinal innervation, intrinsic organization and efferent projections. Mol Brain Res 916:172–191.

    Article  CAS  Google Scholar 

  • Adage T, Scheurink AJ, de Boer SF, et al (2001) Hypothalamic, metabolic, and behavioral responses to pharmacological inhibition of CNS melanocortin signaling in rats. J Neurosci 21:3639–3645.

    PubMed  CAS  Google Scholar 

  • Akana SF (2008) Feeding and stress interact through the serotonin 2C receptor in developing mice. Physiol Behav 94:569–579.

    Article  PubMed  CAS  Google Scholar 

  • Applegate CD, Tecott LH (1998) Global increases in seizure susceptibility in mice lacking 5-HT2C receptors: a behavioral analysis. Exp Neurol 154:522–530.

    Article  PubMed  CAS  Google Scholar 

  • Aton SJ, Herzog ED (2005) Come together, right...now: synchronization of rhythms in a mammalian circadian clock. Neuron 48:531–534.

    Article  PubMed  CAS  Google Scholar 

  • Backstrom JR, Price RD, Reasoner DT, et al (2000) Deletion of the serotonin 5-HT2C receptor PDZ recognition motif prevents receptor phosphorylation and delays resensitization of receptor responses. J Biol Chem 275:23620–23626.

    Article  PubMed  CAS  Google Scholar 

  • Barnes NM, Sharp T (1999) A review of central 5-HT receptors and their function. Neuropharmacology 38:1083–1152.

    Article  PubMed  CAS  Google Scholar 

  • Bockaert J, Claeysen S, Compan V, et al (2008) 5-HT(4) receptors: history, molecular pharmacology and brain functions. Neuropharmacology 55:922–931.

    Article  PubMed  CAS  Google Scholar 

  • Bonasera SJ, Tecott LH (2000) Mouse models of serotonin receptor function: toward a genetic dissection of serotonin systems. Pharmacol Ther 88:133–142.

    Article  PubMed  CAS  Google Scholar 

  • Bonasera SJ, Tecott LH (2004) Increased fear-sensitized acoustic startle in serotonin 2C receptor mutant mice. In: Neuroscience 2004. San Diego: Society for Neuroscience.

    Google Scholar 

  • Bonasera SJ, Schenk AK, Tecott LH (2005) Greater affective responses to aversive stimuli in mice lacking the serotonin 2C receptor. In: Neuroscience 2005. Washington, DC: Society for Neuroscience.

    Google Scholar 

  • Brennan TJ, Seeley WW, Kilgard M, et al (1997) Sound-induced seizures in serotonin 5-HT2c receptor mutant mice. Nat Genet 16:387–390.

    Article  PubMed  CAS  Google Scholar 

  • Campbell BM, Merchant KM (2003) Serotonin 2C receptors within the basolateral amygdala induce acute fear-like responses in an open-field environment. Brain Res Mol Brain Res 993:1–9.

    CAS  Google Scholar 

  • Canales JJ, Graybiel AM (2000) A measure of striatal function predicts motor stereotypy. Nat Neurosci 3:377–383.

    Article  PubMed  CAS  Google Scholar 

  • Cheung CC, Clifton DK, Steiner RA (1997) Proopiomelanocortin neurons are direct targets for leptin in the hypothalamus. Endocrinology 138:4489–4492.

    Article  PubMed  CAS  Google Scholar 

  • Chou-Green JM, Holscher TD, Dallman MF, et al (2003) Repeated stress in young and old 5-HT(2C) receptor knockout mice. Physiol Behav 79:217–226.

    Article  PubMed  CAS  Google Scholar 

  • Chou-Green JM, Holscher TD, Dallman MF, et al (2003) Compulsive behavior in the 5-HT2C receptor knockout mouse. Physiol Behav 78:641–649.

    Article  PubMed  CAS  Google Scholar 

  • Cowley MA, Pronchuk N, Fan W, et al (1999) Integration of NPY, AGRP, and melanocortin signals in the hypothalamic paraventricular nucleus: evidence of a cellular basis for the adipostat. Neuron 24:155–163.

    Article  PubMed  CAS  Google Scholar 

  • Cowley MA, Smart JL, Rubinstein M, et al (2001) Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 411:480–484.

    Article  PubMed  CAS  Google Scholar 

  • Crawley JN, Belknap JK, Collins A, et al (1997) Behavioral phenotypes of inbred mouse strains: implications and recommendations for molecular studies. Psychopharmacology (Berl) 132:107–124.

    Article  CAS  Google Scholar 

  • Cremers TI, Giorgetti M, Bosker FJ, et al (2004) Inactivation of 5-HT(2C) receptors potentiates consequences of serotonin reuptake blockade. Neuropsychopharmacology 29:1782–1789.

    Article  PubMed  CAS  Google Scholar 

  • Dallman MF, Akana SF, Bell ME, et al (1999) Warning! Nearby construction can profoundly affect your experiments. Endocrine 11:111–113.

    Article  PubMed  CAS  Google Scholar 

  • Dalton GL, Lee MD, Kennett GA, et al (2004) mCPP-induced hyperactivity in 5-HT2C receptor mutant mice is mediated by activation of multiple 5-HT receptor subtypes. Neuropharmacology 46:663–671.

    Article  PubMed  CAS  Google Scholar 

  • Dalton GL, Lee MD, Kennett GA, et al (2006) Serotonin 1B and 2C receptor interactions in the modulation of feeding behaviour in the mouse. Psychopharmacology (Berl) 185:45–57.

    Article  CAS  Google Scholar 

  • Davidson AJ (2006) Search for the feeding-entrainable circadian oscillator: a complex proposition. Am J Physiol Regul Integr Comp Physiol 290:R1524–1526.

    Article  PubMed  CAS  Google Scholar 

  • Davis M (1989) Sensitization of the acoustic startle reflex by footshock. Behav Neurosci 103:495–503.

    Article  PubMed  CAS  Google Scholar 

  • Di Giovanni G, De Deurwaerdere P, Di Mascio M, et al (1999) Selective blockade of serotonin-2C/2B receptors enhances mesolimbic and mesostriatal dopaminergic function: a combined in vivo electrophysiological and microdialysis study. Neuroscience 91:587–597.

    Article  PubMed  Google Scholar 

  • Di Giovanni G, Di Matteo V, Di Mascio M, et al (2000) Preferential modulation of mesolimbic vs. nigrostriatal dopaminergic function by serotonin(2C/2B) receptor agonists: a combined in vivo electrophysiological and microdialysis study. Synapse 35:53–61.

    Article  PubMed  Google Scholar 

  • Di Giovanni G, Di Matteo V, La Grutta V, et al (2001) m-Chlorophenylpiperazine excites non-dopaminergic neurons in the rat substantia nigra and ventral tegmental area by activating serotonin-2C receptors. Neuroscience 103:111–116.

    Article  PubMed  Google Scholar 

  • Di Giovanni G, Di Matteo V, Pierucci M, et al (2006) Central serotonin2C receptor: from physiology to pathology. Curr Top Med Chem 6:1909–1925.

    Article  PubMed  Google Scholar 

  • Di Matteo V, Cacchio M, Di Giulio C, et al (2002) Biochemical evidence that the atypical antipsychotic drugs clozapine and risperidone block 5-HT(2C) receptors in vivo. Pharmacol Biochem Behav 71:607–613.

    Article  PubMed  Google Scholar 

  • Eberle-Wang K, Mikeladze Z, Uryu K, et al (1997) Pattern of expression of the serotonin2C receptor messenger RNA in the basal ganglia of adult rats. J Comp Neurol 384:233–247.

    Article  PubMed  CAS  Google Scholar 

  • Elias CF, Aschkenasi C, Lee C, et al (1999) Leptin differentially regulates NPY and POMC neurons projecting to the lateral hypothalamic area. Neuron 23:775–786.

    Article  PubMed  CAS  Google Scholar 

  • Filip M, Cunningham KA (2002) Serotonin 5-HT(2C) receptors in nucleus accumbens regulate expression of the hyperlocomotive and discriminative stimulus effects of cocaine. Pharmacol Biochem Behav 71:745–756.

    Article  PubMed  CAS  Google Scholar 

  • Frank MG, Stryker MP, Tecott LH (2002) Sleep and sleep homeostasis in mice lacking the 5-HT2c receptor. Neuropsychopharmacology 27:869–873.

    Article  PubMed  CAS  Google Scholar 

  • Gaveriaux-Ruff C, Kieffer BL (2007) Conditional gene targeting in the mouse nervous system: insights into brain function and diseases. Pharmacol Ther 113:619–634.

    Article  PubMed  CAS  Google Scholar 

  • Gobert A, Rivet JM, Lejeune F, et al (2000) Serotonin(2C) receptors tonically suppress the activity of mesocortical dopaminergic and adrenergic, but not serotonergic, pathways: a combined dialysis and electrophysiological analysis in the rat. Synapse 36:205–221.

    Article  PubMed  CAS  Google Scholar 

  • Gold LH, Swerdlow NR, Koob GF (1988) The role of mesolimbic dopamine in conditioned locomotion produced by amphetamine. Behav Neurosci 102:544–552.

    Article  PubMed  CAS  Google Scholar 

  • Gordon JA, Hen R (2004) The serotonergic system and anxiety. Neuromolecular Med 5:27–40.

    Article  PubMed  CAS  Google Scholar 

  • Goulding EH, Schenk AK, Juneja P, et al (2008) A robust automated system elucidates mouse home cage behavioral structure. Proc Natl Acad Sci USA 105:20575–20582.

    Article  PubMed  CAS  Google Scholar 

  • Hartner JC, Schmittwolf C, Kispert A, et al (2004) Liver disintegration in the mouse embryo caused by deficiency in the RNA-editing enzyme ADAR1. J Biol Chem 279:4894–4902.

    Article  PubMed  CAS  Google Scholar 

  • Hedlund PB, Sutcliffe JG (2004) Functional, molecular and pharmacological advances in 5-HT7 receptor research. Trends Pharmacol Sci 25:481–486.

    Article  PubMed  CAS  Google Scholar 

  • Heisler LK, Tecott LH (2000) A paradoxical locomotor response in serotonin 5-HT(2C) receptor mutant mice. J Neurosci 20:RC71.

    PubMed  CAS  Google Scholar 

  • Heisler LK, Cowley MA, Tecott LH, et al (2002) Activation of central melanocortin pathways by fenfluramine. Science 297:609–611.

    Article  PubMed  CAS  Google Scholar 

  • Heisler LK, Cowley MA, Kishi T, et al (2003) Central serotonin and melanocortin pathways regulating energy homeostasis. Ann N Y Acad Sci 994:169–174.

    Article  PubMed  CAS  Google Scholar 

  • Heisler LK, Zhou L, Bajwa P, et al (2007) Serotonin 5-HT(2C) receptors regulate anxiety-like behavior. Genes Brain Behav 6:491–496.

    Article  PubMed  CAS  Google Scholar 

  • Heisler LK, Pronchuk N, Nonogaki K, et al (2007) Serotonin activates the hypothalamic-pituitary-adrenal axis via serotonin 2C receptor stimulation. J Neuroscience 27:6956–6964.

    Article  CAS  Google Scholar 

  • Herrick-Davis K, Grinde E, Niswender CM (1999) Serotonin 5-HT2C receptor RNA editing alters receptor basal activity: implications for serotonergic signal transduction. J Neurochem 73:1711–1717

    Article  PubMed  CAS  Google Scholar 

  • Ho SS, Chow BK, Yung WH (2007) Serotonin increases the excitability of the hypothalamic paraventricular nucleus magnocellular neurons. Eur J Neurosci 25:2991–3000.

    Article  PubMed  Google Scholar 

  • Holmes A, Wrenn CC, Harris AP, et al (2002) Behavioral profiles of inbred strains on novel olfactory, spatial and emotional tests for reference memory in mice. Genes Brain Behav 1:55–69.

    Article  PubMed  CAS  Google Scholar 

  • Hsu J (2009) Contribution of serotonin2C receptors to the regulation of circadian rhythm entrainment, in Neuroscience. Ph.D. Thesis. Neuroscience Program, University of California, San Francisco.

    Google Scholar 

  • Hsu JL, Yu L, Tecott LH (in preparation) Involvement of serotonin2c receptors in the regulation of circadian phase shifts to light.

    Google Scholar 

  • Huang XF, Han M, Storlien LH (2004) Differential expression of 5-HT(2A) and 5-HT(2C) receptor mRNAs in mice prone, or resistant, to chronic high-fat diet-induced obesity. Brain Res Mol Brain Res 127:39–47.

    Article  PubMed  CAS  Google Scholar 

  • Huang XF, Tan YY, Huang X, et al (2007) Effect of chronic treatment with clozapine and haloperidol on 5-HT(2A and 2C) receptor mRNA expression in the rat brain. Neurosci Res 59:314–321.

    Article  PubMed  CAS  Google Scholar 

  • Invernizzi RW, Pierucci M, Calcagno E, et al (2007) Selective activation of 5-HT(2C) receptors stimulates GABA-ergic function in the rat substantia nigra pars reticulata: a combined in vivo electrophysiological and neurochemical study. Neuroscience 144:1523–1535.

    Article  PubMed  CAS  Google Scholar 

  • Kawahara Y, Grimberg A, Teegarden S, et al (2008) Dysregulated editing of serotonin 2C receptor mRNAs results in energy dissipation and loss of fat mass. J Neurosci 28:12834–12844.

    Article  PubMed  CAS  Google Scholar 

  • Kennett GA, Curzon G (1988) Evidence that mCPP may have behavioural effects mediated by central 5-HT1C receptors. Br J Pharmacol 94:137–147.

    Article  PubMed  CAS  Google Scholar 

  • Krishnakumar A, Abraham PM, Paul J, et al (2009) Down-regulation of cerebellar 5-HT(2C) receptors in pilocarpine-induced epilepsy in rats: therapeutic role of Bacopa monnieri extract. J Neurol Sci 284:124–128.

    Article  PubMed  CAS  Google Scholar 

  • Lam DD, Heisler LK (2007) Serotonin and energy balance: molecular mechanisms and implications for type 2 diabetes. Expert Rev Mol Med 9:1–24.

    Article  PubMed  Google Scholar 

  • Langner G, Schreiner C, Merzenich MM (1987) Covariation of latency and temporal resolution in the inferior colliculus of the cat. Hear Res 31:197–201.

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Gimenez JF, Tecott LH, Palacios JM, et al (2002) Serotonin 5- HT (2C) receptor knockout mice: autoradiographic analysis of multiple serotonin receptors. J Neurosci Res 67:69–85.

    Article  PubMed  CAS  Google Scholar 

  • Lucki I, Ward HR, Frazer A (1989) Effect of 1-(m-chlorophenyl)piperazine and 1-(m-trifluoromethylphenyl)piperazine on locomotor activity. J Pharmacol Exp Ther 249:155–164.

    PubMed  CAS  Google Scholar 

  • Memon RA, Tecott LH, Nonogaki K, et al (2000) Up-regulation of peroxisome proliferator-activated receptors (PPAR-alpha) and PPAR-gamma messenger ribonucleic acid expression in the liver in murine obesity: troglitazone induces expression of PPAR-gamma-responsive adipose tissue-specific genes in the liver of obese diabetic mice. Endocrinology 141:4021–4031.

    Article  PubMed  CAS  Google Scholar 

  • Miyoshi G, Fishell G (2006) Directing neuron-specific transgene expression in the mouse CNS. Curr Opin Neurobiol 16:577–584.

    Article  PubMed  CAS  Google Scholar 

  • Morton GJ, Schwartz MW (2001) The NPY/AgRP neuron and energy homeostasis. Int J Obes Relat Metab Disord 25(Suppl 5):S56–S62.

    Article  PubMed  CAS  Google Scholar 

  • Nelson DL, Gehlert DR (2006) Central nervous system biogenic amine targets for control of appetite and energy expenditure. Endocrine 29:49–60.

    Article  PubMed  CAS  Google Scholar 

  • Nonogaki K, Strack AM, Dallman MF, et al (1998) Leptin-independent hyperphagia and type 2 diabetes in mice with a mutated serotonin 5-HT2C receptor gene. Nat Med 4:1152–1156.

    Article  PubMed  CAS  Google Scholar 

  • Nonogaki K, Memon RA, Grunfeld C, et al (2002) Altered gene expressions involved in energy expenditure in 5-HT(2C) receptor mutant mice. Biochem Biophys Res Commun 295:249–254.

    Article  PubMed  CAS  Google Scholar 

  • Nonogaki K, Abdallah L, Goulding EH, et al (2003) Hyperactivity and reduced energy cost of physical activity in serotonin 5-HT(2C) receptor mutant mice. Diabetes 52:315–320.

    Article  PubMed  CAS  Google Scholar 

  • Nonogaki K, Nozue K, Takahashi Y, et al (2007) Fluvoxamine, a selective serotonin reuptake inhibitor, and 5-HT2C receptor inactivation induce appetite-suppressing effects in mice via 5-HT1B receptors. Int J Neuropsychopharmacol 10:675–681.

    Article  PubMed  CAS  Google Scholar 

  • Nonogaki K, Ohba Y, Sumii M, et al (2008) Serotonin systems upregulate the expression of hypothalamic NUCB2 via 5-HT2C receptors and induce anorexia via a leptin-independent pathway in mice. Biochem Biophys Res Commun 372:186–190.

    Article  PubMed  CAS  Google Scholar 

  • Nonogaki K, Ohba Y, Wakameda M, et al (2009) Fluvoxamine exerts anorexic effect in 5-HT2C receptor mutant mice with heterozygous mutation of beta-endorphin gene. Int J Neuropsychopharmacol 12:547–552.

    Article  PubMed  CAS  Google Scholar 

  • Ohlsson R, Paldi A, Graves JA (2001) Did genomic imprinting and X chromosome inactivation arise from stochastic expression? Trends Genet 17:136–141.

    Article  PubMed  CAS  Google Scholar 

  • Pasqualetti M, Ori M, Castagna M, et al (1999) Distribution and cellular localization of the serotonin type 2C receptor messenger RNA in human brain. Neuroscience 92:601–611.

    Article  PubMed  CAS  Google Scholar 

  • Pickering C, Avesson L, Lindblom J, et al (2007) Identification of neurotransmitter receptor genes involved in alcohol self-administration in the rat prefrontal cortex, hippocampus and amygdala. Prog Neuropsychopharmacol Biol Psychiatry 31:53–64.

    Article  PubMed  CAS  Google Scholar 

  • Pompeiano M, Palacios JM, Mengod G (1994) Distribution of the serotonin 5-HT2 receptor family mRNAs: comparison between 5-HT2A and 5-HT2C receptors. Brain Res Mol Brain Res 23:163–178.

    Article  PubMed  CAS  Google Scholar 

  • Qiu J, Xue C, Bosch MA, et al (2007) Serotonin 5-hydroxytryptamine2C receptor signaling in hypothalamic proopiomelanocortin neurons: role in energy homeostasis in females. Mol Pharmacol 72:885–896.

    Article  PubMed  CAS  Google Scholar 

  • Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418:935–941.

    Article  PubMed  CAS  Google Scholar 

  • Rocha BA, Goulding EH, O’Dell LE, et al (2002) Enhanced locomotor, reinforcing, and neurochemical effects of cocaine in serotonin 5-hydroxytryptamine 2C receptor mutant mice. J Neurosci 22:10039–10045.

    PubMed  CAS  Google Scholar 

  • Roth B (2006) The serotonin receptors: from molecular pharmacology to human therapeutics, Totowa, NJ: Humana.

    Book  Google Scholar 

  • Rueter LE, Tecott LH, Blier P (2000) In vivo electrophysiological examination of 5-HT2 responses in 5-HT2C receptor mutant mice. Naunyn Schmiedebergs Arch Pharmacol 361:484–491.

    Article  PubMed  CAS  Google Scholar 

  • Schlussman SD, Ho A, Zhou Y, et al (1998) Effects of “binge” pattern cocaine on stereotypy and locomotor activity in C57BL/6 J and 129/J mice. Pharmacol Biochem Behav 60:593–599.

    Article  PubMed  CAS  Google Scholar 

  • Serrats J, Mengod G, Cortes R (2005) Expression of serotonin 5-HT2C receptors in GABAergic cells of the anterior raphe nuclei. J Chem Neuroanat 29:83–91.

    Article  PubMed  CAS  Google Scholar 

  • Simpson BA, Iversen SD (1971) Effects of substantia nigra lesions on the locomotor and stereotypy responses to amphetamine. Nat New Biol 230:30–32.

    PubMed  CAS  Google Scholar 

  • Storch KF, Weitz CJ (2009) Daily rhythms of food-anticipatory behavioral activity do not require the known circadian clock. Proc Natl Acad Sci USA 106:6808–6813.

    Article  PubMed  CAS  Google Scholar 

  • Storm EE, Carra S, Holt M, et al (2003) Maternal behavior is disrupted in serotonin 2C receptor mutant mice. In: Society for Neuroscience 2003. New Orleans, LA: The Society for Neuroscience

    Google Scholar 

  • Tecott LH, Sun LM, Akana SF, et al (1995) Eating disorder and epilepsy in mice lacking 5-HT2c serotonin receptors. Nature 374:542–546.

    Article  PubMed  CAS  Google Scholar 

  • Tecott LH, Logue SF, Wehner JM, et al (1998) Perturbed dentate gyrus function in serotonin 5-HT2C receptor mutant mice. Proc Natl Acad Sci USA 95:15026–15031.

    Article  PubMed  CAS  Google Scholar 

  • Thomas DR (2006) 5-ht5A receptors as a therapeutic target. Pharmacol Ther 111:707–714.

    Article  PubMed  CAS  Google Scholar 

  • Vickers SP, Clifton PG, Dourish CT, et al (1999) Reduced satiating effect of d-fenfluramine in serotonin 5-HT(2C) receptor mutant mice. Psychopharmacology (Berl) 143:309–314.

    Article  CAS  Google Scholar 

  • Wade JM, Juneja P, MacKay AW, et al (2008) Synergistic impairment of glucose homeostasis in ob/ob mice lacking functional serotonin 2C receptors. Endocrinology 149:955–961.

    Article  PubMed  CAS  Google Scholar 

  • Woolley ML, Marsden CA, Fone KC (2004) 5-ht6 receptors. Curr Drug Targets CNS Neurol Disord 3:59–79

    Article  PubMed  CAS  Google Scholar 

  • Wright DE, Seroogy KB, Lundgren KH, et al (1995) Comparative localization of serotonin1A, 1C, and 2 receptor subtype mRNAs in rat brain. J Comp Neurol 351:357–373.

    Article  PubMed  CAS  Google Scholar 

  • Xavier GF, Costa VC (2009) Dentate gyrus and spatial behaviour. Prog Neuropsychopharmacol Biol Psychiatry 33:762–773.

    Article  PubMed  Google Scholar 

  • Xu Y, Jones JE, Kohno D, et al (2008) 5-HT2CRs expressed by pro-opiomelanocortin neurons regulate energy homeostasis. Neuron 60:582–589.

    Article  PubMed  CAS  Google Scholar 

  • Yokosuka M, Xu B, Pu S, et al (1998) Neural substrates for leptin and neuropeptide Y (NPY) interaction: hypothalamic sites associated with inhibition of NPY-induced food intake. Physiol Behav 64:331–338.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Bonasera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bonasera, S.J. (2011). Insights into 5-HT2C Receptor Function Gained from Transgenic Mouse Models. In: Di Giovanni, G., Esposito, E., Di Matteo, V. (eds) 5-HT2C Receptors in the Pathophysiology of CNS Disease. The Receptors, vol 22. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-941-3_4

Download citation

Publish with us

Policies and ethics