Skip to main content

The Role of 5-HT2C Receptor in Epilepsy

  • Chapter
  • First Online:
5-HT2C Receptors in the Pathophysiology of CNS Disease

Part of the book series: The Receptors ((REC,volume 22))

Abstract

Epilepsy represents a heterogeneous group of disorders caused by either abnormal ionic conductance or other alteration of neuronal membranes or by an imbalance between excitatory and inhibitory influences. Serotonin receptors are expressed in almost all networks involved in epilepsies, and thus, it is not surprising that serotonergic neurotransmission modulates a wide variety of experimentally induced seizures. Agents that elevate extracellular serotonin levels, such as 5-hydroxytryptophan and 5-HT reuptake blockers, inhibit both limbic and generalized seizures; conversely, depletion of brain 5-HT lowers the threshold to audiogenically, chemically and electrically evoked convulsion. The 5-HT2C receptor is probably the most important among other receptor subtypes in the mediation of such an effect. Several neurons involved in excitatory and inhibitory neurotransmission express 5-HT2C receptors, and in addition, 5-HT2C receptors function via several different signals. Furthermore, there is now evidence that 5-HT2C receptors are involved in the enhanced susceptibility observed in some genetically epilepsy prone animals. Mutant mice lacking the 5-HT2C receptor subtype are extremely susceptible to audiogenic seizures and are prone to spontaneous death from seizures, suggesting that serotonergic neurotransmission mediated by 5-HT2C receptors suppress neuronal network hyperexcitability and seizure activity. On the other hand, in chromosome 4 congenic mice that exhibit significantly less severe alcohol withdrawal hyperexcitabilty, the subtype-selective 5-HT2C receptor antagonist SB 242084 causes also attenuated severity of handling-induced convulsions. Based on these data it is not surprising that 5-HT causes a significant shift of excitability in most networks involved in epilepsy and thus, pharmaceuticals that alter the concentration of 5-HT or exert 5-HT2C receptor agonist and/or antagonist properties must be considered as important factors for the pathogenesis or treatment of epilepsies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aghajanian GK (1995) Electrophysiology of serotonin receptor subtypes, signal transduction pathways. In: Bloom FR, Kupfer DJ, eds. Psychopharmacology: The Fourth Generation of Progress. New York: Raven, pp. 1451–1459

    Google Scholar 

  • Applagate CD, Tecott LH (1998) Global increases in seizure susceptibility in mice lacking 5-HT2C receptors: a behavioral analysis. Exp Neurol 154(2):522–530

    Article  Google Scholar 

  • Azmitia EC, Whitaker-Azmitia, EC (1999) Development and adult plasticity of serotoninergic neurons and their target. In: Baumgarten HG, Göther M, eds. Serotonergic Neurons and 5-HT Receptors in the CNS. Springer: New York, pp. 1–39

    Google Scholar 

  • Babb TL, Carr E, Crandall PH (1973) Analysis of extracellular firing patterns of deep temporal lobe structures in man. Electroencephalogr Clin Neurophysiol 34(3):247–257.

    Article  PubMed  CAS  Google Scholar 

  • Bagdy G, Kecskemeti V, Riba P, Jakus R (2007) Serotonin and epilepsy. J Neurochem 100:857–873.

    Article  CAS  Google Scholar 

  • Barnes NM, Sharp T (1999) A review of central 5-HT receptors and their function. Neuropharmacology 38:1083–1152.

    Article  PubMed  CAS  Google Scholar 

  • Becamel C, Figge A, Poliak S, et al (2001) Interaction of serotonin 5-hydroxytryptamine type 2C receptors with PDZ10 of the multi-PDZ domain protein MUPP1. J Biol Chem 276:12974–12982

    Article  PubMed  CAS  Google Scholar 

  • Bercovici E, Cortez MA, Wang X, Snead OC 3rd (2006) Serotonin depletion attenuates AY-9944-mediated atypical absence seizures. Epilepsia 47(2):240–246.

    Article  PubMed  CAS  Google Scholar 

  • Bobker DH (1994) A slow excitatory postsynaptic potential mediated by 5-HT2 receptors in nucleus prepositus hypoglossi. J Neurosci 14:2428–2434.

    PubMed  CAS  Google Scholar 

  • Bonnycastle DD, Giarman NJ, Paasonen MK (1957) Anticonvulsant compounds and 5-hydroxytryptamine in rat brain. Br J Pharmacol 12(2):228–231.

    CAS  Google Scholar 

  • Bragin A, Engel Jr J, Wilson CL, Vizentin E, Mathern GW (1999) Electrophysiologic analysis of a chronic seizure model after unilateral hippocampal KA injection. Epilepsia 40(9):1210–1221.

    Article  PubMed  CAS  Google Scholar 

  • Brennan TJ, Seeley WW, Kilgard M, Schreiner CE, Tecott LH (1997) Sound-induced seizures in serotonin 5-HT2C receptor mutant mice. Nat Genet 16:387–390.

    Article  PubMed  CAS  Google Scholar 

  • Browne TR, Holmes GL (2003) Handbook of Epilepsy, 3rd ed. Philadelphia, PA: Lippinkott Williams &Wilkins.

    Google Scholar 

  • Browning RA, Hoffman WE, Simonton RL (1978) Changes in seizure susceptibility after intracerebral treatment with 5,7-dihydroxy-tryptamine: role of serotonergic neurones. Ann NY Acad Sci 305:437–456.

    Article  PubMed  CAS  Google Scholar 

  • Buterbaugh CG (1978) Effects of drugs modifying central serotonergic function on the response of extensor and non extensor rats to maximal electroshock. Life Sci 23:2393–2904.

    Article  PubMed  CAS  Google Scholar 

  • Coenen AM, Drinkenburg WH, Inoue M, van Luijtelaar EL (1992) Genetic models of absence epilepsy, with emphasis on the WAG/Rij strain of rats. Epilepsy Res 12(2):75–86.

    Article  PubMed  CAS  Google Scholar 

  • D’Ambrosio R, Fender JS, Fairbanks JP, et al (2005) Progression from frontal-parietal to mesial-temporal epilepsy after fluid percussion injury in the rat. Brain 128:174–188.

    Article  PubMed  Google Scholar 

  • Dailey JW, Yan QS, Mishra PK, Burger RL, Jobe PC (1992) Effects of fluoxetine on convulsions and brain serotonin as detected by microdialysis in genetically epilepsy-prone rats. J Pharmacol 260:533–540.

    CAS  Google Scholar 

  • Daily JW, Reigel CE, Mishura PK, Jobe PC (1989) Neurobiology seizure predisposition in the genetically epilepsy prone rat (Review). Epilepsy Res 3(1), 3–17.

    Article  Google Scholar 

  • Destexhe A, Bal T, McCormick DA, Sejnowski TJ (1996) Ionic mechanisms underlying synchronized oscillations and propagating waves in a model of ferret thalamic slices. J Neurophysiol 76(3):2049–2070.

    PubMed  CAS  Google Scholar 

  • Done CJ, Sharp T (1994) Biochemical evidence for regulation of central noradrenergic activity by 5-HT1A and 5-HT2 receptors: microdialysis studies in the awake and anaesthetized rat. Neuropharmacology 33:411–421.

    Article  PubMed  CAS  Google Scholar 

  • Dube C, Richichi C, Bender RA, Chung G, Litt B, Baram TZ (2006) Temporal lobe epilepsy after experimental prolonged febrile seizures: prospective analysis. Brain 129:911–922.

    Article  PubMed  Google Scholar 

  • Engel J Jr (2004) Models of focal epilepsy. In: Hallett M, Phillips LH, Schomer DL II, Massey JM, eds. Advances in Clinical Neurophysiology. Clin Neurophysiol 57:392–399.

    Google Scholar 

  • Fehr C, Shirly RL, Belknap JK, Crabbe JC, Buck KJ (2002) Congenic mapping of alcohol and pentobarbital withdrawal liability loci to a <1 centimorgan interval of murine chromosome 4: identification of Mpdz as a candidate gene. J Neurosci 22:3730–3738

    PubMed  CAS  Google Scholar 

  • Filakovszky J, Gerber K, Bagdy G (1999) A serotonin-1A receptor agonist and N-methyl-d-aspartate receptor antagonist oppose each others effects in a genetic rat epilepsy model. Neurosci Lett 261:89–92.

    Article  PubMed  CAS  Google Scholar 

  • Gerber K, Filakovszky J, Halasz P, Bagdy G (1998) The 5-HT1A agonist 8-OH-DPAT increases the number of spike-wave discharges in a genetic rat model of absence epilepsy. Brain Res 807:243–245.

    Article  PubMed  CAS  Google Scholar 

  • Giaretta D, Avoli M, Gloor P (1987) Intracellular recordings in pericruciate neurons during spike and wave discharges of feline generalized penicillin epilepsy. Brain Res 405(1):68–79.

    Article  PubMed  CAS  Google Scholar 

  • Gloor P (1978) Generalized epilepsy with bilateral synchronous spike and wave discharge. New findings concerning its physiological mechanisms. Electroencephalogr Clin Neurophysiol Suppl 34:245–249.

    PubMed  Google Scholar 

  • Goddard GV, McIntyre DC, Leech CK (1969) A permanent change in brain function resulting from daily electrical stimulation. Exp Neurol 25(3):295–330.

    Article  PubMed  CAS  Google Scholar 

  • Graf M, Jakus R, Kantor S, Levay G, Bagdy G (2004) Selective 5-HT1A and 5-HT7 antagonists decrease epileptic activity in the WAG/Rij rat model of absence epilepsy. Neurosci Lett 359:45–48.

    Article  PubMed  CAS  Google Scholar 

  • Halasz P, Terzano MG, Parrino L (2002) Spike-wave discharge and the microstructure of sleep-wake continuum in idiopathic generalised epilepsy, Neurophysiol Clin 32: 38–53.

    Article  PubMed  CAS  Google Scholar 

  • Hernandez EJ, Williams PA, Dudek PA (2002) Effects of fluoxetine and TFMPP on spontaneous seizures in rats with pilocarpine-induced epilepsy. Epilepsia 43(11):1337–1345.

    Article  PubMed  CAS  Google Scholar 

  • Hiramatsu MK, Kawanaga K, Kabuto H, Mori A (1987) Reduced uptake and release of 5-hydroxytryptamine and taurine in the cerebral cortex of epileptic El mice. Epilepsy Res 1:40–44.

    Article  PubMed  CAS  Google Scholar 

  • Holmes GL (2004) Models for generalized seizures. In: Hallett M, Phillips LH, Schomer DL II, Massey JM, eds. Advances in Clinical Neurophysiology (Clinical Neurophysiology Supplement, vol 57). The Netherlands: Elsevier BV, pp. 415–438.

    Google Scholar 

  • Hoyer D, Middlemiss DN (1989) Species differences in the pharmacology of terminal 5-HT autoreceptors in mammalian brain (Review). Trends Pharmacol Sci 10(4):130–132.

    Article  PubMed  CAS  Google Scholar 

  • Hoyer D, Clarke DE, Fozrd JR, Harting PR, Mylecharane EJ, Saxena PR, Humpherey PPA (1994) VII. International union of pharmacology classification of receptors for 5-hydroxytryptamine (serotonin). Pharmacol Rev 46:157–203.

    PubMed  CAS  Google Scholar 

  • Isaac M (2005) Serotonergic 5-HT2C receptors as a potential therapeutic target for the design antiepileptic drugs. Curr Top Med Chem 5(1):59–64

    Article  PubMed  CAS  Google Scholar 

  • Jäkälä P, Sirviö J, Koivisto E, Björklund M, Kaukua J, Riekkinen PJ (1995) Modulation of rat neocortical high-voltage spindle activity by 5-HT1/5-HT2 receptor subtype specific drugs. Eur J Pharmacol 282:39–55.

    Article  PubMed  Google Scholar 

  • Jakus R, Graf M, Juhasz G, Gerber K, Levay G, Halasz P, Bagdy G (2003) 5-HT2C receptors inhibit, 5-HT1A receptors activate the generation of spike-wave discharges in a genetic rat model of absence epilepsy. Exp Neurol 182, 964–972.

    Article  Google Scholar 

  • Jobe PC, Picchioni AL, Chin L (1973) Role of brain 5-hydroxytryptamine in audiogenic seizure in the rat. Life Sci 13(1):1–1.

    Article  PubMed  CAS  Google Scholar 

  • Julius D, MacDermott AB, Axel R, et al (1988) Molecular characterisation of a functional cDNA encoding the serotonin1C receptor. Science 244:558–564

    Article  Google Scholar 

  • KamiÅ„ski RM, Van Rijn CM, Turski WA, Czuczwar SJ, Van Luijtelaar G (2001) AMPA and GABA(B) receptor antagonists and their interaction in rats with a genetic form of absence epilepsy. Eur J Pharmacol 430(2–3):251–259.

    Article  PubMed  Google Scholar 

  • Kecskemeti V, Rusznák Z, Riba P, et al (2005) Norfluoxetine and fluoxetine have similar anticonvulsant and Ca2+ channel blocking potencies. Brain Res Bull 67:112–132.

    Article  Google Scholar 

  • Kharatishvili I, Nissinen JP, McIntosh TK, Pitkanen A (2006) A model of posttraumatic epilepsy induced by lateral fluid-percussion brain injury in rats. Neuroscience 140:685–697.

    Article  PubMed  CAS  Google Scholar 

  • Kilian M, Frey HH (1973) Central monoamines and convulsive thresholds in mice and rats. Neuropharmacology 12:681–692.

    Article  PubMed  CAS  Google Scholar 

  • Kullmann DM, Asztely F, Walker MC (2000) The role of mammalian ionotropic receptors in synaptic plasticity: LTP, LTD and epilepsy (Review). Cell Mol Life Sci 57(11):1551–1561.

    Article  PubMed  CAS  Google Scholar 

  • Löscher W (1984) Genetic animal models of epilepsy as a unique resource for the evaluation of anticonvulsant drugs (Review). Methods Find Exp Clin Pharmacol 6(9):531–547

    PubMed  Google Scholar 

  • Löscher W (2002) Animal models of epilepsy for the development of antiepileptogenic and disease modifying drugs. A comparison of the pharmacology of kindling and post-status epilepticus models of temporal lobe epilepsy. Epilepsy Res 50:105–123.

    Article  PubMed  Google Scholar 

  • Löscher W, Schmidt D (1988) Which animal models should be used in the search for new antiepileptic drugs? A proposal based on experimental and clinical considerations. Epilepsy Res 2:145–181.

    Article  PubMed  Google Scholar 

  • Matsumoto H, Ajmone-Marsan C (1964) Cellular mechanisms in experimental seizures. Science 144:193–194.

    Article  PubMed  CAS  Google Scholar 

  • Mazarati AM, Baldwin RA, Shinmei S, Sankar R (2006) In vivo interaction between serotonin and galanin receptors types 1 and 2 in the dorsal raphe: implication for limbic seizures. J Neurochem 95:1495–1503.

    Article  Google Scholar 

  • McCormick DA (1992) Neurotransmitter actions in the thalamus and cerebral cortex. J Clin Neurophysiol 9:212–223

    Article  PubMed  CAS  Google Scholar 

  • McCormick DA (2002) Cortical and subcortical generators of normal and abnormal thythmicity. Int Rev Neurobiol 49:99–114.

    Article  PubMed  Google Scholar 

  • McCormick DA, Wang Z (1991) Serotonin and noradrenaline excite GABAergic neurones of guinea-pig and cat nucleus reticularis thalami. J Physiol 442:235–255.

    PubMed  CAS  Google Scholar 

  • Millan MJ, Marin P, Bockaert J, la Cour CM (2008) Signaling at G-protein-coupled serotonin receptors: recent advances and future research directions. Trends Pharmacol Sci 29(9):454–64.

    Article  PubMed  CAS  Google Scholar 

  • Morimoto K, Fahnestock M, Racine RJ (2004) Kindling and status epilepticus models of epilepsy: rewiring the brain. Prog Neurobiol 73:1–60.

    Article  PubMed  CAS  Google Scholar 

  • Morita K, Hamamoto M, Arai S, et al (2005) Inhibition of serotonin transporters by cocaine and meprylcaine through 5-HT2C receptor stimulation facilitates their seizure activities. Brain Res 1057(1–2):153–160

    Article  PubMed  CAS  Google Scholar 

  • O’Dell LE, Li R, George FR, Ritz MC (2000) Molecular serotonergic mechanisms appear to mediate genetic sensitivity to cocaine-induced convulsions. Brain Res 863(1–2):213–224.

    Article  PubMed  Google Scholar 

  • Palacios JM, Waeber C, Mengod G, et al (1991) Autoradiography of 5-HT receptors: a critical appraisal. Neurochem Int 18:17–25

    Article  PubMed  CAS  Google Scholar 

  • Pape HC, McCormick DA (1989) Noradrenaline and serotonin selectively modulate thalamic burst firing by enhancing a hyperpolarisation-activated cation current. Nature 340:715–718.

    Article  PubMed  CAS  Google Scholar 

  • Parker LL, Backstrom JR, Sanders-Bush E, Shiieh BH (2003) Agonist-induced phosphorylation of the serotonin 5-HT2C receptor regulates its interaction with multiple PDZ protein 1. J Biol Chem 278:21576–21583

    Article  PubMed  CAS  Google Scholar 

  • Prendiville S, Gale K (1993) Anticonvulsant effect of systemic fluoxetine on focally-evoked limbic motor seizures in rats. Epilepsia 34:381–384.

    Article  PubMed  CAS  Google Scholar 

  • Przegalinski E (1985) Monoamines and the pathophysiology of seizure disorders. In: Frey HH, Janz D, eds. Handbook of Experimental Pharmacology. Berlin: Springer-Verlag, pp. 101–137.

    Google Scholar 

  • Przegalinski E, Baran J, Siwanowicz J (1994) Role of 5-hydroxytryptamine receptor subtypes in the 1-[3-(trifluoromethyl)phenyl] piperazine-induced increase in threshold for maximal electroconvulsions in mice. Epilepsia 35:889–894

    Article  PubMed  CAS  Google Scholar 

  • Radja F, Laporte AM, Daval G, et al (1991) Autoradiography of serotoin receptor subtypes in the central nervous system. Neurochem Int 18:1–15

    Article  PubMed  CAS  Google Scholar 

  • Reilly MT, Milner LC, Shirley RL, Crabbe JC, Buck KJ (2008) 5-HT2C and GABAB receptors influence handling-induced convulsion severity in chromosome 4 congenic and BBA/2 J background strain mice. Brain Res 1198:124–131.

    Article  PubMed  CAS  Google Scholar 

  • Rick CE, Stanford IM, Lacey MG (1995) Excitation of rat substantia nigra pars reticulate neurons by 5-hydroxytryptamine in vitro: evidence for a direct action mediated by 5-hydroxytryptamine2C receptors. Neuroscience 69:903–913

    Article  PubMed  CAS  Google Scholar 

  • Sanders-Bush E, Burris KD, Knoth K (1988) Lysergic acid diethylamide and 2,5-dimethoxy-4-methylamphetamine are partial agonists at serotonin receptors linked to phosphoinositide hydrolysis. J Pharmacol Exp Ther 246:924–928

    PubMed  CAS  Google Scholar 

  • Sheldon PW, Aghajanian GK (1991) Excitatory responses to serotonin (5-HT) in neurons of the rat piriform cortex: evidence for mediation by 5-HT1C receptors in pyramidal cells and 5-HT2 receptors in interneurons. Synapse 9(3):208–218.

    Article  PubMed  CAS  Google Scholar 

  • Snead OC 3rd (1995) Basic mechanisms of generalized absence seizures. Ann Neurol 37:146–157.

    Article  PubMed  Google Scholar 

  • Statnick MA, Maring-Smith ML, Clough RW, et al (1996) Effects of 5,7-dihydroxy-tryptamine on audiogenic seizures in genetically epilepsy-prone rats. Life Sci 59:1763–1771.

    Article  PubMed  CAS  Google Scholar 

  • Steriade M, McCormick DA, Sejnowski J (1993) Thalamocortical oscillacions in sleeping and arousal brain. Science 262:679–685.

    Article  PubMed  CAS  Google Scholar 

  • Tecott LH, Sun LM, Akana SF, Strack AM, Lowenstein DH, Dallman MF, Julius D (1995) Eating disorder and epilepsy in mice lacking 5-HT2C serotonin receptors. Nature 374:542–546.

    Article  PubMed  CAS  Google Scholar 

  • Upton N, Stean T, Middlemiss D, Blackburn T, Kennett G (1998) Studies on the role of 5-HT2C and 5-HT2B receptors in regulating generalised seizure threshold in rodents. Eur J Pharmacol 359:33–40.

    Article  PubMed  CAS  Google Scholar 

  • Van Luijtelaar EL, Drinkenburg WH, van Rijn CM, Coenen AM (2002) Rat models of genetic absence epilepsy: what do EEG spike-wave discharges tell us about drug effects? Methods Find Exp Clin Pharmacol 24(suppl D):65–70.

    PubMed  Google Scholar 

  • Van Wijngaarden I, Tulp MT, Soudijn W (1990) The concept of selectivity in 5-HT receptor research (Review). Eur J Pharmacol 188(6):301–312.

    Article  PubMed  Google Scholar 

  • Velasco M, Velasco F, Velasco AL, Jimenez F, Brito F, Marquez I (2000) Acute and chronic electrical stimulation of the centromedian thalamic nucleus: modulation of reticulo-cortical systems and predictor factors for generalized seizure control (Review). Arch Med Res 31(3): 304–315.

    Article  PubMed  CAS  Google Scholar 

  • Wada Y, Nakamura M, Hasegawa H, Yamaguchi N (1993) Intra-hippocampal injection of 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) inhibits partial and generalized seizures induced by kindling stimulation in cats. Neurosci Lett 159(1–2):179–182.

    Article  PubMed  CAS  Google Scholar 

  • Wada Y, Shiraishi J, Nakamura M, Koshino Y (1996) Biphasic action of the histamine precursor L-histidine in the rat kindling model of epilepsy. Neurosci Lett 204(3):205–208.

    Article  PubMed  CAS  Google Scholar 

  • Wada Y, Shiraishi J, Nakamura M, Koshino Y (1997) Role of serotonin receptor subtypes in the development of amygdaloid kindling in rats. Brain Res 747:338–342

    Article  PubMed  CAS  Google Scholar 

  • Ward AA Jr (1972) Topical convulsant metals. In: Purpura DP, Penry JK, Tower DB, Woodbury DM, Walter RD, eds. Experimental Models of Epilepsy: A Manual for the Laboratory Worker., New York: Raven, pp. 13–35

    Google Scholar 

  • Watanabe K, Ashby Jr CR, Katsumori H, Minabe Y (2000) The effect of the acute administration of various selective 5-HT receptor antagonists on focal hippocampal seizures in freely-moving rats. Eur J Pharmacol 398:239–246.

    Article  PubMed  CAS  Google Scholar 

  • Welsh JP, Placantonakis DG, Warsetsky SI, Marquez RG, Bernstein L, Aicher SA (2002) The serotonin hypothesis of myoclonus from the perspective of neuronal rhythmicity. Adv Neurol 89:307–329.

    PubMed  Google Scholar 

  • Yan QS, Jobe PC, Cheong JH, Ko KH, Dailey JW (1994) Role of serotonin in the anticonvulsant effect of fluoxetine in genetically epilepsy prone rats. Naunyn-Schmiedebergs. Arch Pharmacol 350:149–152.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gyorgy Bagdy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jakus, R., Bagdy, G. (2011). The Role of 5-HT2C Receptor in Epilepsy. In: Di Giovanni, G., Esposito, E., Di Matteo, V. (eds) 5-HT2C Receptors in the Pathophysiology of CNS Disease. The Receptors, vol 22. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-941-3_22

Download citation

Publish with us

Policies and ethics