Skip to main content

Role of Alternative Splicing of the 5-HT2C Receptor in the Prader–Willi Syndrome

  • Chapter
  • First Online:
5-HT2C Receptors in the Pathophysiology of CNS Disease

Part of the book series: The Receptors ((REC,volume 22))

Abstract

The 5-HT2C receptor (5-HT2CR) belongs to the family of seven transmembrane-containing G-protein-coupled receptors (GPCRs) and is located on the human X chromosome band q24. The pre-mRNA generated from this gene undergoes extensive RNA processing. Due to RNA editing and alternative splicing, the gene could generate at least 288 different isoforms. Under physiological conditions, the RNA processing is tightly regulated. Deviations from the normal processing patterns that disturb the balance between the mRNA isoforms lead to diseases. Here we describe the regulation of alternative splicing of exon Vb of the 5-HT2C receptor. This exon encodes the second intracellular loop that is important for signaling. The exon is regulated by a splicing silencer that can be modified by RNA editing. The inclusion of the nonedited exon Vb is promoted by a small nucleolar RNA (snoRNA), HBII-52/SNORD115 and its processed isoforms. The regulation of this exon appears to be altered in the Prader–Willi syndrome (PWS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Biamonti G, Caceres JF (2009) Cellular stress and RNA splicing. Trends Biochem Sci 34:146–153.

    Article  PubMed  CAS  Google Scholar 

  • Burns CM, Chu H, Rueter SM, et al (1997) Regulation of serotonin-2C receptor G-protein coupling by RNA editing. Nature 387:303–308.

    Article  PubMed  CAS  Google Scholar 

  • Butler MG, Hanchett JM, Thompson TE (2006) Clinical Findings and Natural History of Prader-Willi Syndrome. In: Butler MG, Lee PDK, Whitman BY, eds. Management of Prader–Willi Syndrome. New York: Springer, pp. 3–48

    Chapter  Google Scholar 

  • Carrel AL, Lee PDK, Mogul HR (2006) Growth Hormone and Prader-Willi Syndrome. In: Butler MG, Lee PDK, Whitman BY, eds. Management of Prader-Willi Syndrome. New York: Springer, pp. 201–241

    Google Scholar 

  • Cavaille J, Buiting K, Kiefmann M, et al (2000) Identification of brain-specific and imprinted small nucleolar RNA genes exhibiting an unusual genomic organization. Proc Natl Acad Sci USA 97:14311–14316.

    Article  PubMed  CAS  Google Scholar 

  • Cummings DE, Clement K, Purnell JQ, et al (2002) Elevated plasma ghrelin levels in Prader–Willi syndrome. Nat Med 8:643–644.

    Article  PubMed  CAS  Google Scholar 

  • de Lind van Wijngaarden RF, Otten BJ, Festen DA, et al (2008) High prevalence of central adrenal insufficiency in patients with Prader–Willi syndrome. J Clin Endocrinol Metab 93:1649–1654.

    Article  PubMed  CAS  Google Scholar 

  • Eiholzer U, Stutz K, Weinmann C, et al (1998) Low insulin, IGF-I and IGFBP-3 levels in children with Prader–Labhart–Willi syndrome. Eur J Pediatr 157:890–893.

    Article  PubMed  CAS  Google Scholar 

  • Eiholzer U, Gisin R, Weinmann C, et al (1998) Treatment with human growth hormone in patients with Prader-Labhart–Willi syndrome reduces body fat and increases muscle mass and physical performance. Eur J Pediatr 157:368–377.

    Article  PubMed  CAS  Google Scholar 

  • Englander MT, Dulawa SC, Bhansali P, et al (2005) How stress and fluoxetine modulate serotonin 2C receptor pre-mRNA editing. J Neurosci 25:648–651.

    Article  PubMed  CAS  Google Scholar 

  • Filipowicz W, Pogacic V (2002) Biogenesis of small nucleolar ribonucleoproteins. Curr Opin Cell Biol 14:319–327.

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald LW, Iyer G, Conklin DS, et al (1999) Messenger RNA editing of the human serotonin 5-HT2C receptor. Neuropsychopharmacology 21:82 S–90 S.

    PubMed  CAS  Google Scholar 

  • Flomen R, Knight J, Sham P, et al (2004) Evidence that RNA editing modulates splice site selection in the 5-HT2C receptor gene. Nucleic Acids Res 32:2113–2122.

    Article  PubMed  CAS  Google Scholar 

  • Hackler EA, Airey DC, Shannon CC, et al (2006) 5-HT(2C) receptor RNA editing in the amygdala of C57BL/6 J, DBA/2 J, and BALB/cJ mice. Neurosci Res 55:96–104.

    Article  PubMed  CAS  Google Scholar 

  • Hanamura A, Caceres JF, Mayeda A, et al (1998) Regulated tissue-specific expression of antagonistic pre-mRNA splicing factors. RNA 4:430–444.

    PubMed  CAS  Google Scholar 

  • Hertel KJ (2008) Combinatorial control of exon recognition. J Biol Chem 283:1211–1215.

    Article  PubMed  CAS  Google Scholar 

  • Jepson JE, Reenan RA (2008) RNA editing in regulating gene expression in the brain. Biochim Biophys Acta 1779:459–470.

    Article  PubMed  CAS  Google Scholar 

  • Jurica MS, Moore MJ (2003) Pre-mRNA splicing: awash in a sea of proteins. Mol Cell 12:5–14.

    Article  PubMed  CAS  Google Scholar 

  • Kawahara Y, Grimberg A, Teegarden S, et al (2008) Dysregulated editing of serotonin 2C receptor mRNAs results in energy dissipation and loss of fat mass. J Neurosci 28:12834–12844.

    Article  PubMed  CAS  Google Scholar 

  • Kishore S, Stamm S (2006) The snoRNA HBII-52 regulates alternative splicing of the serotonin receptor 2C. Science 311:230–232.

    Article  PubMed  CAS  Google Scholar 

  • Kishore S, Stamm S (2006) Regulation of alternative splicing by snoRNAs. Cold Spring Harb Symp Quant Biol LXXI:329–334

    Article  Google Scholar 

  • Kishore S, Khanna A, Zhang Z, et al (2010) The snoRNA MBII-52 (SNORD 115) is processed into smaller RNAs and regulates alternative splicing. Hum Mol Genet 19:1153–1164.

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Li P, Dybkov O, et al (2007) Binding of the human Prp31 Nop domain to a composite RNA-protein platform in U4 snRNP. Science 316:115–120.

    Article  PubMed  CAS  Google Scholar 

  • Maniatis T, Tasic B (2002) Alternative pre-mRNA splicing and proteome expansion in metazoans. Nature 418:236–243.

    Article  PubMed  CAS  Google Scholar 

  • Matera AG, Terns RM, Terns MP (2007) Non-coding RNAs: lessons from the small nuclear and small nucleolar RNAs. Nat Rev Mol Cell Biol 8:209–220.

    Article  PubMed  CAS  Google Scholar 

  • Mehler MF, Mattick JS (2007) Noncoding RNAs and RNA editing in brain development, functional diversification, and neurological disease. Physiol Rev 87:799–823.

    Article  PubMed  CAS  Google Scholar 

  • Morabito MV, Abbas AI, Hood JL, et al (2010) Mice with altered serotonin 2C receptor RNA editing display characteristics of Prader-Willi Syndrome. Neurobiol Dis 39:169–180.

    Google Scholar 

  • Nahkuri S, Taft RJ, Korbie DJ, et al (2008) Molecular evolution of the HBII-52 snoRNA cluster. J Mol Biol 381:810–815.

    Article  PubMed  CAS  Google Scholar 

  • Neu-Yilik G, Kulozik AE (2008) NMD: multitasking between mRNA surveillance and modulation of gene expression. Adv Genet 62:185–243.

    Article  PubMed  CAS  Google Scholar 

  • Nishikura K (2006) Editor meets silencer: crosstalk between RNA editing and RNA interference. Nat Rev Mol Cell Biol 7:919–931.

    Article  PubMed  CAS  Google Scholar 

  • Niswender CM, Copeland SC, Herrick-Davis K, et al (1999) RNA editing of the human serotonin 5-hydroxytryptamine 2C receptor silences constitutive activity. J Biol Chem 274:9472–9478.

    Article  PubMed  CAS  Google Scholar 

  • Pan Q, Shai O, Lee LJ, et al (2008) Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet 40:1413–1415.

    Article  PubMed  CAS  Google Scholar 

  • Robberson BL, Cote GJ, Berget SM (1990) Exon definition may facilitate splice site selection in RNAs with multiple exons. Mol Cell Biol 10:84–94.

    PubMed  CAS  Google Scholar 

  • Rogelj B, Hartmann CE, Yeo CH, et al (2003) Contextual fear conditioning regulates the expression of brain-specific small nucleolar RNAs in hippocampus. Eur J Neurosci 18:3089–3096.

    Article  PubMed  Google Scholar 

  • Runte M, Huttenhofer A, Gross S, et al (2001) The IC-SNURF-SNRPN transcript serves as a host for multiple small nucleolar RNA species and as an antisense RNA for UBE3A. Hum Mol Genet 10:2687–2700.

    Article  PubMed  CAS  Google Scholar 

  • Sahoo T, del Gaudio D, German JR, et al (2008) Prader–Willi phenotype caused by paternal deficiency for the HBII-85 C/D box small nucleolar RNA cluster. Nat Genet 40:719–721.

    Article  PubMed  CAS  Google Scholar 

  • Scott MS, Avolio F, Ono M, et al (2009) Human miRNA precursors with box H/ACA snoRNA features. PLoS Comput Biol 5:e1000507.

    Article  PubMed  Google Scholar 

  • Sharp PA (1994) Split genes and RNA splicing. Cell 77:805–815.

    Article  PubMed  CAS  Google Scholar 

  • Shin C, Manley JL (2004) Cell signalling and the control of pre-mRNA splicing. Nat Rev Mol Cell Biol 5:727–738.

    Article  PubMed  CAS  Google Scholar 

  • Smith CW, Valcarcel J (2000) Alternative pre-mRNA splicing: the logic of combinatorial control. Trends Biochem Sci 25:381–388.

    Article  PubMed  CAS  Google Scholar 

  • Stamm S (2002) Signals and their transduction pathways regulating alternative splicing: a new dimension of the human genome. Hum Mol Genet 11:2409–2416.

    Article  PubMed  CAS  Google Scholar 

  • Stamm S (2008) Regulation of alternative splicing by reversible phosphorylation. J Biol Chem 283:1223–1227.

    Article  PubMed  CAS  Google Scholar 

  • Stamm S, Riethoven JJ, Le Texier V, et al (2006) ASD: a bioinformatics resource on alternative splicing. Nucleic Acids Res 34:D46–D55.

    Article  PubMed  CAS  Google Scholar 

  • Stark H, Luhrmann R (2006) Cryo-electron microscopy of spliceosomal components. Annu Rev Biophys Biomol Struct 35:435–457.

    Article  PubMed  CAS  Google Scholar 

  • Steitz JA, Tycowski KT (1995) Small RNA chaperones for ribosome biogenesis. Science 270:1626–1627.

    Article  PubMed  CAS  Google Scholar 

  • Stoss O, Stoilov P, Hartmann AM, et al (1999) The in vivo minigene approach to analyze tissue-specific splicing. Brain Res Prot 4:383–394.

    Article  CAS  Google Scholar 

  • Taft RJ, Glazov EA, Lassmann T, et al (2009) Small RNAs derived from snoRNAs. Rna 15:1233–1240.

    Article  PubMed  CAS  Google Scholar 

  • Tang Y, Novoyatleva T, Benderska N, et al (2005) Analysis of Alternative Splicing In Vivo using Minigenes. In: Westhof E, Bindereif A, Schön A, Hartmann E, eds. Handbook of RNA Biochemistry. Weinheim: Wiley-VCH, pp. 755–782.

    Chapter  Google Scholar 

  • Thanaraj TA, Clark F (2001) Human GC-AG alternative intron isoforms with weak donor sites show enhanced consensus at acceptor exon positions. Nucleic Acids Res 29:2581–2593.

    Article  PubMed  CAS  Google Scholar 

  • Thanaraj TA, Stamm S (2003) Prediction and statistical analysis of alternatively spliced exons. Prog Mol Sub Biol 31:1–31.

    Article  CAS  Google Scholar 

  • Vickers SP, Dourish CT, Kennett GA (2001) Evidence that hypophagia induced by d-fenfluramine and d-norfenfluramine in the rat is mediated by 5-HT2C receptors. Neuropharmacology 41:200–209.

    Article  PubMed  CAS  Google Scholar 

  • Wahl MC, Will CL, Luhrmann R (2009) The spliceosome: design principles of a dynamic RNP machine. Cell 136:701–718.

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, O’Brien PJ., Chen C-X, et al (2000) Altered G protein-coupling functions of RNA editing isoform and splicing variant serotonin 2C receptors. J Neurochem 74:1290–1300.

    Article  PubMed  CAS  Google Scholar 

  • Wang ET, Sandberg R, Luo S, et al (2008) Alternative isoform regulation in human tissue transcriptomes. Nature 456:470–476.

    Article  PubMed  CAS  Google Scholar 

  • Werry TD, Loiacono R, Sexton PM, et al (2008) RNA editing of the serotonin 5HT2C receptor and its effects on cell signalling, pharmacology and brain function. Pharmacol Ther 119:7–23.

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Jones JE, Kohno D, et al (2008) 5-HT2CRs expressed by pro-opiomelanocortin neurons regulate energy homeostasis. Neuron 60:582–589.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The laboratory is supported by the Deutsche Forschungsgemeinschaft (DFG), the European Union (EURASNET), and the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Stamm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kishore, S., Stamm, S. (2011). Role of Alternative Splicing of the 5-HT2C Receptor in the Prader–Willi Syndrome. In: Di Giovanni, G., Esposito, E., Di Matteo, V. (eds) 5-HT2C Receptors in the Pathophysiology of CNS Disease. The Receptors, vol 22. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-941-3_21

Download citation

Publish with us

Policies and ethics