Skip to main content

The Role of Serotonin in Eating Behavior: Focus on 5-HT2C Receptors

  • Chapter
  • First Online:
5-HT2C Receptors in the Pathophysiology of CNS Disease

Part of the book series: The Receptors ((REC,volume 22))

Abstract

It is well established that the central 5-hydroxytryptamine (5-HT) system plays critical roles in the regulation of energy homeostasis and in the processes of meal satiation and satiety. In this chapter the effects of serotonergic drugs on rodent and human appetite expression will be examined along with the effects of some of these drugs on body weight. Particular focus has been given to the 5-HT2C receptor subtype. This not only reflects the theme of the book but also the critical role of this receptor in the effects of 5-HT drugs on appetite, specifically the induction of satiety, and weight control. The 5-HT2C receptor is a target for current antiobesity drug development with one 5-HT2C selective agonist currently entering the later stages of clinical evaluation. Whether this or similar drugs are approved for the treatment of obesity remains to be seen. However, the fact that 5-HT drugs still remain in clinical development 40 years after fenfluramine was originally introduced to treat obesity indicates the important role of this system in the control of appetite expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeniam L, Moride Y, Brenot F, et al (1996) Appetite suppressant drugs and the risk of primary pulmonary hypertension. N Engl J Med 335:609–616.

    Article  Google Scholar 

  • Arterburn DE, Crane PK, Veenstra DL (2004) The efficacy and safety of sibutramine for weight loss: a systematic review. Arch Intern Med 164:994–1003.

    Article  PubMed  CAS  Google Scholar 

  • Barkeling B, Elfhag K, Rooth P, et al (2003) Short-term effects of sibutramine (ReductilTM) on appetite and eating behavior and the long-term therapeutic outcome. Int J Obes 27:693–700.

    Article  CAS  Google Scholar 

  • Bjenning C, Williams J, Whelan K, et al (2004) Chronic oral administration of APD356 significantly reduces body weight and fat mass in obesity-prone (DIO) male and female rats. Int J Obes 28 (1 suppl):214s

    Google Scholar 

  • Blundell JE (1977) Is there a role for serotonin (5-hydroxytryptamine) in feeding? Int J Obes 1:15–42.

    PubMed  CAS  Google Scholar 

  • Blundell JE, Halford JCG (1998) Serotonin and appetite regulation: implications for the treatment of Obesity. CNS Drugs 9:473–495.

    Article  CAS  Google Scholar 

  • Blundell JE, Hill AJ (1990) Sensitivity of the appetite control system in obese subjects to nutritional and serotoninergic challenges. Int J Obes 14:219–233.

    PubMed  Google Scholar 

  • Blundell JE, Latham CJ (1978) Pharmacological manipulation of feeding behavior: possible influences of serotonin and dopamine on food intake. In: Garattini S, Samanin R, editors. Central mechanisms of anorectic drugs. New York: Raven, 78:83–109.

    Google Scholar 

  • Blundell JE, Latham CJ (1980). Characteristic adjustments to the structure of feeding behavior following pharmacological treatments: effects of amphetamine and fenfluramine and the antagonism by pimozide and metergoline. Pharmacol Biochem Behav 12:717–722.

    Article  PubMed  CAS  Google Scholar 

  • Blundell JE, McArthur RA (1981) Behavioural flux and feeding: continuous monitoring of food intake and food selection, and the video-recording of appetitive and satiety sequences for the analysis of drug action. In: Samanin R, Garattini S, editors. Anorectic agents: Mechanisms of action and tolerance. New York: Raven, 78:19–43.

    Google Scholar 

  • Bouwknecht JA, van der Guten J, Hijsenm TH, et al (2001) Male and female 5-HT1B receptor knockout mice have higher body weights than wild types. Physiol Behav 74:507–516.

    Article  PubMed  CAS  Google Scholar 

  • Chapelot D, Mamonier C, Thomas F, et al (2000) Modalities of the food intake-reducing effect of sibutramine in humans. Physiol Behav 68:299–308.

    Article  PubMed  CAS  Google Scholar 

  • Clifton PG (1994) The neuropharmacology of meal patterning. In: Cooper SJ, editor. Ethology and Psychopharmacology, vol 94. Chichester: Wiley, pp. 313–328.

    Google Scholar 

  • Clifton PG, Barnfield AMC, Philcox L (1989) A behavioural profile of fluoxetine induced anorexia. Psychopharmacology 97:89–95.

    Article  PubMed  CAS  Google Scholar 

  • Cowen PJ, Sargent PA, Williams C, et al (1995) Hypophagic, endocrine and subjective responses to m-chlorophenylpiperazine in healthy men and women. Hum Psychopharmacol 10:385–391.

    Article  CAS  Google Scholar 

  • Drent ML, Zelissen PMJ, Kopperchaar HPF, et al (1995) The effect of dexfenfluramine on eating habits in a Dutch ambulatory android overweight population with an over-consumption of snacks. Int J Obes 19:299–304.

    CAS  Google Scholar 

  • Fujitsuka N, Asakawa A, Hayashi M, et al (2009) Selective serotonin reuptake inhibitors modify physiological gastrointestinal motor activities via 5-HT2C receptor and acyl ghrelin. Biol Psychiatry 65:748–759.

    Article  PubMed  CAS  Google Scholar 

  • Ghaziuddin N, Welch K, Greden J (2003) Central serotonergic effects of m-chlorophenylpiperazine (mCPP) among normal control adolescents. Neuropsychopharmacology 28:133–139.

    Article  PubMed  CAS  Google Scholar 

  • Goodall E, Silverstone T (1988) Differential effect of d-fenfluramine and metergoline on food intake in human subjects. Appetite 11:215–288.

    Article  PubMed  CAS  Google Scholar 

  • Grignaschi G, Samanin R (1992) Role of serotonin and catecholamines in brain in feeding ­suppressant effects of fluoxetine. Neuropharmacology 31:445–449.

    Article  PubMed  CAS  Google Scholar 

  • Haddock CK, Poston WSC, Dill PL, et al (2002) Pharmacotherapy for obesity: a quantitative analysis of four decades of published randomized clinical trials. Int J Obes 26:262–273.

    Article  CAS  Google Scholar 

  • Halford JCG (2006) Pharmacotherapy for obesity. Appetite 45:6–10.

    Article  Google Scholar 

  • Halford JCG (2006) Obesity drugs in clinical development. Curr Opin Investig Drugs 7:312–318.

    PubMed  CAS  Google Scholar 

  • Halford JCG, Blundell JE (1993) 5-Hydroxytryptaminergic drugs compared on the behavioural sequence associated with satiety. Br J Pharmacol 100:95P.

    Google Scholar 

  • Halford JCG, Blundell JE (1996) The 5-HT1B receptor agonist CP-94,253 reduces food intake and preserves the behavioural satiety sequence. Physiol Behav 60:933–939.

    PubMed  CAS  Google Scholar 

  • Halford JCG, Blundell JE (1996) Metergoline antagonizes fluoxetine induced suppression of food intake but not changes in the behavioural satiety sequence. Pharmacol Biochem Behav 54:745–751.

    Article  PubMed  CAS  Google Scholar 

  • Halford JCG, Blundell JE (2000) Separate systems for serotonin and leptin in appetite control. Ann Med 32:222–232.

    Article  PubMed  CAS  Google Scholar 

  • Halford JCG, Wanninayake SCD, Blundell JE (1998) Behavioural satiety sequence (BSS) for the diagnosis of drug action on food intake. Pharmacol Biochem Behav 61:159–168.

    Article  PubMed  CAS  Google Scholar 

  • Halford JCG, Harrold JA, Boyland EJ, et al (2007) Serotonergic drugs: effects on appetite expression and use for the treatment of obesity. Drugs 67:27–55.

    Article  PubMed  CAS  Google Scholar 

  • Halford JCG, Boyland EJ, Cooper SJ, et al (2010) The effects of sibutramine on the microstructure of eating behavior and energy expenditure in obese women. J Psychopharmacol 24:99–109.

    Article  PubMed  CAS  Google Scholar 

  • Hansen DL, Toubro S, Stock MJ, et al (1998) Thermogenic effects of sibutramine in humans. Am J Clin Nutr 1998; 68: 1180–1186

    PubMed  CAS  Google Scholar 

  • Hayashi A, Sonoda R, Kimura Y, et al (2004) Antiobesity effect of YM348, a novel 5-HT2C receptor agonist, in Zucker rats. Brain Res 1011:221–227.

    Article  PubMed  CAS  Google Scholar 

  • Heal DJ, Smith SL, Fisas A, et al (2008) Selective 5-HT6 receptor ligands: progress in the development of a novel pharmacological approach to the development of obesity and related metabolic disorders. Pharmacol Ther 117:207–234.

    Article  PubMed  CAS  Google Scholar 

  • Heisler LK, Cowley MA, Tecott LH, et al (2002) Activation of central melanocortin pathways by fenfluramine. Science 297:609–611.

    Article  PubMed  CAS  Google Scholar 

  • Heisler LK, Cowley MA, Kishi T, et al (2003) Central serotonin and melanocortin pathways regulating energy homeostasis. Ann N Y Acad Sci 994:169–174.

    Article  PubMed  CAS  Google Scholar 

  • Heisler LK, Jobst EE, Sutton GM, et al (2006) Serotonin reciprocally regulates melanocortin neurons to modulate food intake. Neuron 51:239–249.

    Article  PubMed  CAS  Google Scholar 

  • Hewitt KN, Lee MD, Dourish CT, et al (2002) Serotonin 2C receptor agonists and the behavioural satiety sequence in mice. Pharmacol Biochem Behav 71:691–700.

    Article  PubMed  CAS  Google Scholar 

  • Hoyer D, Martin G (1997) 5-HT receptor classification and nomenclature: towards a harmonization with the human genome. Neuropharmacology 36:419–428.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, HC, Bearham MC, Hutchins, LJ, et al (1997) Investigation of the mechanisms underlying the hypophagic effects of the 5-HT and noradrenaline reuptake inhibitor, sibutramine, in the rat. Br J Pharmacol 121:1613–1618.

    Article  PubMed  CAS  Google Scholar 

  • Kennett GA, Curzon G (1988) Evidence that the hypophagia induced by mCPP and TFMPP requires 5-HT1C and 5-HT1B receptors; hypophagia induced by RU-24969 only requires 5-HT1B receptors. Psychopharmacology 96:93–100.

    Article  PubMed  CAS  Google Scholar 

  • Kennett GA, Curzon G (1988) Evidence that mCPP may have behavioural effects mediated by central 5-HT1C receptors. Br J Pharmacol 94:137–147.

    Article  PubMed  CAS  Google Scholar 

  • Kennett GA, Curzon G (1991) Potencies of antagonists indicate that 5-HT1C receptors mediate 1-3(chlorophenyl)piperazine-induced hypophagia. Br J Pharmacol 10:2016–2020.

    Article  Google Scholar 

  • Kennett GA, Wood MD, Bright F, et al (1997) SB 242084, a selective and brain potent 5-HT2C receptor. Neuropharmacology 36:609–620.

    Article  PubMed  CAS  Google Scholar 

  • Kitchener SJ, Dourish CT (1994) An examination of the behavioural specificity of hypophagia induced by 5-HT1B, 5-HT1C and 5-HT2 receptor agonists using the post-prandial sequence in rats. Psychopharmacology 113:368–377.

    Article  Google Scholar 

  • Lawton CL, Wales JK, Hill AJ, et al (1995) Serotoninergic manipulation, meal-induced satiety and eating patterns. Obes Res 3:345–356.

    Article  PubMed  CAS  Google Scholar 

  • Lee MD, Clifton PG (1992) Partial reversal of fluoxetine anorexia by the 5-HT antagonist metergoline. Psychopharmacology 107:359–364.

    Article  PubMed  CAS  Google Scholar 

  • Lee MD, Simansky KJ (1997) CP-94,253: a selective serotonin1B (5-HT1B) agonist that promotes satiety. Psychopharmacology 131:264–270.

    Article  PubMed  CAS  Google Scholar 

  • Lee MD, Kennett GA, Dourish CT, et al (2002) 5-HT1B receptors modulate components of satiety in the rat: behavioural and pharmacological analyses of the selective serotonin1B agonist CP-94,253. Psychopharmacology 164:49–60.

    Article  PubMed  CAS  Google Scholar 

  • Lightowler S, Wood M, Brown T, et al (1996) An investigation of the mechanism responsible for fluoxetine-induced hypophagia in rats. Eur J Pharmacol 296:137–143.

    Article  PubMed  CAS  Google Scholar 

  • McGuirk J, Silverstone T (1990) The effect of 5-HT re-uptake inhibitor fluoxetine on food intake and body weight in healthy male subjects. Int J Obes 14:361–372.

    PubMed  CAS  Google Scholar 

  • McGuirk J, Muscat R, Willner P (1992) Effects of the 5-HT uptake inhibitors femoxetine and parpexetine, and the 5-HT1A agonist cltoprazine, on the behavioural satiety sequence. Pharmacol Biochem Behav 41:801–805.

    Article  PubMed  CAS  Google Scholar 

  • Neill JC, Cooper SJ (1989) Evidence that d-fenfluramine anorexia is mediated by 5-HT1 receptors. Psychopharmacology 97:213–218.

    Article  PubMed  CAS  Google Scholar 

  • Neill JC, Bendotti C, Samanin R (1990) Studies on the role of 5-HT receptors in satiation and the effect of d-fenfluramine in the runway test. Eur J Pharmacol 190:105–112.

    Article  PubMed  CAS  Google Scholar 

  • Nonogaki K, Abdullah L, Goulding EH, et al (2003) Hyperactivity and Reduced Energy Cost of Physical Activity in Serotonin 5-HT2C Receptor Mutant Mice. Diabetes 52:315–320.

    Article  PubMed  CAS  Google Scholar 

  • Padwal R, Li SK, Lau DCW (2003) Long-term pharmacotherapy for overweight and obesity: a systematic review and meta-analysis of randomized controlled trials. Int J Obes 27:1437–1446.

    Article  CAS  Google Scholar 

  • Pijl H, Koppeschaar HPF, Willekens FLA, et al (1991) Effect of serotonin re-uptake inhibition by fluoxetine on body weight and spontaneous food choice in obesity. Int J Obes 1991; 15:237–242

    PubMed  CAS  Google Scholar 

  • Rogers PJ, Blundell JE (1979) Effect of anorexic drugs on food intake and the micro-structure of eating in human subjects. Psychopharmacology 66:159–165.

    Article  PubMed  CAS  Google Scholar 

  • Rolls BJ, Shide DJ, Thorward ML, et al (1998) Sibutramine reduces food intake in non-dieting women with obesity. Obed Res 6:1–11.

    Article  CAS  Google Scholar 

  • Samanin R, Mennini T, Bendotti C, et al (1989) Evidence that central 5-HT2C receptors do not play an important role in anorectic activity of d-fenfluramine in the rat. Neuropharmacology 28:465–469.

    Article  PubMed  CAS  Google Scholar 

  • Sargent PA, Sharpley AL, Williams C, et al (1997) 5-HT2C receptor activation decreases appetite and body weight in obese subjects. Psychopharmacology 133:309–312.

    Article  PubMed  CAS  Google Scholar 

  • Simansky JJ, Nicklous DM (2002) Parabrachial infusion of D-fenfluramine reduces food intake: blockade by the 5-HT1B antagonist SB-216641. Pharmacol Biochem Behav 71:681–690.

    Article  PubMed  CAS  Google Scholar 

  • Simansky KJ, Viadya AH (1990) Behavioural mechanisms for the anorectic actions of the serotonin (5-HT) uptake inhibitor sertraline in rats: comparison with directly acting agonists. Brain Res Bull 25:953–960.

    Article  PubMed  CAS  Google Scholar 

  • Smith S, Anderson J, Frank A, et al (2005) The effects of APD356, a selective 5-HT2C agonist, on weight loss in a 4 week study in healthy obese patients. Obes Res 13(suppl):101-OR

    Google Scholar 

  • Smith BM, Smith JM, Tsai JH, et al (2005) Discovery and SAR of new benzazapines and potent and selective 5-HT2C receptor agonist for the treatment of obesity. Bioorg Med Chem Lett 12:1467–1470.

    Article  Google Scholar 

  • Tecott LH, Sun LM, Akanna SF, et al (1995) Eating disorder and epilepsy in mice lacking 5-HT2C serotonin receptors. Nature 374:542–546.

    Article  PubMed  CAS  Google Scholar 

  • Vickers SP, Dourish CT (2004) Serotonin receptor ligands and the treatment of obesity. Curr Opin Invest Drug 5:377–388.

    CAS  Google Scholar 

  • Vickers SP, Clifton PG, Dourish CT, et aln (1999) Reduced satiating effect of d-fenfluramine in serotonin 5-HT2C receptor mutant mice. Psychopharmacology 143:309–314

    Article  PubMed  CAS  Google Scholar 

  • Vickers SP, Benwell KR, Porter RH, et al (2000) Comparative effects of continuous infusion of mCPP, Ro 60-0175 and d-fenfluramine on food intake, water intake, body weight and locomotor activity in rats. Br J Pharmacol 130:1305–1314.

    Article  PubMed  CAS  Google Scholar 

  • Vickers SP, Dourish CT, Kennett GA (2001) Evidence that hypophagia induced by d-fenfluramine and d-norfenfluramine in the rat is mediated by 5-HT2C receptors. Neuropharmacology 41:200–209.

    Article  PubMed  CAS  Google Scholar 

  • Vickers SP, Easton N, Webster LJ, et al (2003) Oral administration of the 5-HT2C receptor agonist, mCPP, reduces body weight gain in rats over 28 days as a result of maintained hypophagia. Psychopharmacology 167:274–280.

    PubMed  CAS  Google Scholar 

  • Walsh AE, Smith KA, Oldman AD (1994) M-Chlorophenylpiperazine decreases food intake in a test meal. Psychopharmacology 116:120–122.

    Article  PubMed  CAS  Google Scholar 

  • Ward AS, Comer SD, Haney M, et al (1999) Fluoxetine-maintained obese humans: effect on food intake and body weight. Physiol Behav 66:815–821.

    Article  PubMed  CAS  Google Scholar 

  • Wong DT, Reid LR, Threlkeld PG (1988) Suppression of food intake in rats by fluoxetine: comparison of anantiomers and effects of serotonin antagonists. Pharmacol Biochem Behav 31:475–479.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason C. G. Halford .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Halford, J.C.G. (2011). The Role of Serotonin in Eating Behavior: Focus on 5-HT2C Receptors. In: Di Giovanni, G., Esposito, E., Di Matteo, V. (eds) 5-HT2C Receptors in the Pathophysiology of CNS Disease. The Receptors, vol 22. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-941-3_17

Download citation

Publish with us

Policies and ethics